跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/01/21 02:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳宗顯
研究生(外文):Tsung-Hsien Chen
論文名稱:降雨引致地下水位變化之研究-以那菝、六甲與東和地下水位站為例
論文名稱(外文):Study on Rainfall-Induced Groundwater Water Level Variation–Case study at the Naba, Liujar, and Donher Well Stations
指導教授:詹錢登詹錢登引用關係
指導教授(外文):Chyan-Deng Jan
學位類別:博士
校院名稱:國立成功大學
系所名稱:水利及海洋工程學系碩博士班
學門:工程學門
學類:河海工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:95
語文別:中文
論文頁數:243
中文關鍵詞:降雨快速反應有效累積雨量Kernel函數線性系統分析地下水位增量
外文關鍵詞:groundwater level incrementKernel functionlinear system analysisquick responseeffective accumulated rainfall amount
相關次數:
  • 被引用被引用:42
  • 點閱點閱:1142
  • 評分評分:
  • 下載下載:320
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要是要探討地下水位受降雨影響所產生的變化。文中說明地下水位對降雨之快速反應現象以及建立地下水位增量與有效累積雨量之經驗關係式,期望經由此二種不同類型之降雨所引致之地下水位變動之的探討,能夠更加了解地下水位變動之行為。

本論文先將地下水位增量與降雨量資料利用時間數列分析法進行二個時間數列資料之自我相關、交叉相關與相關分析,以此說明地下水位變化與降雨之相關性。分析結果顯示,除了少部份資料屬於無定向型過程之時間數列資料之外,那菝、六甲與東和地下水位站的地下水時水位增量與時雨量之時間數列資料大部分都是穩定型過程之時間數列資料。依據交叉相關分析與相關分析之結果可知,地下水位增量與降雨量之間確實存有相關性,可做為後續分析之基礎。

再者,研究發現地下水位受到降雨之影響在實際觀測上會有快慢反應之分。快速反應的影響時距在幾分鐘到幾小時之內,慢速反應的部分則會花費幾天或數週的時間。對於立即性的降雨反應,本論文嘗試引用基流分離方法將地下水位對降雨之快速反應予以分離,之後再進行線性系統分析,以尋求地下水位對降雨之快速反應量與降雨量二者間之單位轉換函數,爾後便可用此單位轉換函數來推估因降雨所產生的地下水位快速反應量。另外,對於較長期之降雨影響,本論文針對地下水井鄰近雨量站之降雨資料進行地下水位增量和累積雨量之相關性分析,最後建立地下水位增量和有效累積雨量之經驗關係式,以便用有效累積雨量來推估地下水位增量。依據驗證的結果,本論文所提之單位轉換函數與經驗關係式都對地下水位變動有良好之模擬情況,可提供做為預測地下水位變動之參考。
This study aims to deliberate the rainfall-induced groundwater level variation. There are two main topics in this study. One is to examine the quick response of groundwater level to rainfall, and another is to investigate the relationship between the groundwater level increment and the effective accumulated rainfall amount. By doing these two kinds of study, the behavior of groundwater level variations caused by rainfall would be expected to be clearer.

The time-series analysis methods, such as autocorrelation, crosscorrelation and correlation analysis, were applied to evaluate the groundwater level increments and the rainfall data and then to explore the relationship between groundwater level variation and rainfall. The analysis results show that majority of the time series of groundwater level increments and rainfall of the Naba, Liujar, and Donher well stations are the stationary time series data while minority of them are the non-stationary. According to the results of crosscorrleation and correlation analyses, the groundwater level increments are indeed related to the rainfall. This can be served as a basis concept for the follow-up research.

The dynamics governing the transformation of rainfall to groundwater level often cover a broad spectrum of response time scales that can be divided into relatively quick response that may last few minutes or hours, and slow response that may last few days or weeks. As to the quick response of groundwater level to rainfall, the technique of baseflow separation was first used to split the quick response from a residual groundwater hydrograph in the present study. The quick response of groundwater level to rainfall was treated as a linear, time-invariant system, and then described by a convolution of a rainfall function and a Kernel function. The discrete Kernel function can be empirically determined via a linear system analysis when the data of rainfall sequence and the corresponding quick responses of groundwater levels to rainfall are available. In other words, the quick response of groundwater level to rainfall can be simulated through the convolution technique when the Kernel function and the rainfall data are available. Furthermore, for the long-term influence of groundwater level due to rainfall, the groundwater level measurement data and the rainfall data were collected from several rain-gauge stations nearby the selected well station to analyze the relationship between the groundwater level increment and the effective accumulated rainfall amount. Then, a mathematical equation describing the relationship between the groundwater level increment and the effective accumulated rainfall amount was proposed in this study. The variations of groundwater level could be predicted by using the empirical equation once the groundwater level data and the rainfall data are given. According to the validation of our proposed model in this study, it is shown that the simulated rainfall-induced quick groundwater response is in a good agreement with the observed one, and the fine agreement between the actual and simulated results confirms the reliability of the mathematical equation in modeling rainfall-induced groundwater level variations from various effective accumulated rainfall amounts.
中文摘要 ………………………………………………………… I
ABSTRACT ………………………………………………………… II
目錄 ……………………………………………………………… IV
圖目錄 …………………………………………………………… VII
表目錄 …………………………………………………………… XIII
符號說明 ………………………………………………………… XVI

第一章 緒論 …………………………………………………… 1-1
1.1 前言 ……………………………………………………… 1-1
1.1.1 緣起 …………………………………………………… 1-1
1.1.2 地下水位與降雨之關係 ……………………………… 1-2
1.2 文獻回顧 .………………………………………………… 1-7
1.2.1 氣壓對地下水位之影響 ……………………………… 1-7
1.2.2 地潮對地下水位之影響 ……………………………… 1-8
1.2.3 降雨對地下水位之影響 ……………………………… 1-9
1.3 研究目的 ………………………………………………… 1-12
1.4 本文架構 ………………………………………………… 1-15

第二章 研究地點與研究方法 ………………………………… 2-1
2.1 研究地點 ………………………………………………… 2-1
2.1.1 那菝地下水位站 ……………………………………… 2-2
2.1.2 六甲地下水位站 ……………………………………… 2-5
2.1.3 東和地下水位站 ……………………………………… 2-9
2.2 研究方法 ………………………………………………… 2-13

第三章 地下水位變化與降雨之相關性 ……………………… 3-1
3.1 那菝地下水位站 ………………………………………… 3-8
3.2 六甲地下水位站 ………………………………………… 3-20
3.3 東和地下水位站 ………………………………………… 3-29
3.4 小結 ……………………………………………………… 3-45

第四章 地下水位對降雨之快速反應 ………………………… 4-1
4.1 地下水位站之降雨-地下水位關係 ……………………… 4-1
4.2 地下水位對降雨之快速反應分離模式 ………………… 4-5
4.3 快速反應分離模式之參數決定 ………………………… 4-9
4.4 地下水位對降雨之快速反應轉換函數 ………………… 4-23
4.4.1 離散型轉換函數 ……………………………………… 4-27
4.4.2 不同降雨時段之轉換函數 …………………………… 4-30
4.4.3 不同地下含水層分層之轉換函數 …………………… 4-33
4.4.4 不同地下水位站之轉換函數 ………………………… 4-44
4.4.5 連續型轉換函數 ……………………………………… 4-49
4.4.6 應用轉換函數推估地下水位對降雨之快速反應 …… 4-57
4.5 其他鄰近雨量站降雨資料與那菝站地下水位之關係 … 4-59

第五章 地下水位增量與有效累積雨量之經驗關係式 ……… 5-1
5.1 地下水位增量與累積雨量之關係 ……………………… 5-2
5.2 地下水位增量與有效累積雨量之關係 ………………… 5-6
5.3 其他鄰近雨量站降雨資料與東和站地下水位之關係 … 5-17
5.4 迴歸經驗係數與累積雨量之關係 ……………………… 5-25
5.5 應用經驗關係式推估地下水位變化 …………………… 5-27

第六章 結論與建議 …………………………………………… 6-1
6.1 結論 ……………………………………………………… 6-1
6.2 建議 ……………………………………………………… 6-5

參考文獻 ………………………………………………………… 7-1
附錄A BAYTAP-G程式之簡介 ………………………………… 8-1
謝誌 ……………………………………………………………… 9-1
個人簡歷 ………………………………………………………… 10-1
[1] Arnold, J. G., Allen, P. M., Muttiah, R., Bernhardt, G., 1995. Automated base flow separation and recession analysis techniques. Ground Water, 33(6), 1010-1017.

[2] Bardsley, W. E., Campbell, D. I., 2000. Natural geological weighing lysimeters: calibration tools for satellite and ground surface gravity monitoring of subsurface water-mass change. Nat. Resour. Res., 9(2), 147-156.

[3] Bredehoeft, J. D., 1967. Response of well-aquifer systems to earth tides. J. Geophys. Res., 72, 3075-3087.

[4] Brutsaert, W., Lopez, J. P., 1998. Basin-scale geohydrologic drought flow features of riparian aquifers in the southern Great Plains. Water Resour. Res., 34 (2), 233-240.

[5] Butterworth, J. A., Schulze, R. E., Simmond, L. P., Moriarty, P., Mugabe, F., 1999. Hydrological processes and water resources management in a dryland environment IV: Long-term groundwater level fluctuations due to variation in rainfall. Hydrol. Earth Syst. Sci., 3(3), 353-361.

[6] Caro, R., Eagleson, P. S., 1981. Estimating aquifer recharge due to rainfall. J. Hydrol., 53, 185-211.

[7] Chow, V. T., Maidment, D. R., Mays, L. W., 1988. Applied Hydrology. McGraw-Hill international editions.

[8] Crosbie, R. S., Binning, P., Kalma, J. D., 2005. A time series approach to inferring groundwater recharge using the water table fluctuation method. Water Resour. Res., 41(1), W01008.

[9] Dreiss, S. J., 1989. Regional scale transport in a Karst aquifer: 2. linear systems and time moment analysis. Water Resour. Res., WRERAO 25(1), 126-134.

[10] Ferdowsian, R., Pannell, D. J., McCarron, C., Ryder A., Crossing, L., 2001. Explaining groundwater hydrographs: separating atypical rainfall events from time trends. Aust. J. Soil Res., 39(4), 861-876.

[11] Gustard, A., Bullock, A., Dixon J. M., 1992. Low flow estimation in the United Kingdom. Institute of Hydrology, Rep. No. 108, Wallingford, U. K.

[12] Igarashi, G., Wakita, H., 1991. Tidal responses and earthquake-related changes in the water level of deep wells. J. Geophys. Res., 96, 4269-4278.

[13] Institute of Hydrology, 1980. Low flow studies. Institute of Hydrology, Res. Rep. 1, Wallingford, U. K.

[14] Ishiguro, M., Akaike, H., Ooe, K., Nakai, S., 1983. A Bayesian approach to the analysis of earth tides. Proceeding of the Ninth International Symposium on Earth Tides, 283-292.

[15] Ishiguro, M., Tamura, Y., 1985. BAYTAP-G in TIMSAC-84. Computer Science Monographs, 22, Institute of Statistical Mathematics, 56-117.

[16] Jacob, C. E., 1940. The flow of water in an elastic artesian aquifer. Eos Trans., 21, 574-586.

[17] Jan, C. D., Chen, T. H., Lo, W. C., 2006. Effect of rainfall intensity and distribution on groundwater level fluctuations. J. Hydrol., Article in press.

[18] Johnson, C. D., 1987. Preferred water flow and localised recharge in a variable regolith. J. Hydrol., 94(1-2), 129-142.

[19] Kitagawa, G., Matsumoto, N., 1996. Detection of coseismic changes of underground water level. J. Am. Stat. Assoc., 91(434), 521-528.

[20] Lyne, V. D., 1979. Recursive modeling of sluggish and time-varying streamflow responses. M. Eng. Sc. Thesis, Univ. of Western Aust., Dept. of Civil Eng.

[21] Lyne, V., Hollick, M., 1979. Stochastic time-variable rainfall-runoff modelling. Hydrology and Water Resources Symposium, the National Committee on Hydrology and Water Resources of the Institution of Engineers, Perth, Australia, 89-92.

[22] Lynn, P. A., 1973. An introduction to the analysis and processing of signals. 3rd ed., Macmillan Education LTD, London.

[23] Marechal, J. C., Sarma, M. P., Ahmed, S., Lachassagne, P., 2002. Establishment of earth tide effect on water-level fluctuations in an unconfined hard rock aquifer using spectral analysis. Curr. Sci., 83(1), 61-64.

[24] Matsumoto, N., 1992. Regression analysis for anomalous changes of ground water level due to earthquakes. Geophys. Res. Lett., 19(12), 1193-1196.

[25] Matsumoto, N., Kitagawa, G., Roeloffs, E. A., 2003. Hydrological response to earthquakes in the Haibara well, central Japan - I. Groundwater level changes revealed using state space decomposition of barometric pressure, rainfall and tidal responses. Geophys. J. Int., 155 (3), 885-898.

[26] Nathan, R. J., McMahon, T. A., 1990. Evaluation of automated techniques for base flow and recession analysis. Water Resour. Res., 26(7), 1465-1473.

[27] Panapitukkul, N., Pengnoo, A., Siriwong, C., Chatupote, W., 2005. Hydrogeomorphological Controls on Groundwater Quality in the Rattaphum Catchment (Songkhla Lake Basin), Thailand. Water Air Soil Pollut. Focus, 5(1-2), 149-163.

[28] Quilty, E. G., Roeloffs, E. A., 1991. Removal of barometric pressure response from water level data. J. Geophys. Res., 96, 10209-10218.

[29] Roeloffs, E. A., 1988. Hydrologic precursors to earthquakes. PAGEOPH, 126, 177-206.

[30] Rojstaczer, S., 1988. Determination of fluid flow properties from the response of water levels in wells to barometric loading. Water Resour. Res., 24(11), 1927-1938.

[31] Seo, H. H., 2001. Modeling the influence of changes in barometric pressure on groundwater levels in wells. Environ. Geol., 41(1-2), 155-166.

[32] Sophocleous, M., Bardsley, E., Healey, J., 2006. A rainfall loading response recorded at 300 meters depth: Implications for geological weighing lysimeters. J. Hydrol., 319(1-4), 237-244.

[33] Tamura, Y., Sato, T., Ooe, M., Ishiguro, M., 1991. A procedure for tidal analysis with a Bayesian information criterion. Geophys. J. Int., 104, 507-516.

[34] Van der Kamp, G., Gale, J. E., 1983. Theory of earth tides and barometric effects in porous formations with compressible grains. Water Resour. Res., 19, 538-544.

[35] Venetis, C., 1971. Estimating infiltration and/or the parameters of unconfined aquifers from groundwater level observations. J. Hydrol., 12, 161-169.

[36] Viswanathan, M. N., 1984. Recharge characteristics of an unconfined aquifer from the rainfall-water table relationship. J. Hydrol., 70, 233-250.

[37] Wittenberg, H., Sivapalan, M., 1999. Watershed groundwater balance estimation using streamflow recession analysis and baseflow separation. J. Hydrol., 219, 20-33.

[38] Wu, J., Zhang, R., Yang, J., 1996. Analysis of rainfall-recharge relationships. J. Hydrol. 177, 143-160.

[39] 中央地質調查所,http://hydro.moeacgs.gov.tw/1/Rock1.Htm。

[40] 王如意、易任,1992。應用水文學(上冊),茂昌圖書有限公司。

[41] 台糖公司新營總廠,1997。台灣地區地下水觀測網第一期計畫-八十六年度地下水觀測井建置及相關試驗(濁水溪沖積扇),經濟部水資源局委辦計劃。

[42] 台糖公司新營總廠,1999。台灣地區地下水觀測網整體計畫-八十八年度地下水觀測井建置及相關試驗,經濟部水資源局委辦計劃。

[43] 石村貞夫,2005。時間數列分析的SPSS使用手冊,鼎茂圖書出版股份有限公司。

[44] 成大防災研究中心,2001。地震發生前後地下水位異常變化之研究(1/5),經濟部水利署委辦計劃。

[45] 成大防災研究中心,2002。地震發生前後地下水位異常變化之研究(2/5),經濟部水利署委辦計劃。

[46] 余貴坤,1986。降雨量與深井水位變動的關係研究。台灣地區地球物理研討會,165-173頁。

[47] 林茂文,1992。時間數列分析與預測,華泰書局。

[48] 林清山,1979。心理與教育統計學,台灣東華書局股份有限公司。

[49] 林進國,2003。降雨和地下水位變化之關聯性分析,國立成功大學水利及海洋工程研究所碩士論文。

[50] 張玉田,1978。數理統計與水文統計學,財團法人台北市徐氏基金會。

[51] 張果為,1957。統計方法新論。

[52] 陳宗顯、詹錢登、陳伸賢、曾鈞敏,2005。降雨和地下水位變化之相關性研究,台灣水利,53(4),1-12頁。

[53] 陳奕棠,1997。降雨與地下水位變化關係建立之研究,國立中興大學土木工程研究所碩士論文。

[54] 葉秋南,1984。時間數列分析,台灣銀行經濟研究室。

[55] 鄭皆達、洪豪男、周良勳,2003。應用時間數列方法分析降雨及地下水位之關係,水土保持學報(中興大學),35(1),47-56頁。

[56] 蘇芳貴,1984。相關與迴歸分析,復漢出版社。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top