|
Baud, S., Mendoza, S., To, A., Harscoët, E., Lepiniec, L. and Dubreucq, B. WRINKLED1 specifies the regulatory action of LEAFY COTYLEDON2 towards fatty acid metabolism during seed maturation in Arabidopsis. Plant J. 50:825-38, 2007
Becker, A., Winter, K.-U., Meyer, B., Saedler, H. and Theissen, G. MADS-box gene diversity in seed plants 300 million years ago. Mol. Biol. Evol. 17(10):1425–1434, 2000.
Becker, A. and Theissen, G. The major clades of MADS-box genes and their role in the development and evolution of flowering plants. Mol. Phylogenet. Evol. 29(3):464–489, 2003.
Carlsbecker, A., Tandre, K., Johanson, U., Englund, M. and Engström, P. The MADS-box gene DAL1 is a potential mediator of the juvenile-to-adult transition in Norway spruce (Picea abies). Plant J. 40(4):546–557, 2004.
Cozzolino, S. and Widmer, A. Orchid diversity: an evolutionary consequence of deception. Trends in Ecology and Evol. 20(9):487-494, 2005.
Hsu, H.-F., Huang, C.-H., Chou, L.-T. and Yang, C.-H. Ectopic expression of an Orchid (Oncidium Gower Ramsey) AGL6-like gene promotes flowering by activating flowering time genes in Arabidopsis thaliana. Plant Cell Physiol. 44(8):783–794, 2003.
Jack, T. Relearning our ABCs: new twists on an old model. Trends Plant Sci. 6(7): 310~316, 2001.
Jenik, D. and Irish, V. The Arabidopsis floral homeotic gene APETALA3 differentially regulates intercellular signaling required for petal and stamen development. Development 128(1):13-23, 2001.
Kanno, A., Hienuki, H., Ito, T., Nakamura, T., Fukuda, T., Yun, P.-Y., Song, I.-J., Kamimura, T., Ochiai, T., Yokoyama, Y., Maki, M. and Kameya, T. The structure and expression of SEPALLATA-like genes in Asparagus species (Asparagaceae). Sex Plant Reprod1 9(3):133–144, 2006.
Lu, Z.-X., Wu, M., Loh, C.-S., Yeong, C.-Y. and Theissen, G. MADS-box gene diversity in seed plants 300 million years ago. Mol. Biol. 23(4):901-904, 1993.
Ma, H., Yanofsky, M. and Meyerowitz, E. AGL1-AGL6, an Arabidopsis gene family with similarity to floral homeotic and transcription factor genes. Genes & Devel. 5(3):484-495, 1991.
Malcomber, S. and Kellogg, E. SEPALLATA gene diversification: brave new whorls. Trends Plant Sci. 10(9):427~435, 2005.
Malcomber, S. and Maniatis, T. Molecular Cloning: A Laboratory Manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 2001.
Mena, M., Mandel, M.A., Lerner, D.R., Yanofsky, M.F. and Schmidt, R.J. A characterization of the MADS-box gene family in maize. Plant J. 8(6):845–854, 1995.
Mouradov, A., Glassick, T. and Yang, Y. and Teasdale, R.D. Family of MADS-box genes expressed early in male and female reproductive structure of Monterey pine. Plant Physiol. 117(1):55–61, 1998.
Nilsson, L. A. Orchid pollination biology. Trends in Ecology and Evol. 7:255–259, 1992.
Parenicová, L., de Folter, S., Kieffer, M., Horner, D.S., Favalli, C., Busscher, J., Cook, H.E., Ingram, R.M., Kater, M.M., Davies, B., Angenent, G.C. and Colombo, L. Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis: new openings to the MADS world. Plant Cell 15(7):1538–1551, 2003.
Pelaz, S., Ditta, G.S., Baumann, E., Wisman, E. and Yanofsky, M.F. B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405(6783):200–203, 2000.
Purugganan, M.D., Rounsley, S.D., Schmidt, R.J. and Yanofsky, M.F. Molecular evolution of flower development: diversification of the plant MADS-box regulatory gene family. Genetics 140(1):345–356, 1995.
Riaño-Pachón, D.M., Ruzicic, S., Dreyer I. and Mueller-Roeber B. PlnTFDB: an integrative plant transcription factor database. BMC Bioinformatics 8(42):1-10, 2007.
Riechmann, L. and Meyerowitz, M. The AP2/EREBP family of plant transcription factors. Biol. Chem. 379(6):633–646,1998.
Sambrook, J.T., Münster, T., Winter, K.-U. and Saedle, H. A short history of MADS-box genes in plants. Plant Mol. Biol. 42(1):115–149, 2000.
Schiestl, F. and Roubik, D. Odor compound detection in male euglossine bees. Chemical Ecology. 29(1):253-257, 2003.
Stockinger, E., Gilmour, S. and Thomashow, M. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci USA. 94(3):1035-1040, 1997.
Theissen, G., Kim, J.T. and Saedle, H. Classification and phylogeny of the MADS-box multigene family suggest defined roles of MADS-box gene subfamilies in the morphological evolution of eukaryotes. J. Mol. Evol. 43(5):484–516, 1996.
Theissen, G., Becker, A., Rosa, A.D., Kanno, A., Kim, J.T., Münster, T., Winter, K.-U. and Saedle, H. A short history of MADS-box genes in plants. Plant Mol. Biol. 42(1): 115–149, 2000.
Tsai, W.-C., Kuoh, C.-S., Chuang, M.-H., Chen, W.-H. and Chen, H.-H. Four DEF-like MADS box genes displayed distinct floral morphogenetic roles in Phalaenopsis orchid. Plant Cell Physiol. 45(7):831–844, 2004.
Tsai, W.-C, Lee, P.-F., Chen, H.-I., Hsiao, Y.-Y., Wei, W.-J., Pan, Z.-J., Chuang, M.-H., Kuoh, C.-S.,Chen, W.-H.and Chen, H.-H. PeMADS6, a GLOBOSA/PISTILLATA-like gene in Phalaenopsis equestris Involved in petaloid formation, and correlated with flower longevity and ovary development. Plant Cell Physiol. 46(7):1125–1139, 2005.
Tsai, W.-C, Hsiao, Y.-Y., Lee, S.-H., Tung, C.-W., Wang, D.-P., Wang, H.-C., Chen, W.-H. and Chen, H.-H. Expression analysis of the ESTs derived from the flower buds of Phalaenopsis equestris. Plant Sci. 170(3):426-432, 2006.
Tsai, W.-C, Pan, Z.-J., Hsiao, Y.-Y., Jeng, M.-F., Wu, T.-F., Chen, W.-H. and Chen, H.-H. Interactions of B-class complex proteins involved in tepal development in Phalaenopsis orchid. Plant & Cell Phy. (under revisition)
Vaamonde, C., Rasplus, J., Weiblen, G. and Cook, J. Molecular phylogenies of fig wasps: partial cocladogenesis of pollinators and parasites. Molecular Phylogenetics and Evol. 21(1): 51-77, 2001.
Wei, G., Pan, Y., Lei, J. and Zhu, Y.-X. Molecular cloning, phylogenetic analysis, expressional profiling and in vitro studies of TINY2 from Arabidopsis thaliana. J Biochem Mol. Biol. 38(4):440-446, 2005.
Weigel, D. and Meyerowitz, E.M. The ABCs of floral homeotic genes. Cell 78(2):203–209, 1994.
Wilson, S. and Krizek, B. DNA binding properties of the Arabidopsis development protein AINTEGUMENTA. Nucleic Acids Res. 28(21):4076-4082, 2000.
Wilson, S. and Krizek, B. AINTEGUMENTA contributes to organ polarity and regulates growth of lateral organs in combination with YABBY genes. Plant Physiol. 141: 977-987, 2006.
Zahn, L., Kong, H., Leebens-Mack, J., Kim, S., Soltis, P., Landherr, L., Soltis, D., dePamphilis, C. and Ma, H. The evolution of the SEPALLATA subfamily of MADS-box genes: a preangiosperm origin with multiple duplications throughout angiosperm history. Genetics 169(4):2209–2223, 2005.
|