跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.138) 您好!臺灣時間:2024/09/20 15:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃靖婷
研究生(外文):Ching-ting Huang
論文名稱:分析臺灣乳癌婦女的基因表現模組
論文名稱(外文):Gene Expression Profiling of Taiwanese Women with Breast Cancer
指導教授:楊孔嘉楊孔嘉引用關係
指導教授(外文):Kung-Chia Young
學位類別:碩士
校院名稱:國立成功大學
系所名稱:醫學檢驗生物技術學系
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:81
中文關鍵詞:復發積分乳癌
外文關鍵詞:recurrence scorebreast cancer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:228
  • 評分評分:
  • 下載下載:38
  • 收藏至我的研究室書目清單書目收藏:1
乳癌是最常威脅女性健康的癌症之一。一般來說,乳癌能區分成兩大類,包括荷爾蒙受體(雌激素受體與/或黃體激素受體)陽性與陰性兩類。乳癌屬於荷爾蒙受體陽性者通常預後較好,但也有一部份乳癌為荷爾蒙受體陽性的病患對荷爾蒙療法的反應不佳,並且預後也較差。利用分析乳癌基因表現模組(Gene expression profiling)的方式來鑑定乳癌特徵已被證實能夠預測乳癌的預後。許多基因已被發現能用來預測罹患乳癌的西方婦女的遠端復發機率;因此,我們將分析這些基因在乳癌為荷爾蒙受體陽性的台灣婦女中的表現量,並分析這些基因與臨床因子的關係性。我們利用即時偵測同步定量之聚合酶連鎖反應器(real-time polymerase chain reaction)來定量這些基因的表現。在一開始,我們先構築標準曲線所需的標準質體,共包含了十六種乳癌相關基因(survivin, MYBL2、BAG1、PGR、CTSL2、SCUBE2、STK15、CCNB1、CD68、MKI67、MMP11、GRB7、GSTM1、BCL2、ERBB2 與ESR1)與五種參照基因(ACTB、TFRC、RPLP0、GAPDH 與GUSB)的質體。接著我們建立了在LightCycler 與ABI7900 系統平台上的分析系統。在測試過這些標準質體的線性後,我們共分析了三十九對的臨床檢體。我們發現這二十一個基因在癌症組織中的表現量都比在正常組織之中的表現量高。我們也利用統計軟體來分析實驗的數據,我們發現有許多基因在癌症組織中的表現量與乳癌的期數、淋巴結轉移的顆數以及組織學分級有關。除此之外,我們還發現BCL2 基因與SCUBE2 基因的表現量和發病年齡相關(P=0.010 與P=0.036)。PGR 基因與黃體激素受體的表現(P=0.008),以及HER2 基因與HER2 受體的表現(P=0.015)的關係性也被確立了。這些發現顯示這些乳癌相關基因的確與乳癌病程的進展有關,並且有可能與預後有關。我們另外計算了復發積分(recurrence score),並由積分的高低將三十九位病患區分成三組,高復發風險佔二十一位(54%)、中復發風險與低復發風險各佔九位(23%)。我們也發現發病年齡較早的病患會有較高的復發風險(P=0.048)。在這個研究中,我們成功建立了定量分析多基因表現模組的系統,並利用這個系統發現許多的臨床特徵與這二十一基因的表現或復發積分有關。
Worldwide, breast cancer is the most common type of cancer in the females.Traditionally, breast cancer is classified into hormone receptor (estrogen receptor and/or progesterone receptor) -positive and -negative groups. The patients with hormone receptor –positive breast tumors have relatively good prognosis, due to responsiveness to hormone therapy. Gene expression profiling can identify breast cancer signatures and wasreported having prognostic significance. Several genes were recognized to have strong correlation with distant recurrence of breast cancer in Caucasian women. At present the literature contains little regarding gene expression profiling in Taiwan, an area with low incidence but poor prognosis. In this study, we analyzed multiple breast cancer related genes and investigated the gene expression pattern of hormone receptor positive breast cancer women and the relation with clinical characters and outcome. Real-time polymerase chain reaction (real-time PCR) was used to quantify the levels of expression of genes. At first we constructed the standard plasmids for generation of external standard curves,including 16 targeted genes (surviving, MYBL2, BAG1, PGR, CTSL2, SCUBE2, STK15,CCNB1, CD68, MKI67, MMP11, GRB7, GSTM1, BCL2, ERBB2 and ESR1) and 5 reference genes (ACTB, TFRC, RPLP0, GAPDH and GUSB). Then we established the quantification assays on LightCycler and ABI7900 system, respectively. After verification of methodology, we quantitatively measured multiple gene expression levels of 39 paired breast tissues. The resulted showed that all 21 genes were overexpressed in tumor tissue.By using Kruskal-Wallis test to analyze these data, we found many genes were expressed higher in elevated tumor stage, metastatic axillary lymph node and histologic grade in tumor tissues. In addition, we found higher expression of BCL2 and SCUBE2 in patients with early on-set age (P=0.010 and P=0.036), PGR in PR positive tumors (P=0.008) and HER2 in HER2 overexpression tumors (P=0.015). Those finding indicated that these breast cancer related genes might play important roles in tumor cell progress and thus might potentially affect prognosis in Taiwanese breast cancer females. By calculating the recurrence score (RS) from each tumor, we classified 54% tumors (n=21) into high risk group, 23% (n=9) into intermediate risk group and 23% (n=9) into low risk group. We also found that patients with early on-set age had higher RS (P=0.048) and there was significant correlation between RS and on-set age in linear regression model (P=0.002). In this study,we successfully set up a quantitatively assay for multigenes expression profiling and found several clinical characters were correlated with the expression levels of these 21 genes or the recurrence score.
Abstract (in Chinese)-------------------------------------I
Abstract (in English)------------------------------------II
Acknowledgements----------------------------------------III
Index----------------------------------------------------IV
Tables/Figures Index-------------------------------------VI
Reagents and Instruments-------------------------------VIII
Chapter 1: Introduction-----------------------------------1
A. Breast Anatomy-----------------------------------------2
B. Epidemiology of the Breast Cancer----------------------2
C. Medical Treatment of Breast Cancer---------------------3
D. Classification of Breast Tumors According to Gene Expression------------------------------------------------4
E. Recurrence Score Assay (Oncotype DXTM assay)-----------5
F. Introduction of 16 Cancer-Related Genes and 5 Reference Genes-----------------------------------------------------6
1. ER Group-----------------------------------------------7
2. HER2 Group---------------------------------------------8
3. Proliferation Group------------------------------------9
4. Invasion Group----------------------------------------10
5. Other Group-------------------------------------------11
6. Reference Group---------------------------------------12
G. Specific Aim of this study----------------------------13
Chapter 2: Materials and Methods-------------------------14
A. Sample Collection and Establishment of Data Bank------16
1. Sample Collection-------------------------------------16
2. Data Processing---------------------------------------16
B. Establish Real time-PCR Quantification Assays---------16
1. Construct Standard Plasmids for Real-time PCR Standard
Curves---------------------------------------------------16
I. Cell Culture------------------------------------------17
(1) Cell Subculture--------------------------------------17
(2) Preparation of Frozen Cells--------------------------18
(3) Culture of Frozen-Defrozen Cells---------------------19
II. Total RNA Extraction from Cells----------------------20
III. Reverse Transcription (RT)--------------------------20
IV. Polymerase Chain Reaction (PCR)----------------------21
V. DNA Electrophoresis-----------------------------------21
VI. Gel Extraction---------------------------------------22
VII. Ligation--------------------------------------------23
VIII. Transformation-------------------------------------23
IX. Small-scale Preparation of Plasmids------------------23
2. Test Amplification Efficiency of Plasmids for Quantification Standard Curves---- ----------------------24
I. Real-Time Polymerase Chain Reaction In LightCycler system---------------------------------------------------24
II. Real-Time Polymerase Chain Reaction In ABI 7900------25
C. Quantify Gene Expression Level of Clinical Samples and Breast Cancer Cell Lines---------------------------------26
1. Total RNA Extraction from Tissues---------------------26
2. RNA Electrophoresis-----------------------------------27
3. Reverse Transcription for Real-Time Polymerase Chain
Reaction Analysis----------------------------------------28
D. Statistical Analysis----------------------------------28
1. Wilcoxon Signed Ranks Test----------------------------28
2. Kruskal-Wallis test-----------------------------------29
Chapter 3: Results---------------------------------------30
A. Test Amplification Efficiency of Plasmids for Quantification Standard Curves---------------------------31
B. Adjust the Difference between Different Runs of Reverse Transcription--------------------------------------------31
C. Statistically Analyze the Correlation between Paired Clinical Samples-----------------------------------------32
D. Statistically Analyze the Relation between Gene Expression Levels and Clinical Characters----------------32
E. Calculate the Recurrence Score of Tumor Samples-------36
F. Statistically Analyze the Relation between Recurrence Score and Clinical Characters----------------------------37
Chapter 4: Discussion------------------------------------39
A. The Gene Expression Profiling of 21 Genes in Clinical Samples--------------------------------------------------40
B. The Comparison of Recurrence Score in Taiwanese and Western Breast Cancer Women------------------------------41
C. Conclusion--------------------------------------------42
References-----------------------------------------------43
Tables/Figures-------------------------------------------50
Author---------------------------------------------------81
1.Jemal, A., et al., Cancer statistics, 2007. CA Cancer J Clin, 2007. 57(1): p. 43-66.
2.Smith, I. and S. Chua, Medical treatment of early breast cancer. IV: neoadjuvant treatment. Bmj, 2006. 332(7535): p. 223-4.
3.Smith, I. and S. Chua, Medical treatment of early breast cancer. I: adjuvant treatment. Bmj, 2006. 332(7532): p. 34-7.
4.Smith, I. and S. Chua, Medical treatment of early breast cancer. II: endocrine therapy. Bmj, 2006. 332(7533): p. 101-3.
5.Perou, C.M., et al., Distinctive gene expression patterns in human mammary epithelial cells and breast cancers. Proc Natl Acad Sci U S A, 1999. 96(16): p. 9212-7.
6.Perou, C.M., et al., Molecular portraits of human breast tumours. Nature, 2000. 406(6797): p. 747-52.
7.Sorlie, T., et al., Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A, 2001. 98(19): p. 10869-74.
8.Paik, S., et al., A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med, 2004. 351(27): p. 2817-26.
9.Paik, S., Molecular profiling of breast cancer. Curr Opin Obstet Gynecol, 2006. 18(1): p. 59-63.
10.Cobleigh, M.A., et al., Tumor gene expression and prognosis in breast cancer patients with 10 or more positive lymph nodes. Clin Cancer Res, 2005. 11(24 Pt 1): p. 8623-31.
11.Esteva, F.J., et al., Prognostic role of a multigene reverse transcriptase-PCR assay in patients with node-negative breast cancer not receiving adjuvant systemic therapy. Clin Cancer Res, 2005. 11(9): p. 3315-9.
12.Fan, C., et al., Concordance among gene-expression-based predictors for breast cancer. N Engl J Med, 2006. 355(6): p. 560-9.
13.Shao, W. and M. Brown, Advances in estrogen receptor biology: prospects for improvements in targeted breast cancer therapy. Breast Cancer Res, 2004. 6(1): p. 39-52.
14.Deroo, B.J. and K.S. Korach, Estrogen receptors and human disease. J Clin Invest, 2006. 116(3): p. 561-70.
15.Clemons, M. and P. Goss, Estrogen and the risk of breast cancer. N Engl J Med, 2001. 344(4): p. 276-85.
16.Giacinti, L., et al., Epigenetic information and estrogen receptor alpha expression in breast cancer. Oncologist, 2006. 11(1): p. 1-8.
17.Mulac-Jericevic, B., et al., Defective mammary gland morphogenesis in mice lacking the progesterone receptor B isoform. Proc Natl Acad Sci U S A, 2003. 100(17): p. 9744-9.
18.Shyamala, G., et al., Transgenic mice carrying an imbalance in the native ratio of A to B forms of progesterone receptor exhibit developmental abnormalities in mammary glands. Proc Natl Acad Sci U S A, 1998. 95(2): p. 696-701.
19.Ma, Y., et al., The breast cancer susceptibility gene BRCA1 regulates progesterone receptor signaling in mammary epithelial cells. Mol Endocrinol, 2006. 20(1): p. 14-34.
20.Aupperlee, M.D., et al., Progesterone receptor isoforms A and B: temporal and spatial differences in expression during murine mammary gland development. Endocrinology, 2005. 146(8): p. 3577-88.
21.Alkayed, N.J., et al., Estrogen and Bcl-2: gene induction and effect of transgene in experimental stroke. J Neurosci, 2001. 21(19): p. 7543-50.
22.Thomadaki, H. and A. Scorilas, BCL2 family of apoptosis-related genes: functions and clinical implications in cancer. Crit Rev Clin Lab Sci, 2006. 43(1): p. 1-67.
23.Park, S.H., H. Kim, and B.J. Song, Down regulation of bcl2 expression in invasive ductal carcinomas is both estrogen- and progesterone-receptor dependent and associated with poor prognostic factors. Pathol Oncol Res, 2002. 8(1): p. 26-30.
24.Sun, Y., et al., Improved breast cancer prognosis through the combination of clinical and genetic markers. Bioinformatics, 2007. 23(1): p. 30-7.
25.Abba, M.C., et al., Gene expression signature of estrogen receptor alpha status in breast cancer. BMC Genomics, 2005. 6(1): p. 37.
26.Vinatzer, U., et al., Expression of HER2 and the coamplified genes GRB7 and MLN64 in human breast cancer: quantitative real-time reverse transcription-PCR as a diagnostic alternative to immunohistochemistry and fluorescence in situ hybridization. Clin Cancer Res, 2005. 11(23): p. 8348-57.
27.Yarden, Y. and M.X. Sliwkowski, Untangling the ErbB signalling network. Nat Rev Mol Cell Biol, 2001. 2(2): p. 127-37.
28.Citri, A. and Y. Yarden, EGF-ERBB signalling: towards the systems level. Nat Rev Mol Cell Biol, 2006. 7(7): p. 505-16.
29.Niu, G. and W.B. Carter, Human epidermal growth factor receptor 2 regulates angiopoietin-2 expression in breast cancer via AKT and mitogen-activated protein kinase pathways. Cancer Res, 2007. 67(4): p. 1487-93.
30.Pero, S.C., et al., Identification of novel non-phosphorylated ligands, which bind selectively to the SH2 domain of Grb7. J Biol Chem, 2002. 277(14): p. 11918-26.
31.Tanaka, S., et al., Specific peptide ligand for Grb7 signal transduction protein and pancreatic cancer metastasis. J Natl Cancer Inst, 2006. 98(7): p. 491-8.
32.Fiddes, R.J., et al., Analysis of Grb7 recruitment by heregulin-activated erbB receptors reveals a novel target selectivity for erbB3. J Biol Chem, 1998. 273(13): p. 7717-24.
33.Pero, S.C., et al., Combination treatment with Grb7 peptide and Doxorubicin or Trastuzumab (Herceptin) results in cooperative cell growth inhibition in breast cancer cells. Br J Cancer, 2007. 96(10): p. 1520-5.
34.Sohn, D.M., et al., Expression of survivin and clinical correlation in patients with breast cancer. Biomed Pharmacother, 2006. 60(6): p. 289-92.
35.Mirza, A., et al., Human survivin is negatively regulated by wild-type p53 and participates in p53-dependent apoptotic pathway. Oncogene, 2002. 21(17): p. 2613-22.
36.Shin, S., et al., An anti-apoptotic protein human survivin is a direct inhibitor of caspase-3 and -7. Biochemistry, 2001. 40(4): p. 1117-23.
37.Kennedy, S.M., et al., Prognostic importance of survivin in breast cancer. Br J Cancer, 2003. 88(7): p. 1077-83.
38.Koch, C.A., et al., Survivin: a novel neuroendocrine marker for pheochromocytoma. Eur J Endocrinol, 2002. 146(3): p. 381-8.
39.Blanc-Brude, O.P., et al., Therapeutic targeting of the survivin pathway in cancer: initiation of mitochondrial apoptosis and suppression of tumor-associated angiogenesis. Clin Cancer Res, 2003. 9(7): p. 2683-92.
40.Kang, A.D., et al., Differential modulation of Myb family genes by Ets-2. Oncogene, 2004. 23(23): p. 4177-81.
41.Lam, E.W., J.D. Bennett, and R.J. Watson, Cell-cycle regulation of human B-myb transcription. Gene, 1995. 160(2): p. 277-81.
42.Sala, A., B-MYB, a transcription factor implicated in regulating cell cycle, apoptosis and cancer. Eur J Cancer, 2005. 41(16): p. 2479-84.
43.Pilkinton, M., et al., Mip/LIN-9 regulates the expression of B-Myb and the induction of cyclin A, cyclin B, and CDK1. J Biol Chem, 2007. 282(1): p. 168-75.
44.Hanada, N., et al., Co-regulation of B-Myb expression by E2F1 and EGF receptor. Mol Carcinog, 2006. 45(1): p. 10-7.
45.Lo, Y.L., et al., Breast cancer risk associated with genotypic polymorphism of the mitosis-regulating gene Aurora-A/STK15/BTAK. Int J Cancer, 2005. 115(2): p. 276-83.
46.Cox, D.G., S.E. Hankinson, and D.J. Hunter, Polymorphisms of the AURKA (STK15/Aurora Kinase) Gene and Breast Cancer Risk (United States). Cancer Causes Control, 2006. 17(1): p. 81-3.
47.Briassouli, P., et al., Aurora-A regulation of nuclear factor-kappaB signaling by phosphorylation of IkappaBalpha. Cancer Res, 2007. 67(4): p. 1689-95.
48.Royce, M.E., et al., STK15/Aurora-A expression in primary breast tumors is correlated with nuclear grade but not with prognosis. Cancer, 2004. 100(1): p. 12-9.
49.Touny, L.H. and P.P. Banerjee, Identification of both Myt-1 and Wee-1 as necessary mediators of the p21-independent inactivation of the cdc-2/cyclin B1 complex and growth inhibition of TRAMP cancer cells by genistein. Prostate, 2006. 66(14): p. 1542-55.
50.Suzuki, T., et al., Nuclear cyclin B1 in human breast carcinoma as a potent prognostic factor. Cancer Sci, 2007. 98(5): p. 644-51.
51.Smits, V.A. and R.H. Medema, Checking out the G(2)/M transition. Biochim Biophys Acta, 2001. 1519(1-2): p. 1-12.
52.Yuan, J., et al., Cyclin B1 depletion inhibits proliferation and induces apoptosis in human tumor cells. Oncogene, 2004. 23(34): p. 5843-52.
53.Li, H., et al., Structure of human Ki67 FHA domain and its binding to a phosphoprotein fragment from hNIFK reveal unique recognition sites and new views to the structural basis of FHA domain functions. J Mol Biol, 2004. 335(1): p. 371-81.
54.Elzagheid, A., et al., Lymph node status as a guide to selection of available prognostic markers in breast cancer: the clinical practice of the future? Diagn Pathol, 2006. 1: p. 41.
55.de Azambuja, E., et al., Ki-67 as prognostic marker in early breast cancer: a meta-analysis of published studies involving 12,155 patients. Br J Cancer, 2007. 96(10): p. 1504-13.
56.Bromme, D., et al., Human cathepsin V functional expression, tissue distribution, electrostatic surface potential, enzymatic characterization, and chromosomal localization. Biochemistry, 1999. 38(8): p. 2377-85.
57.Santamaria, I., et al., Cathepsin L2, a novel human cysteine proteinase produced by breast and colorectal carcinomas. Cancer Res, 1998. 58(8): p. 1624-30.
58.Nomura, T. and N. Katunuma, Involvement of cathepsins in the invasion, metastasis and proliferation of cancer cells. J Med Invest, 2005. 52(1-2): p. 1-9.
59.Sioud, M. and M.H. Hansen, Profiling the immune response in patients with breast cancer by phage-displayed cDNA libraries. Eur J Immunol, 2001. 31(3): p. 716-25.
60.Selvey, S., et al., Stimulation of MMP-11 (stromelysin-3) expression in mouse fibroblasts by cytokines, collagen and co-culture with human breast cancer cell lines. BMC Cancer, 2004. 4: p. 40.
61.Andarawewa, K.L., et al., Stromelysin-3 is a potent negative regulator of adipogenesis participating to cancer cell-adipocyte interaction/crosstalk at the tumor invasive front. Cancer Res, 2005. 65(23): p. 10862-71.
62.Ishizuya-Oka, A., et al., Requirement for matrix metalloproteinase stromelysin-3 in cell migration and apoptosis during tissue remodeling in Xenopus laevis. J Cell Biol, 2000. 150(5): p. 1177-88.
63.Parl, F.F., Glutathione S-transferase genotypes and cancer risk. Cancer Lett, 2005. 221(2): p. 123-9.
64.Morel, F., et al., Gene and protein characterization of the human glutathione S-transferase kappa and evidence for a peroxisomal localization. J Biol Chem, 2004. 279(16): p. 16246-53.
65.Edvardsen, H., et al., Germline glutathione S-transferase variants in breast cancer: relation to diagnosis and cutaneous long-term adverse effects after two fractionation patterns of radiotherapy. Int J Radiat Oncol Biol Phys, 2007. 67(4): p. 1163-71.
66.Kelley, M.K., et al., Variability of glutathione S-transferase isoenzyme patterns in matched normal and cancer human breast tissue. Biochem J, 1994. 304 ( Pt 3): p. 843-8.
67.O'Reilly, D., et al., Multiple Ets factors and interferon regulatory factor-4 modulate CD68 expression in a cell type-specific manner. J Biol Chem, 2003. 278(24): p. 21909-19.
68.Doussis, I.A., K.C. Gatter, and D.Y. Mason, CD68 reactivity of non-macrophage derived tumours in cytological specimens. J Clin Pathol, 1993. 46(4): p. 334-6.
69.Townsend, P.A., et al., BAG-i expression in human breast cancer: interrelationship between BAG-1 RNA, protein, HSC70 expression and clinico-pathological data. J Pathol, 2002. 197(1): p. 51-9.
70.Townsend, P.A., et al., BAG-1 prevents stress-induced long-term growth inhibition in breast cancer cells via a chaperone-dependent pathway. Cancer Res, 2003. 63(14): p. 4150-7.
71.Kudoh, M., et al., Bag1 proteins regulate growth and survival of ZR-75-1 human breast cancer cells. Cancer Res, 2002. 62(6): p. 1904-9.
72.Wada, S., et al., PIK3CA and TFRC located in 3q are new prognostic factors in esophageal squamous cell carcinoma. Ann Surg Oncol, 2006. 13(7): p. 961-6.
73.Gatter, K.C., et al., Transferrin receptors in human tissues: their distribution and possible clinical relevance. J Clin Pathol, 1983. 36(5): p. 539-45.
74.Abo, Y., et al., Baculovirus-mediated expression and isolation of human ribosomal phosphoprotein P0 carrying a GST-tag in a functional state. Biochem Biophys Res Commun, 2004. 322(3): p. 814-9.
75.Barber, R.D., et al., GAPDH as a housekeeping gene: analysis of GAPDH mRNA expression in a panel of 72 human tissues. Physiol Genomics, 2005. 21(3): p. 389-95.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top