跳到主要內容

臺灣博碩士論文加值系統

(44.192.95.161) 您好!臺灣時間:2024/10/10 08:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林世仁
研究生(外文):Shin-Jen Lin
論文名稱:利用放電紡絲法開發聚乙烯醇縮丁醛及二氧化矽奈米纖維
論文名稱(外文):Development of Polyvinyl Butyral and Silica Nanofibers by Electrospinning Process
指導教授:葉茂榮葉茂榮引用關係
指導教授(外文):Mou-Yung Yeh
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學系專班
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:95
中文關鍵詞:方矽石放電紡絲法聚乙烯醇縮丁醛二氧化矽石英鱗矽石水熱法
外文關鍵詞:CristoboliteTridymiteQuartzSilicaPolyvinyl butyralElectrospinning processHydrothermal process
相關次數:
  • 被引用被引用:1
  • 點閱點閱:197
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究主要是著重於有機相與無機相混成的時機,及其對於所形成之二氧化矽結構的影響,利用放電紡絲法(Electrospinning)製備出聚乙烯醇縮丁醛(Polyvinyl butyral)及二氧化矽(Silica)之奈米纖維,以不同的反應時間所組成之PVB/Silica,形成具有規則排列以及具奈米級粒徑之複合纖維,並結合水熱法(Hydrothermal)在低溫條件下合成多晶相之奈米黏土礦物。
在實驗分析檢驗儀器中使用黏度計(Viscometers),量測不同PVB/Silica組成之黏度值;以傅立葉轉換紅外線光譜儀(Fourier Transform Infrared spectrometer, FTIR)來測定某一化學分子或化學物種因吸收(或發射)紅外線輻射產生振動或振動-轉動能量的變化;以熱重分析儀(Thermogravimetric Analysis,TGA)測量PVB的熱重損失;以掃描式電子顯微鏡(Scanning Electron Microscopy,SEM)觀察纖維之表面形態;X光繞射儀(X-ray Diffractometer,XRD)測定結晶性;穿隧式電子顯微鏡(Transmission Electron Microscopy,TEM)觀察表面微觀的結晶形態。
我們可以成功的製備出粒徑在60∼200nm之聚乙烯醇縮丁醛(Polyvinyl butyral)及二氧化矽(Silica)奈米纖維,且因其奈米表面積化後,經高溫煅燒至600℃可轉為石英相(Quartz),800℃可轉為鱗矽石相(Tridymite)、1000℃可轉為方矽石相(Cristobolite-α),並藉由奈米複合纖維之模板效應使用水熱法在低溫成長出多晶相之二氧化矽礦石。
This research is mainly in organically dealing with the inorganic blending emphatically the opportunity, regarding forms the silicon dioxide structure influence.Preparation the Polyvinyl butyral nanofiber and the increase forms it in vitro ceram (Silica) by different composition PVB/Silica to have the regular array and the nanometer level particle size the complex fiber by Electrospinning and using Hydrothermal process synthesizes the polycrystal nano mineral clay under the low temperature condition.
The viscosity value of the gauging different PVB/Silica composition in the experiment analytical control instrument using the viscometers、 (Fourier Transform Infrared spectrometer, FTIR) determines some chemistry member either the chemical species absorbs or launch the infrared emission has the vibration or the vibration - rotation energy change、 (Thermogravimetric Analysis, TGA) surveys PVB by the thermogravimetry analyzer the thermogravimetry to lose,、shows the (Differential Scanning Calorimetry, DSC) to discuss the thermal property、(Scanning Electron Microscopy, SEM) to observe of surface contours、(X-ray Diffractometer, XRD) to determine the crystallinity、 (Transmission Electron Microscopy, TEM) observes the superficial microscopic crystallization shape.
The experimental result obtains, we may succeed the preparation nano particle size Polyvinyl butyral nanofiber and the particle size is smaller than silicon dioxide of (Silica) nanometer textile fiber a 200nm polyvinyl butyral in the 60~200nm, because and the surface area to 600℃ transfers Quartz after the high temperature calcination, 800℃ rotatable for Tridymite,1000℃ rotatable for Cristobolite-αand grows polycrystalline Cristobolite-α by the template of effect use Hydrothermal in low temperature because of the nanometer complex fiber.
頁次
中文摘要………………………………………………………………Ⅰ
英文摘要………………………………………………………………Ⅲ
誌謝····················································Ⅴ
目錄……………………………………………………………………Ⅶ
圖目錄………………………………………………………………ⅩⅡ
表目錄………………………………………………………………ⅩⅥ
第一章 緒論
1.1
前言····················································1
1.2
研究背景················································1
1.2.1
聚乙烯醇縮丁醛(polyvinyl butyral,PVB)簡介··············1
1.2.2
溶膠-凝膠法(sol-gel method)原理············6
1.2.2.1水解反應(hydrolysis)·····························7
1.2.2.2 縮合反應(condensation)··························8
1.2.2.3 聚合反應(polymerization)························8
1.2.3
放電紡絲法(electrospinning,ES)原理···········13
1.2.4
水熱法(hydrothermal)原理 ·······························18
1.2.5
有機/無機混成材料之簡介·································19
1.2.6
結晶型游離二氧化矽之定義································21
1.3
研究動機及目的··········································25
第二章 文獻回顧
2.1
電紡絲的基本裝置········································27
2.2
電紡絲過程············································· 27
2.3
影響電紡絲之因素········································29
2.4
纖維的收集與排列·····················33
2.5
無機/高分子複合纖維與陶瓷纖維···························35
2.6
奈米線薄膜狀材料之應用··································48
2.6.1
創傷敷料(wound dressing) ·······························49
2.6.2
生物基材(scaffolds) ····································50
2.6.3
導引組織再生術 ·········································50
第三章 實驗
3.1
實驗藥品················································53
3.2
實驗材料與儀器··········································53
3.3
實驗 ···················································54
3.3.1
實驗流程 ···············································54
3.3.2
溶液製備 ···············································57
3.3.2.1
聚乙烯醇縮丁醛溶液 ·····································57
3.3.2.2
二氧化矽前驅物溶液······································57
3.3.2.3
水熱法溶劑溶液··········································57
3.4
電紡絲的實驗流程 ·······································57
3.5
儀器操作及實驗步驟 ·····································58
3.6
實驗分析 ···············································59
3.6.1
紅外線光譜分析儀········································59
3.6.2
掃描式電子顯微鏡········································59
3.6.3
熱重分析儀··············································60
3.6.4
X光繞射分析儀 ··········································60
3.6.5
穿隧式電子顯微鏡分析儀··································61
第四章 結果與討論
4.1
溶液黏度值分析··········································63
4.1.1
不同重量百分比PVB溶液黏度值分析·························63
4.1.2
不同sol-gel時間/PVB溶液黏度值分析 ······················63
4.2
FTIR光譜分析 ···········································64
4.2.1
PVB 粉末與PVB奈米纖維光譜分析比較···················....64
4.2.2
PVB/Silica奈米纖維光譜分析比較··························65
4.3
TGA分析·················································66
4.3.1
PVB奈米纖維TGA分析······································66
4.3.2
PVB/Silica奈米纖維TGA分析·······························66
4.4
SEM分析·················································67
4.4.1
不同重量百分比PVB奈米纖維分析···························67
4.4.2
不同Sol-Gel反應時間/PVB 15 wt%奈米纖維分析······........68
4.4.3
奈米纖維於不同濃度之NaOH成長Silica柱狀分析····..........77
4.5
XRD分析·················································78
4.5.1
PVB粉末與PVB nanofiber XRD比較··························78
4.5.2
Sol-Gel溶液煅燒600℃/800℃/1000 ℃繞射分析·········.....79
4.5.3
Sol-Gel 30 min溶液/PVB15 wt%奈米纖維煅燒600℃/800℃/1000℃繞射分析··········································......80
4.5.4
Sol-Gel 90 min溶液/15wt%PVB奈米纖維煅燒600℃/800℃/1000℃繞射分析··········································........81
4.5.5
Sol-Gel 300min溶液/15wt%PVB奈米纖維煅燒600℃/800℃/1000℃繞射分析··········································........82
4.6
TEM分析·················································83
4.6.1
Sol-Gel 300 min/15wt%PVB奈米纖維鍛燒1000℃······........83
4.6.2
Sol-Gel 300 min與15wt%PVB奈米纖維水熱法分析··...........84
第五章結論及未來展望 ···································85
參考文獻 ···············································87
1. B. Munro, P. Conrad, S. Kramer, H. Schmidt. Solar Energy Materials and Solar Cells. 1998, 54, 131.
2. H. M. Ebelmen, Ann Chimie. Phys. 1846, 16, 129.
3. F. Feher, H. Berthold, J. Z. Anorg. Allg. Chem. 1953, 273, 144.
4. H. Dislich, Glastechn.Ber. 1971, 44, 1.
5. C. JeffreyBrinker George W. Scherer Sol-Gel-Science Chap 3.
6. C. Aelion, A. Loebel and F. Eirich. J.Am. Chem. Soc. 1950, 72, 5705.
7. Y. Wei, J. M. Yeh, D. Jin. Chem. Mater. 1995, 7, 969.
8.化工資訊,1998, 2, 32.
9. G. Kim, A. Wutzler. Chem. Mater. 2005, 17, 4949-4957.
10. Rutledge, G. L. and Warner, S. B. National Textile center Annual Deport. November 2002, M01-MD22.
11. Kim, J. S. Polymer J. (Tokyo). 2000, 32(7), 616
12. Wang, Y. J. of Material. Sci. Lett. 2002, 21(13) , 1055.
13. Chunk , H. Y., PCT Int. Appl. WO2002020668.
14. H. Berthold. Nature. 2001, 411, (May, 17), 236.
15. Yun, K. S., PCT Int. Appl. 2001, WO 2001089022.
16. Gneiner. Macromolecules. 2002, 35, 2429.
17. Jia, H. F. Biotechnology Progress, 2002, 18(5), 1027.
18. Wnek, G. E. Macromolecules. 2002, 36, 3803.
19. Lee, S. H. Macromolecular Research. 2002, 10, 5, 252.
20. S. Wade, T. Suzuki and T. Noma. J. Ceram. Soc. Jpn. 1995, 12, 103.
21. G. W. Morey. J. Am .Ceram. Soc. 1953, 36, 279.
22. X. Wang, X. Chen, L.Gao, H. Zheng, Z. Zheng ,Y. Qian. J. Phys. Chem. B. 2004, 108, 16401.
23. T. Kasuga, H. J. Hiramatsu, A. Hoson, T. Sekino, K. Niihara . Langmuir. 1998, 14, 3160.
24. T. Kasuga, H. J. Hiramatsu, A. Hoson, T. Sekino, K. Niihara. Adv. Mater. 1999, 11, 1307.
25. D. Seo, J. K. Lee, H. J. Kim . Cryst. Growth.,2001, 229, 428.
26. Y. Zhu, H. Li, Y. Koltypin, Y.R. Hacohen, A. Gedanken. Chem. Commun. 2001, 2616.
27. Q. Zhang, L. Gao, J. Sun, S. Zheng. Chem. Lett . 2002, 226.
28. Y. Q. Wang, G. Q. Hu, X. F. Duan, H. L. Sun, Q. K. Xue . Chem. Phys. Lett. 2002, 365, 427.
29. B. D. Yao, Y. F. Chan, X. Y. Zhang, W. F. Zhang, Z. T. Yan, N. Wang , Appl. Phys. Lett . 2003, 82, 281.
30. C. C. Tsai, H. S. Teng , Chem. Mater. 2004, 16, 4352.
31. W. Wang, O. K. Varghese, M. Paulose, C. A. Grimes . J. Mater .Res. 2004, 19, 417.
32. R. H. Perry, C. H. Chilton. J. Mater. Res. 2003, 18, 156.
33. George R.Brubaker. Corrosion Chemistry. 1979.
34. Y. Wang, N. Herron, Solid State Commun. 1991, 77, 33.
35. F. E.Karasz, P. n. Prasad, Y. Pang, US Patent 5,130,362, 1992, July.
36. S. P. Armes, S. Gottesfeld, J. G. Berry, Polymer, 1991, 32, 2325.
37. S. Kobayashi, T. Saegusa, Makromol. Chem., 1992, 1-9, 64.
38. C.G.Gebelein, Biometic. Polymer, New York, 1990.
39. Bruce M. Novak, Adv.Mater. 1993, Vol.5, No.6, 422.
40. Japanese R&D trend analysis advanced materials-phase VI, Rep.
No.1; Organic-In Organic polymer hybrids, KRI, 1994, May.
41. 王執明,1989;"肺症所關切的礦石 - 矽石類礦物",行政院勞工委員會。
42. ILO, 1991; "Silica & Silicates" in "Encyclopedia of Occupational Health & Safety", 3rd Ed., L, Parmeggiani: 2032-2036.
43. 王執明,田沛霖,靳文潁,石東生,1989; "台灣地區工業用礦石游離二氧化矽含量調查報靠告",行政院勞工委員會。
44. American Conference of Governmental Industrial Hygienists, USA, 1996, 33.
45. X. L. Rayleigh, London, Edinburgh, and Dublin Phil. Mag. 44.1882, 184, 6.
46. J. Zeleny. J. Phys Rev. 1914, 3, 69.
47. J. Zeleny. Phys. Rev. 1917, 10, 1.
48. A. Formhals, Process and apparatus for preparing artificial threads. 1934, US Patent 1, 975, 504.
49. G. I. Taylor, Disintegration of water drops in an electric field. 1964, Proc. R. Soc. London, Ser. A 280, 383 .
50. G. I. Taylor, The stability of horizontal fluid interface in a vertical Electric field. 1965 , J. Fluid Mech. 22, 1.
51. G. I. Taylor, The circulation produced in a drop by an electric field. 1966 , Proc. R. Soc. London, Ser. A 291, 145 .
52. G. I. Taylor, Electrically driven jets. 1969, Proc. R. Soc. London, Ser. A313, 453 .
53. L. Larrondo, R. St. J. Manley. J. Polym. Sci., B, Polym. Phys. 1981,Ed. 19909.
54. L. Larrondo, R. St. J. Manley, J. Polym. Sci., B, Polym. Phys. Ed. 19, 921.(1981)。
55. L. Larrondo, R. St. J. Manley, J. Polym. Sci., B, Polym. Phys. Ed. 19, 933 (1981)。
56. D. H. Reneker, I. Chun, Nanometre diameter fibres of polymer, produced by electrspinning, Nanotechnology 7, 216 (1996)。
57. Z. W. Fu T. Jun. Ma, Q. Z. Qin, Solid State Ionics 176 (2005)1635 – 1640
58. D. H. Reneker, J. Doshi, Electrospinning process and applications of electrospun, J. electrostatics 35, 151 (1995)。
59. H. Fong, I. Chun, D. H. Reneker, “Beaded nanofibers formed during electrospinning” , Polymer, 40, 4585 (1999)
60. H. Liu, Y. L. Hsieh, “Ultrafine fibros cellulose membranes from electrospinning of cellulose acetate” J. Polym. Sci., Part:B, Polym. Phys. , 40, 2119(2001).
61. X. Zong, K. Kim, D. Fang, S. Ran, B. S. Hsiao, B. Chu, “Structure and process relationship of electrospun bioabsorbable nanofiber membranes”, Polymer, 43, 4403 (2002)
62.K. H. Lee, H. Y. Kim, H. J. Bang, Y. H. Jung, S. G. Lee, “The change of bead morphology formed on electrospun polystyrene fibers”, Polymer, 44, 4029 (2003)
63.K. H. Lee, H. Y. Kim, Y. J. Ryu, K. W. Kim, S. W. Choi,
“Mechanical behavior of electrospun fiber mats of poly(vinyl chloride)/polyurethane polyblends”, J. Polym. Sci., Part:B, Polym. Phys. , 41, 1256 (2003)
64.D. Li, Y. Xia, “Fabrication of titania nanofibers by electrospinning” Nano Letters, 3, 555(2003)
65. J. M. Deitzel, J. Kleinmeyer, D. Harris, N. C. B. Tan, “The effect of processing variables on the morphology of electrospun nanofibers and textiles”, Polymer, 42, 261 (2001)
66. A. Koski, K. Yim, S. Shivkumar, “Effect of molecular weight on fibrous PVA produced by electrospinning”, Materials Letters, 58, 493 (2004)
67. C. L. Casper, J. S. Stephens, N. G. Tassi, D. B. Chase, J. F. Rabolt,“Controlling surface morphology of electrospun polystyrene fibers:effect of humidity and molecular weight in the electrospinning process”, Macromolecules 37, 573(2004).
68. S. Koombhongse, W. Liu, D.H. Reneker, “Flat polymer ribbons and other shapes by electrospinning” J. Polym. Sci.,Part:B, Polym. Phys. 39, 2598(2001).
69. M. Bognitzki, W.Czado, T. Frese, A. Schapor, M. Hellwig, M.Steinhart,A. Greiner, J. H. Wendorff, “Nanostructured fibers via electrospinning”, Adv. Mater. 13, 70 (2001)
70. S. Megelski, J. S. Stephens, D. B. Chase, J. F. Rabolt, “Micro- and nanostructured surface morphology on electrospun polymer fibers” , Macromolecules 35, 8456 (2002)
71. L. Wannatong, A. Sirivat, P. Supaphol, “Effects of solvents on electrospun polymeric fibers:preliminary study on polystyrene” Polym. Int. 53, 1851(2004)
72. P. K. Baumgartyen, “Electrostatic spinning of acrylic microfibers”, J.Colloid Interface Sci. 36, 71(1971).
73. C. J. Buchko, L. C. Chen, Y. Shen, D. C. Martin, “Processing and microstructural characterization of porous biocompatible protein polymer thin films” Polymer, 40, 7397(1999)
74. K. H. Lee, H. Y. Kim, Y. M. La, D. R. Lee, N. H. Sung, “Influence of A mixing solvent with tetrahydrofuran and n,n-dimethylformamide on electrospun poly(vinyl chloride) nonwoven mats”, J. Polym. Sci. , Part : B, Polym. Phys. 40, 2259(2002)
75. Z. M. Huang, Y. Z. Zhang, M. Kotaki, S. Ramakrishna, “A review on polymer nanofibers by electrospinning and their applications in nanocomposites” Compos. Sci. Technol. 63, 2223(2003).
76. E. D. Boland, G. E. Wnek, D. G. Simpson, K. J. Pawlowski, G. L. Bowlin, “Tailoring tissue engineering scaffolds using electrostatic processing techniques:A study of poly(Glycolic acid) electrospinning” J. Macromol. Sci.—Pure Apply. Chem., A38, 12, 1231(2001)
77. J. A. Matthews, G. E. Wnek, D. G. Simpson, G. L. Bowin,
“Electrospinning of collagen nanofibers”acromolecules, 3, 232 (2002)
78. E. Zussman, A. Theron, A. L. Yarin, “Formation of nanofibers crossbars in electrospinning”, Appl. Phys. Lett. 82, 973(2003)
79. E. Smita, U. Bu˝ttnerb, R. D. Sanderson, “Continuous yarns from electrospun fibers”, Polymer, 46, 2419 (2005)
80. R. Dersch, T. Liu, A. K. Schaper, A. Greiner, J. H. Wendorff,“Electrospun nanofibers: Internal structure and intrinsic orientation” Journal of Polymer Science: Part A: Polymer Chemistry, 41, 545 (2003)
81. P. Katta, M. Alessandro, R. D. Ramsier, and G. G. Chase,“Continuous electrospinning of aligned polymer nanofibers onto a wire drum Collector” Nano Lett., 4, (2004)
82. J. M. Deitzel, J. D. Kleinmeyer, J. K. Hirvonen, N. C. Beck Tan,“Controlled deposition of electrospun poly(ethylene oxide) fibers" Polymer, 42, 8163 (2001)
83. P. D. Daltona, D. Klee, Martin Möller"Electrospinning with dual collection rings” Polymer , 46 ,611 (2005)
84. G. Larsen, R. Velarde-Ortiz, K. Minchow, A. Barrero, I. G. Loscertales, J. Am, Chem. Soc. 2003, 125, 1154.
85. S. -S. Choi, S. G. Lee, S. S. Im, S. H. Kim, J. Mater. Sci. Lett. 2003, 22, 891.
86. D. Li, Y. Wang, Y. Xia, Nano Lett. 2003, 3, 1167.
87. D. Li, T. Herricks, Y. Xia, Appl. Phys. Lett. 2003, 83, 4586.
88. A.G. Mikos, G. Sarakinos, S.M. Leite, J.P. Vacanti, R. Langer. Laminated three-dimensional biodegradable foams for use in tissue engineering. Biomaterials.14: 323-330, 1993.
89. Larrondo L and Manley R St J. Electrostatic fiber spinning from polymer melts.I~III. J. Polymer sci. :Polymer Phys. Edn 19: 909-40, 1981.
90. K. Mstsuda, S. Suzuki, N. Isshiki, K. Yoshioka, R. Wada, S Hyon, Y. Ikada.Evaluation of bilayer artificial skin capable of sustained release of antibiotic.Biomaterials. 13: 119, 1992.
91. K. Mstsuda, S. Suzuki, N. Isshiki, Y. Ikada. Re-freeze dried bilayerartifical skin.Biomaterials. 14: 1030, 1993.
92. L. Hinrichs, E. Lommen, C. Wildevuur, J. Feijen. Fabrication andcharacterization of an asymmetric polyurethane membrane for use as a wounddressing. J. Appl.Biomater. 3: 287, 1992.
93. Younger WJ. Pyrrhea. alveolaris from a bacteriological standpoint with a report of some investigations and remarks on the treatment. Inter Dent J. 20: 413-423, 1899.
94. McCall J.O. An improved method of inducing reattachment of the gingival tissue in periodontolclasia. Dental Iterms of Interest. 48: 42-358, 1926.
95. Nyman S, Karring T. New attachment following surgical treatment of human periodontal disease. J .Cin .Periodontol. 9: 290-296, 1982.
96. Isidor F, Karring T, Nyman S. New attachment-reattachment following reconstructive periodontal surgery. J of Clin Periodontology. 12: 728-735, 1985.
97. Nyman S, Karring T. New attachment following surgical treatment of human periodontal disease. J .Cin .Periodontol. 9: 290-296, 1982.
98. Gottlow J, Nyman S, karring T & Lindhe J. New attachment formation as the result of controlled tissue regeneration. J of Clin Periodontology. 11: 494-503, 1984.
99. Scantlebury TV. 1982-1992: A decade of technology development for guided tissue regeneration. J Periodontol. 64: 1129-1137, 1993.
100. Chan SW, Dung TS. Application of collagen membranes in periodontal regeneration. Chin J Periodontol. 4: 173-188, 1999.
101. Strathmann H. Synthetic Membranes: Science, Engineering, and Applications, ed. P. M. Bungay, H. K. Lonsdale, M. N. de Pinho, Riedel Publishing, New York, 1983.
102. Warrer k, Karring T. Guided tissue regeneration using biodegradable membranes of polylactic acid or polyurethane. J of Periodontal Research. 65: 1029-1036, 1992.
103. SW. C, TS. D, Chin J Periodontol, 1999. 479-95.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊