跳到主要內容

臺灣博碩士論文加值系統

(98.84.18.52) 您好!臺灣時間:2024/10/04 00:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃新中
研究生(外文):Hsin-Chung Huang
論文名稱:在人類肺腫瘤細胞株A549細胞中NS-398和NU6102影響細胞內環氧合酵素相關路徑之研究
論文名稱(外文):Study on the Effects of Cyclooxygenase-2 inhibitor NS-398 and CDK1/2 inhibitor NU6102 on the Relative Signaling Pathway in Human Lung Carcinoma Cell Line A549
指導教授:麥愛堂麥愛堂引用關係
指導教授(外文):Oi-Tong Mak
學位類別:碩士
校院名稱:國立成功大學
系所名稱:生命科學系碩博士班
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:74
中文關鍵詞:環氧合酵素人類肺腫瘤細胞
外文關鍵詞:A549COX-2NU6102NS-398
相關次數:
  • 被引用被引用:0
  • 點閱點閱:265
  • 評分評分:
  • 下載下載:46
  • 收藏至我的研究室書目清單書目收藏:0
目前,在人類細胞中的環氧合酵素 (COX) 存在兩種獨特的異構物:cyclooxygenase-1 (COX-1) 和 cyclooxygenase-2 (COX-2)。COX-1 是一種能在組織中持續性表現之housekeeping 酵素而COX-2 是一種被誘導性酵素,細胞在受到發炎或細胞分裂刺激時會大量表現COX-2。已知由COX-1合成出的前列腺素會參與一般正常生理調控,然而由COX-2合成的前列腺素則主要參與許多過敏免疫性疾病及癌症的發生過程。
在細胞週期進行過程中,細胞週期會受到不同的週期素依賴性蛋白質激酶cyclin-dependent kinases (CDKs) 調控。已有很多研究指出癌細胞常有異常的細胞週期檢查點調控,因而造成不受控制的細胞生長;因此CDKs可作為除了COX-2之外另一個癌症治療的目標。在癌細胞中,COX-2已被證實具有穩定survivin (一種抗細胞凋亡蛋白) 的能力,而且survivin本身也會和CDK1及半胱胺酸蛋白酵素9 (caspase-9) 結合形成一個複合體,能夠調節細胞分裂期 (M phase) 的進行與細胞凋亡的抑制。因此,本篇研究探討在人類肺腫瘤細胞株A549中,NS-398 (一種選擇性的COX-2抑制劑) 對於抑制COX-2表現的訊息傳遞路徑。此外,我們也將探索NU6102 (一種選擇性的CDK1/2抑制劑) 是否也能夠對COX-2有抑制效果。
研究結果顯示,A549細胞在飢餓狀況刺激下會產生明顯COX-2的表現,且前列腺素E2受器 (EP2) 會參與NS-398所造成的COX-2抑制。有趣地, NU6102也會抑制A549內由飢餓引起的COX-2表現。當A549暴露在NS-398或NU6102時,細胞內三種有絲裂原活化蛋白激酶 (MAPK) 中只有胞外調節激酶 (ERK1/2) 明顯受到活化;且以PD098059 (一種MEK1抑制劑) 預先處理後,更加強COX-2被NS-398或NU6102抑制的效果。總結本研究結果,我們發現NS-398和NU6102都能夠抑制COX-2表現且A549細胞在受到外界刺激下會利用MEK/ERK訊息傳遞路徑來增加COX-2表現量。
At present, cyclooxygenase exists in two distinct isoforms: cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) in human cells. COX-1 is constitutively expressed as a housekeeping enzyme in tissues whereas COX-2 is an inducible enzyme that is rapidly induced by inflammatory and mitogenic stilmuli. It is known that prostaglandins (PGs) synthesized by COX-1 mediate normal physiological modulation while PGs synthesized by COX-2 are involved in many inflammatory diseases and cancer. During the progression of the cell cycle, the cell cycle is regulated by various cyclin-dependent kinases (CDKs). Many studies demonstrated that cancer cells often exhibit aberrant cell cycle regulation resulting in uncontrolled cell proliferation. Therefore, CDKs are another target for cancer therapies in addition to COX-2. It is worthy to notice that COX-2 was proved to stabilize survivin (an inhibitor of apoptosis) in cancer and survivin itself also associates with CDK1 and caspase-9 to form a complex that can modulate the progression of the mitotic phase and the inhibition of apoptosis. In our experiments, we investigated the signaling pathway involved in COX-2 inhibition by NS-398 in human lung carcinoma cell line A549. Moreover, we also examined whether NU6102 (a selective CDK1/2 inhibitor) has the potential to inhibit COX-2 expression. In this study, we found that COX-2 expression was significantly increased by starvation of A549 cells. Prostaglandins E2 receptor 2 (EP2) was found to be involved in COX-2 inhibition by NS-398. Interestingly, NU6102 was able to suppress starvation-induced COX-2 expression. Moreover, only ERK1/2 among three MAPKs was activated after A549 cells had been exposed to NS-398 or NU6102. PD098059, a specific inhibitor of MEK1, enhanced COX-2 inhibition by NS-398 or NU6102. In conclusion, we found that both NS-398 and NU6102 could inhibit COX-2 expression and the MEK/ERK signal pathway could be used to increase COX-2 expression in response to extracellular stimuli in A549 cells.
CHINESE ABSTRACT-----------------------------------------------------------I
ABSTRACT-------------------------------------------------------------------III
ACKNOWLEDGEMENTS-----------------------------------------------------------V
LIST OF FIGURES------------------------------------------------------------VIII
LIST OF APPENDIXES---------------------------------------------------------X
ABBREVIATIONS--------------------------------------------------------------XI
I. INTRODUCTION
1.1 The Arachidonic Acid Cascade-----------------------------------------1
1.2 Biosynthesis and Functions of Cyclooxygenase ------------------------1
1.3 Induction of Prostaglandins and PG Receptors-------------------------2
1.4 The Role of Cyclooxygenase in Cancer---------------------------------4
1.5 Usage of Selective COX-2 Inhibitors for Cancer Therapies-------------6
1.6 Introduction of CDKs and Relative Inhibitors in Cancer---------------7
1.7 Participation of CDK and COX-2 at the Mitotic Checkpoint-------------8
1.8 Various Responses of MAPKs to Extracellular Stimuli------------------9
Motive---------------------------------------------------------------------11
II. MATERIALS AND METHODS
2.1 Sources of Materials-------------------------------------------------12
2.2 Sources of Instruments-----------------------------------------------13
2.3 Solution Preparation for Cell Culture--------------------------------14
2.4 Thawing Cells and Subcultivation-------------------------------------14
2.5 Cryopreservation-----------------------------------------------------15
2.6 Counting Cells-------------------------------------------------------16
2.7 MTT Cell Viability Assay by 96-well Plate----------------------------16
2.8 Extraction of Total Protein------------------------------------------17
2.9 Bio-Rad Protein Assay------------------------------------------------18
2.10 SDS-PAGE and Protein Electrophoresis--------------------------------19
2.11 Western Blotting----------------------------------------------------21
III. RESULTS
3.1 Determination of the Concentration of NS-398 for Treatment
A549 Cells ----------------------------------------------------------22
3.2 Effect of Serum-Free Medium Treatment on COX-2 Expression------------22
3.3 Effect of NS-398 on Cyclooxygenase-2 Expression ---------------------22
3.4 Effect of NS-398 on Prostaglandin E2 Receptors Expression in
A549 Cells ----------------------------------------------------------23
3.5 Effect of Exogeneous PGE2 and PGE2 Analog on COX-2, EP1
and EP3 Expression --------------------------------------------------23
3.6 Effect of AH6809 on COX-2 and EP1, EP2 and EP3
Receptors Expression ------------------------------------------------24
3.7 Combination of NS-398 with AH6809 in Treating A549 Cells ------------25
3.8 Possible Correlations between CDKs and COX-2 in A549 Cells ----------25
3.9 Activation of MAPK Signaling Pathways by NS-398 and
NU6102 in A549 Cells ------------------------------------------------26
3.10 Involvement of the MEK/ERK Signaling Pathway in Regulation
of Inhibition of COX-2 Expression Caused by NS-398
and NU6102-------------------------------------------------------------26
IV. DISCUSSION-------------------------------------------------------------28
V. REFERENCES--------------------------------------------------------------33
VI. FIGURES----------------------------------------------------------------47
VII. APPENDIXES------------------------------------------------------------66
1. W. Smith (1989) Eicosanoid nomenclature. Prostaglandins 38,
125-133
2. W. L. Xie, J. G. Chipman, D.L. Robertson, R. L. Erikson and D. L.
Simmons (1991) Expression of a mitogen-responsive gene encoding
prostaglansin synthase is regulated by mRNA splicing. Proc. Natl.
Acad. Sci. USA 88, 2692-2696
3. W. L. Smith and L. J. Marnett (1991) Prostaglandin endoperoxide
synthase: structure and catalysis. Biochim. Biophys. Acta 1083, 1-17
4. S. Narumiya, Y. Sugimoto and F. Ushikubi (1999) Prostanoid receptors:
structures, properties, and functions. Physiol. Rev. 79, 1193-1226
5. T. D. Warner and J. A. (2004) Cyclooxygenase: new forms, new
inhibitors, and lessons from the clinic. FASEB J. 18, 790-804
6. S. H. Lee, E. Soyoola, P. Chanmugam, S. Hart, W. Sun, H. Zhong, S. Liou,
D. Simmons and D. Hwang (1992) Selective expression of
mitogen-inducible cyclooxygenase in macrophages stimulated with
lipopolysaccharide. J. Biol. Chem. 267, 25934-25938
7. M. Goppelt-Struebe (1997) Molecular mechanisms involved in the
regulation of prostaglansin biosynthesis by glucocorticoids. Biochem.
Pharmacol. 53, 1389-1395
8. W. L. Smith and R. Langenbach (2001) Why are there two
cyclooxygenase enzymes? J. Clin. Invest. 107,1491-1495
9. W. L. Smith (1992) Prostanoid biosynthesis and mechanisms of action.
Am. Physiol. Renal Physiol. 263, F181-191
10. C. E. Eberhart, R. J. Coffey, A. Radhika, F. M. Giardiello, S.
Ferrenbach and R. N. DuBois (1994) Upregulation of cyclooxygenase 2
gene in human colorectal adenomas and adenocarcinomas.Gastroenterology 107,1183-1188
11. H. Sano, Y. Kawahito, R. L. Wilder, A. Hashiramoto, S. Mukai, K.
Asai, S. Kimura, H. Kato, M. Kondo and T Hla (1995) Expression of
cyclooxygenase-1 and -2 in human colorectal cancer. Cancer Res. 55,
3785-3789
12. S. Gupta, M. Srivastava, N. Ahmad, D. G. Bostwick and H. Mukhtar
(2000) Over expression of cyclooxygenase-2 in human prostate
adenocarcinoma. Prostate 42, 73-78
13. D. S. Huang, K. Z. Shen, J. F. Wei, T. B. Liang, S. S. Zheng and H. Y.
Xie (2005) Specific COX-2 inhibitor NS398 induces apoptosis in
human liver cancer cell line HepG2 through BCL-2. World J.
Gastroenterol 11, 204-207
14. A. José, Sánchez-Alcázar, D. A. Bradbury, P. Linhua and J. K. Alan
(2003) Cyclooxygenase (COX) inhibitors induce apoptosis in
non-small cell lung cancer through cyclooxygenase independent
pathways. Lung Cancer 40, 33-44
15. Y. Tatsuya, E. Kiyoko, M. Mituyoshi, N. Isao, T. T. H. Nguyen, S.
Hidetoshi, P. Jan and Y. Tomohiyo (2004) Prostaglandin E2 activates Src
signaling in lung adenocarcinoma cell via EP3. Cancer Letter 214,
115-120
16. Y. Tomohiro, Z. Gernot, M. Q. Joachim, J. S. Sung, S. Haruna and I.
Tomio (2002) Prostaglandin E2 reinforces the activation of Ras signal
pathway in lung adenocarcinoma cells via EP3. FEBS Letters 518,
154-158
17. T. Hida, Y. Yatabe, H. Achiwa, H. Muramatsu, K. Kozaki, S.
Nakamura, M. Ogawa, T. Mitsudomi, T. Sugiura and T. Takahashi
(1998) Increased expression of cyclooxygenase 2 occurs frequently
in human lung cancers, specifically in adenocarcinomas. Cancer Res.58, 2761-3764
18. K. J. Sales and H. N. Jabbour (2003) Cyclooxygenase enzymes and
prostaglandins in pathology of the endometrium. Reproduction 126,
559-567
19. T. Hoshino, S. Tsutsumi, W. Tomisato, H. J. Hwang, T. Tsuchiya and T.
Mizushima (2003) Prostaglandin E2 protects gastric mucosal cells form
apoptosis via EP2 and EP4 receptor activation. J. Biol. Chem. 278,
12752-12758
20. C. W. Houchen, M. A. Sturmoski, S. Anant, R. M. Breyer and W. F.
Stenson (2003) Prosurvival and antiapoptotic effects of PGE2 in radiation
injury are mediated by EP2 receptor in intestine. Am. J. Physiol.
Gastrointest. Liver Physiol. 284, G490-G498
21. T. G. Tessner, F. Muhale, T. E. Riehl, S. Anant and W. F. Stenson
(2004) Prostaglandin E2 reduces radiation-induced epithelial apoptosis
through a mechanism involving AKT activation and bax translocation. J.
Clin. Invest. 114, 1676-1685
22. K. Nishimura, T. Setoyama, H. Tsumagari, N. Miyata, Y. Hatano, L. Xu,
M. Jisaka, T. Nagaya and K. Yokota (2006) Endogenous prostaglandin E2
and F2 serve as an anti-apoptotic factor against apoptosis induced by
tumor necrosis factor- in mouse 3T3-L1 preadipocytes. Biosci. Biotechnol.
Biochem. 70, 2145-2153
23. H. Amano, I. Hayashi, H. Endo, H. Kitasato, S. Yamashina, T. Maruyama,
M. Kobayashi, K. Satoch, M. Narita, Y. Sugimoto, T. Murata, H.
Yoshimura, S. Narumiya and M. Majima (2003) Host prostaglandin
E(2)-EP3 signaling regulates tumor-associated angiogenesis and tumor
growth. J. Exp. Med. 197, 221-232
24. S. Sharma, S. C. Yang, L. Zhu, K. Reckamp, B. Gardner, F. Baratelli, M.
Huang, R. K. Batra and S. M. Dubinett (2005) Tumor cyclooxygenase-2/prostaglandin E2-dependent promotion of FOXP3 expression and
CD4+CD25+ T regulatory cell activities in lung cancer. Cancer Res. 65,
5211-5220
25. A. S. Ahmad, M. Ahmad, A. J. de B. Fernandes and S. Doré (2005)
Prostaglandin EP4 receptor agonist protects against acute neurotoxicity.
Brain Res. 1066, 72-77
26. T. Takadera, H. Yumoto, Y. Tozuka and T. Ohyashiki (2002) Prostaglandin
E2 induces caspase-dependent apoptosis in rat cortical cells. Neurosci.
Lett. 317, 61-64
27. T. Takadera, Y. Shiraishi and T. Ohyashiki (2004) Prostaglandin E2
induced caspase-dependent apoptosis possibly through activation of EP2
receptors in cultured hippocampal neurons. Neuronchem. Int. 45, 713-719
28. K. Noguchi, K. Iwasaki, M. Shitashige, H.Endo, H. Kondo and I.
Ishikawa (2000) Cyclooxygenase-2-dependent prostaglansin E2
down-regulates intercellular adhesion molecule-1 expression via EP2/EP4
receptors in interleukin-1-stimulated human gingival fibroblasts. J. Dent.
Res. 79, 1955-1961
29. L. J. Kay, W. W. Yeo and P. T. Peachell (2006) Prostaglandin E2 activates
EP2 to inhibit human lung mast cell degranulation. Br. J. Pharmacol. 147,
707-713
30. J. E. Kolodsick, M. P. Golden, J. Larios, G. B. Toews, V. J. Thanickal and
B. B. Moore (2003) Prostaglandin E2 inhibits frbroglast to myofibroblast
transition via E. prostanoid receptor 2 signaling and cyclic adenosine
monophosphate elevation. Am. J. Respir. Cell Mol. Biol. 29, 537-544
31. I. Morita (2002) Distinct functions of COX-1 and COX-2. Prostaglandins
Other Lipid Mediat. 68-69, 165-175
32. A. J. Dannenberg and K. Subbaramaiah (2003) Targeting
cyclooxygenase-2 in human neoplasia: rationale and promise. Cancer Cell4, 431-436
33. M. M. Bertagnolli (2003) The potential of non-steroidal anti-inflammatory
drugs (NSAIDs) for colorectal cancer prevention. J. Surgical Onco. 84,
113-119
34. W. L. Smith and R. Langenbach (2001) Why there are two
cyclooxygenase isozymes. J. Clin. Invest. 107, 1491-1495
35. H. Choy and L. Milas (2003) Enhancing radiotherapy with
cyclooxygenase-2 enzyme inhibitors: a rational advance? J. Natl. Cancer
Inst. 95,1440-1452
36. S. M. Prescott and F. A. Fitzpatrick (2000) Cyclooxygenase-2 and
carcinogenesis. Biochim. Biophys. Acta 1470, M69-M78
37. Y. Cao and S. M. Prescott (2002) Many actions of cyclooxygenase-2 in
cellular dynamics and in cancers. J. Cell. Physiol. 190, 279-286
38. M. Tsujii and R. N. DuBois (1995) Alterations in cellular adhesion and
apoptosis in epithelial cells overexpressing prostaglandin endoperoxide
synthase 2. Cell 83, 493-501
39. M. Tsujii S. Kawano, S. Tsuji, H. Sawaoka, M. Hori, and R. N. DuBois
(1998). Cyclooxygenase regulates angiogenesis induced by colon cancer
cells. Cell 93, 705-716
40. Y. Cao, T. Pearman, G. A. Zimmerman, T. M. McIntyre and S. M. Prescott
(2000) Intracellular unesterified arachidonic acid signals apoptosis. Proc.
Natl. Acad. Sci. U.S.A. 97, 11280-11285
41. J. R. Brown and R. N. Dubois (2004) Cyclooxygenase as a target in lung
cancer. Clin. Cancer Res. 10, 4266s-4269s
42. B. Hinz, K. Brune and A. Pahl (2000) Cyclooxygenase-2 expression in
lipopolysaccharide-stimulated human monocytes is modulated by cyclic
AMP, prostaglandin E2, and nonsteroidal anti-inflammatory drugs.
Biochem. Biophys. Res. Commun. 278, 790-796
43. W. H. Faour, Y. He, Q. W. He, M. de Ladurantaye, M. Quintero, A.
Mancini and J. A. D. Battista (2001) Prostaglandin E2 regulates the level
and stability of cyclooxygenase-2 mRNA through activation of p38
mitogen-activated protein kinase in interleukin-1ß-treated human synovial
fibroblasts. J. Biol. Chem. 276, 31720-31731
44. A. M. Senderowicz (2002) The cell cycle as a target for cancer therapy:
basic and clinical findings with the small molecule inhibitors flavopiridol
and UCN-01. Oncologist 7, 12-19
45. Y. Jiang, J. Zou and C. Gui (2005) Study of a lignad complexed with
Cdk2/Cdk4 by computer simulation. J. Mol. Model. 11, 509-515
46. C. J. Sherr (1996) Cancer cell cycles. Science 274, 1672-1677
47. E. A. Sausville, J. Johnson, M. Alley, D. Zaharevitz and A. M.
Senderowicz (2000) Inhibition of CDKs as a therapeutic modality. Ann. N.
Y. Sci. 910, 207-222
48. E. A. Sausville (2002) Complexities in the development of
cyclin-dependent kinase inhibitor drugs. Trends Mol. Med. 8, S32-S37
49. L. H. Hartwell and T. A. Weinert (1989) Checkpoints: controls that ensure
the order of cell cycle events. Science 246,629-634
50. T. M. Sielecki, J. F. Boylan, P. A. Benfield and G. L. Trainor (2000)
Cyclin-dependent kinase inhibitors: useful targets in cell cycle regulation.
J. Med. Chem. 43, 1-18
51. G. I. Shapiro (2006) Cyclin-dependent kinase pathways as targets for
cancer treatment. J. Clin. Oncol. 24, 1770-1783
52. M. Knockaert, P. Greengard and L. Meijer (2002) Pharmacological
inhibitors of cyclin-dependent kinases. Trends Pharmacol. Sci. 23,
417-425
53. T. G. Davies, J. Bentley, C. E. Arris, F. T. Boyle, N. J. Curtin, J. A.
Endicott, A. E. Gibson, B. T. Golding, R. J. Griffin, I. R. Hardcastle, P.Jewsbury, L. N. Johnson, V. Mesguiche, D. R. Newell, M. E. M. Noble, J.
A. Tucker, L. Wang and H. J. Whitfield (2002) Structure-based design of a
potent purine-based cyclin-dependent kinase inhibitor. Nat. Struct. Biol. 9,
745-749
54. S. T. Davis, B. G. Benson, H. N. Bramson, D. E. Chapman, S. H.
Dickerson, K. M. Dold, D. J. Eberwein, M. Edelstein, S. V. Frye, R. T. G.
Jr., R. J. Griffin, P. A. Harris, A. M. Hassell, W. D. Holmes, R. N. Hunter,
V. B. Knick, K. Lackey, B. Lovejoy, M. J. Luzzio, D. Murray, P. Parker, W.
J. Rocque, L. Shewchuk, J. M. Veal, D. H. Walker and L. F. Kuyper (2002)
Prevention of chemotherapy-induced alopecia in rats by CDK inhibitors.
Science 291, 134-137
55. R. M. Breyer, C. K. Bagdassarian, S. A. Myers and M. D. Breyer (2001)
Prostanoid receptors: subtypes and signaling. Annu. Rev. Pharmacol.
Toxicol. 41, 661-690
56. R. Nasrallah, O. Laneuville, S. Ferguson and R. L. Hébert (2001) Effect of
COX-2 inhibitor NS-398 on expression of PGE2 receptor subtypes in M-1
mouse CCD cells. Am. J. Physiol. Renal. Physiol. 281, F123-F132
57. E. T. Hawk, J. L. Viner, A. Dannenberg and R. N. Dubois (2002) COX-2
in cancer- a player that’s defining the rules. J. Natl. Cancer Inst. 94,
545-546
58. V. Jendrossek, R. Handrick and C. Belka (2003) Celecoxib activates a
novel mitochondrial apoptosis signaling pathway. FASEB J. 17,
1547-1549
59. T. K. Lee and leva Stupans (2002) Radioprotection: the non-steroidal
anti-inflammatory drugs (NSAIDs) and prostaglandins. J. Pharm.
Pharmacol. 54, 1435-1445
60. M. Li, X. Wu and X. C. Xu (2001) Induction of apoptosis by
cyclo-oxygenase-2 inhibitor NS398 through a cytochrome c-dependentpathway in esophageal cancer cells. Int. J. Cancer 93, 218-223
61. H. P. Yu, L. Y. Shi, W. H. Lu, Y. H. Su, Y. Y. Li and S. Q. Xu (2004)
Expression of cyclooxygenase-2 (COX-2) in human esophageal cancer
and in vitro inhibition by a specific COX-2 inhibitor, NS-398. J.
Gastroenterol. Hepatol. 19, 638-642
62. M. Matsuo, N. Yoshida, M. Zaitsu, K. Ishii and Y. Hamasaki (2004)
Inhibition of human glioma cell growth by a PHS-2 inhibitor, NS-398, and
a prostaglandin E receptor subtype EP1-selective antagonist, SC51089. J.
Neuro-Oncol. 66, 285-292
63. J. P. Peng, L. T. Liu, H. C. Chang and W. C. Hung (2003) Enhancement of
chemotherapeutic drug-induced apoptosis by a cyclooxygenase-2 inhibitor
in hypopharyngeal carcinoma cells. Cancer Lett. 201, 157-163
64. H. C. Chang and C. F. Weng (2001) Cyclooxygenase-2 level and culture
conditions influence NS398-induced apoptosis and caspase activation in
lung cancer cells. Oncol. Rep. 8, 1321-1325
65. F. M. Fang, W. H. Shu, H. C. Chang, J. J. Wang and O. T. Mak (2004)
Study of prostaglandin receptors in mitochondria on apoptosis of human
lung carcinoma cell line A549. Biochem. Soc. Trans. 32, 1078-1080
66. H. Nakata, Y. Uemura, M. Kobayashi, R. Harada and H. Taguchi (2003)
Cyclooxygenase-2 inhibitor NS-398 suppresses cell growth and
constitutive production of granulocyte-colony stimulating factor and
granulocyte macrophage-colony stimulating factor in lung cancer cells.
Cancer Sci. 94, 173-180
67. M. S. Shiak, A. Chatterjee and M. Singh (2004) Effect of a selective
cyclooxygenase-2 inhibitor, nimesulide, on the growth of lung tumors and
their expression of cyclooxygenase-2 and peroxisome proliferationactivated
receptor- . Clin. Cancer Res. 10, 1521-1529
68. M. Wagner, J. Loos, N. Weksler, M. Gantner, C. L. Corless, J. M. Barry, T.M. Beer and M. Garzotto (2005) Resistance of prostate cancer cell lines to
COX-2 inhibitor treatment. Biochem. Biophys. Res. Commun. 332,
800-807
69. F. Li, G. Ambrosini, E. Y. Chu, J. Plescia, S. Tognin, P. C. Marchisio and
D. C. Altieri (1998) Control of apoptosis and mitotic spindle checkpoint
by survivin. Nature 396, 580-584
70. D. S. O’Connor, D. Grossman, J. Plescia, F. Li, H. Zhang, A. Villa, S.
Tognin, P. C. Marchisio and D. C. Altieri (2000) Regulation of apoptosis
at cell division by p34cdc2 phosphorylation of survivin. Proc. Natl. Acad.
Sci. U.S.A. 97, 13103-13107
71. D. C. Altieri (2001) The molecular basis and potential role of survivin in
cancer diagnosis and therapy. Trends Mol. Med. 7, 542-547
72. Q. L. Deveraux and J. C. Reed (1999) IAP family proteins-suppressors of
apoptosis. Genes & Dev. 13, 239-252
73. D. Grossman, P. J. Jim, J. S. Schechner and D. C. Altieri (2001)
Inhibition of melanoma tumor growth in vivo by survivin targeting. Proc.
Natl. Acad. Sci. U.S.A. 98, 635-640
74. N. R. Wall, D. S. O’Connor, J. Plescia, Y. Pommier and D. C. Altieri
(2003) Supression of survivin phosphorylation on Thr34 by flavopiridol
enhances tumor cell apoptosis. Cancer Res. 63, 230-235
75. J. I. Chao, P. C. Kuo and T. S. Hsu (2004) Down-regulation of survivin in
nitric oxide-induced cell growth inhibition and apoptosis of the human
lung carcinoma cells. J. Biol. Chem. 279, 20267-20276
76. K. Krysan, F. H. Merchant, L. Zhu, M. Dohadwala, J. Luo, Y. Lin, N. H.
Vourc’h, M. Põld, D. Seligson, D. Chia, L. Goodglick, H. Wang, R.
Strieter, S. Sharma and S. Dubinett (2003) COX-2-dependent stabilization
of survivin in non-small cell lung cancer. FASEB J. 18, 206-208
77. K. Krysan, M. Dohadwala, J. Luo, Y. Lin, L. Zhu, N. H. Vourc’h, L.Goodglick, F. H. Merchant, D. Seligson, M. Põld, R. Strieter, S. Sharma
and S. Dubinett (2004) Cyclooxygenase-2-dependent expression of
surviving in non-small cell lung cancer. Chest 125, 140S
78. K. Krysan, H. Dalwadi, S. Sharma, M. Põld and S. Dubinett (2004)
Cyclooxygenase 2-dependent expression of surviving is critical for
apoptosis resistance in non-small cell lung cancer. Cancer Res. 64,
6359-6362
79. Y. Sun and F. A. Sinicrope (2005) Selective inhibitors of MEK1/ERK44/42
and p38 mitogen-activated protein kinases potentiate apoptosis induction
by sulindac sulfide in human colon carcinoma cells. Mol. Cancer Ther. 4,
51-59
80. Z. Xia, M. Dickens, J. Raingeaud, R. J. Davis and M. E. Greenberg (1995)
Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis.
Science 270, 1326-1331
81. A. Bonni, A. Brunet, A. E. West, S. R. Datta, M. A. Takasu and M. E.
Greenberg (1999) Cell survival promoted by the Ras-MAPK signaling
pathway by transcription-dependent and –independent mechanisms.
Science, 286, 1358-1362
82. D. L. Persons, E. M. Yazlovitslaya and J. C. Pelling (2000) Effects of
extracellular signal-regulated kinase on p53 accumulation in response to
cisplatin. J. Biol. Chem. 275, 35778-35785
83. R. Newton, L. Cambridge, L. A. Hart, D. A. Stevens, M. A. Lindsay and P.
J. Barnes (2000) The MAP kinase inhibitors, PD098059, UO126 and
SB203580, inhibits IL-1 -dependent PGE2 release via mechanistically
distant processes. Br. J. Pharmacol. 130, 1353-1361
84. M. S. Chang, B. C. Chen, M. T. Yu, J. R. Sheu, T. F. Chen and C. H. Lin
(2005) Phorbol 12-myristate 13-acetate upregulates cyclooxygenase-2
expression in human pulmonary epithelial cells via Ras, Raf-1, ERK, andNF- B, but not p38 MAPK, pathways. Cell. Signal. 17, 299-310
85. P. S. Chien, O. T. Mak and H. J. Huang (2006) Induction of COX-2
expression by vanadate in A549 human lung carcinoma cell line through
EGF receptor and p38 MAPK-mediated pathway. Biochem. Biophys. Res.
Commun. 339, 562-568
86. H. Niiro, T. Otsuka, E. Ogami, K. Yamaoka, S. Nagano, M. Akahoshi, H.
Nakashima, Y. Arinobu, K. Izuhara and Y. Niho (1998) MAP kinase
pathways as a route for regulatory mechanisms of IL-10 and IL-4 which
inhibit COX-2 expresseion in human monocytes. Biochem. Biophys. Res.
Commun. 250, 200-205
87. K. B. Reddy, S. M. Nabba and N. Atanaskova (2003) Role of MAP kinase
in tumor progression and invasion. Cancer Metastasis Rev. 22, 395-430
88. D. J. E. Elder, D. E. Halton, L. C. Playle and C. Paraskeva (2002) The
MEK/ERK pathway mediates COX-2-selective NSAID-induced apoptosis
and induced COX-2 protein expression in colorectal carcinoma cells. Int.
J. Cancer 99, 323-327
89. T. I. Kim, S. H. Jin, W. H. Kim, E. H. Kang, K. Y. Choi, H. J. Kim, S. K.
Shin and J. K. Kang (2001) Prolonged activation of mitogen-activated
protein kinases during NSAID-induced apoptosis in HT-29 colon cancer
cells. Int. J. Colorectal Dis. 16, 167-173
90. M. Hahn, W. Li, C. Yu, M. Rahmani, P. Dent and S. Grant (2005)
Rapamycin and UCN-01 synergistically induce apoptosis in human
leukemia cells through a process that is regulated by the Raf-1/MEK/ERK,
Akt, and JNK signal transduction pathways. Mol. Cancer Ther. 4, 457-470
91. K. Watanabe, T. Kawamori, S. Nakatsugi, T. Ohta, S. Ohuchida, H.
Yamamoto, T. Maruyama, K. Kondo, F. Ushikubi, S. Narumiya, T.
Sugimura and K. Wakabayashi (1999) Role of the prostaglandin E
receptor subtype EP1 in colon carcinogenesis. Cancer Res. 59, 5093-509692. T. Kawamori, N. Uchiya, S. Nakatsugi, K. Watanabe, S. Ohuchida, H.
Yamamoto, T. Maruyama, K. Kondo, T. Sugimura and K. Wakabayashi
(2001) Chemopreventive effects of ONO-8711, a selective prostaglandin
E receptor EP1 antagonist, on breast cancer development. Carcinogenesis
22, 2001-2004
92. T. Kawamori, N. Uchiya, S. Nakatsugi, K. Watanabe, S. Ohuchida, H.
Yamamoto, T. Maruyama, K. Kondo, T. Sugimura and K. Wakabayashi
(2001) Chemopreventive effects of ONO-8711, a selective prostaglandin
E receptor EP1 antagonist, on breast cancer development. Carcinogenesis
22, 2001-2004
93. C. H. Liang, L. F. Liu, L. Y. Shiu, Y. S. Huang, L. C. Chang and K. W.
Kuo (2004) Action of solamargine on TNFs and cisplatin-resistant human
lung cancer cells. Biochem. Biophys. Res. Commun. 322, 751-758
94. S. W. Han and J. Roman (2004) Suppression of prostaglandin E2 receptor
subtype EP2 by PPAR ligands inhibits human lung carcinoma cell
growth. Biochem. Biophys. Res. Commun. 314, 1093-1099
95. D. F. Woodward, D. J. Pepperl, T. H. Burkey and J. W. Regan (1995)
6-isopropoxy-9-oxoxantene-2-carboxylic acid (AH6809), a human EP2
receptor antagonist. Biochem. Pharmacol. 50, 1731-1733
96. R. B. Moreland, N. Kim, A. Nehra, I. Goldstein and A. Traish (2003)
Functional prostaglandin E (EP) receptors in human penile corpus
cavernosum. Int. J. Impot. Res. 15, 362-368
97. M. Casibang and T. W. Moody (2002) AH6809 antagonizes non-small cell
lung cancer prostaglandin receptors. Lung Cancer 36, 33-42
98. J. Cheng, H. Imanishi, W. Liu, H. Nakamura, T. Morisaki, K. Higashino
and T. Hada (2004) Involvement of cell cycle regulatory proteins and
MAP kinase signaling pathway in growth inhibition and cell cycle arrest
by a selective cyclooxygenase 2 inhibitor, etodolac, in human
hepatocellular carcinoma cell lines. Cancer Sci. 95, 666-673
99. P. Mukhopadhyay, M. A. Ali, A. Nandi, P. Carreon, H. Choy and D. Saha
(2006) The cyclin-dependent kinase 2 inhibitor down-regulates
interleukin-1 -mediated induction of cyclooxygenase-2 expression in
human lung carcinoma cells. Cancer Res. 66, 1758-1766
100. S. Dangi and P. Shapiro (2005) Cdc2-mediated inhibition of epidermal
growth factor activation of the extracellular signal-regulated kinase
pathway during mitosis. J. Biol. Chem. 280, 24524-24531
101. S. Grethe and M. I. Pörn-Ares (2006) p38 MAPK regulates
phosphorylation of Bad via PP2A-dependent suppression of the
MEK1/2-ERK1/2 survival pathway in TNF- induced endothelial
apoptosis. Cell. Signal. 18, 531-540
102. S. Grethe, M. P. S. Ares, T. Andersson and M. I. Pörn-Ares (2004) p38
MAPK mediates TNF-induced apoptosis in endothelial cells via
phosphorylation and downregulation of Bcl-xL. Exp. Cell Res. 298,
632-642
103. N. Dhanasekaran and E. P. Reddy (1998) Signaling by dual specificity
kinases. Oncogene 17, 1447-1455
104. S. H. Kim, C. I. Yoo, H. T. Kim, J. Y. Park, C. H. Kwon and Y. K. Kim
(2006) Activation of peroxisome proliferator-activated receptor-
(PPAR ) induces cell death through MAPK-dependent mechanism in
osteoblastic cells. Toxicol. Appl. Pharmacol. 215, 198-207
105. J. v. Ryn, G. Trummlitz and M. Pairet (2000) COX-2 selectivity and
inflammatory processes. Curr. Med. Chem. 7, 1145-1161
106. M. S. Pino, S. T. Nawrocki, F. Cognetti, J. L. Abruzzese, H. Q. Xiong
and D. J. McConkey (2005) Prostaglandin E2 drives cyclooxygenase-2
expression via cyclic AMP response element activation in human
pancreatic cancer cell. Cancer Biol. Ther. 4, 1263-1269
107. R. Li, K. P. Mouillesseaux, D. Montoya, D. Cruz, N. Gharavi, M. Dun, L.
Koroniak and J. A. Berliner (2006) Identification of prostaglandin E2
receptor subtype 2 as a receptor activated by OxPAPC. Circ. Res. 98,
642-650
108. G. Wu, J. Luo, J. S. Rana, R. Laham, F. W. Sellke and J. Li (2006)Involvement of COX-2 in VEGF-induced angiogenesis via P38 and JNK
pathways in vascular endothelial cells. 69, 512-519
109. M. Monzó, R. Rosell, E. Felip, J. Astudillo, J. J. Sánchez, J. Maestre, C.
Martin, A. Font, A. Barnadas and A. Abad (1999) A novel anti-apoptosis
gene: re-expression of surviving messenger RNA as a prognosis marker
in non-small-cell lung cancers. J. Clin. Oncol. 17, 2100-2104
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top