|
1.Jemal, A., et al., Cancer statistics, 2007. CA Cancer J Clin, 2007. 57(1): p. 43-66. 2.Smith, I. and S. Chua, Medical treatment of early breast cancer. IV: neoadjuvant treatment. Bmj, 2006. 332(7535): p. 223-4. 3.Smith, I. and S. Chua, Medical treatment of early breast cancer. I: adjuvant treatment. Bmj, 2006. 332(7532): p. 34-7. 4.Smith, I. and S. Chua, Medical treatment of early breast cancer. II: endocrine therapy. Bmj, 2006. 332(7533): p. 101-3. 5.Perou, C.M., et al., Distinctive gene expression patterns in human mammary epithelial cells and breast cancers. Proc Natl Acad Sci U S A, 1999. 96(16): p. 9212-7. 6.Perou, C.M., et al., Molecular portraits of human breast tumours. Nature, 2000. 406(6797): p. 747-52. 7.Sorlie, T., et al., Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A, 2001. 98(19): p. 10869-74. 8.Paik, S., et al., A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med, 2004. 351(27): p. 2817-26. 9.Paik, S., Molecular profiling of breast cancer. Curr Opin Obstet Gynecol, 2006. 18(1): p. 59-63. 10.Cobleigh, M.A., et al., Tumor gene expression and prognosis in breast cancer patients with 10 or more positive lymph nodes. Clin Cancer Res, 2005. 11(24 Pt 1): p. 8623-31. 11.Esteva, F.J., et al., Prognostic role of a multigene reverse transcriptase-PCR assay in patients with node-negative breast cancer not receiving adjuvant systemic therapy. Clin Cancer Res, 2005. 11(9): p. 3315-9. 12.Fan, C., et al., Concordance among gene-expression-based predictors for breast cancer. N Engl J Med, 2006. 355(6): p. 560-9. 13.Shao, W. and M. Brown, Advances in estrogen receptor biology: prospects for improvements in targeted breast cancer therapy. Breast Cancer Res, 2004. 6(1): p. 39-52. 14.Deroo, B.J. and K.S. Korach, Estrogen receptors and human disease. J Clin Invest, 2006. 116(3): p. 561-70. 15.Clemons, M. and P. Goss, Estrogen and the risk of breast cancer. N Engl J Med, 2001. 344(4): p. 276-85. 16.Giacinti, L., et al., Epigenetic information and estrogen receptor alpha expression in breast cancer. Oncologist, 2006. 11(1): p. 1-8. 17.Mulac-Jericevic, B., et al., Defective mammary gland morphogenesis in mice lacking the progesterone receptor B isoform. Proc Natl Acad Sci U S A, 2003. 100(17): p. 9744-9. 18.Shyamala, G., et al., Transgenic mice carrying an imbalance in the native ratio of A to B forms of progesterone receptor exhibit developmental abnormalities in mammary glands. Proc Natl Acad Sci U S A, 1998. 95(2): p. 696-701. 19.Ma, Y., et al., The breast cancer susceptibility gene BRCA1 regulates progesterone receptor signaling in mammary epithelial cells. Mol Endocrinol, 2006. 20(1): p. 14-34. 20.Aupperlee, M.D., et al., Progesterone receptor isoforms A and B: temporal and spatial differences in expression during murine mammary gland development. Endocrinology, 2005. 146(8): p. 3577-88. 21.Alkayed, N.J., et al., Estrogen and Bcl-2: gene induction and effect of transgene in experimental stroke. J Neurosci, 2001. 21(19): p. 7543-50. 22.Thomadaki, H. and A. Scorilas, BCL2 family of apoptosis-related genes: functions and clinical implications in cancer. Crit Rev Clin Lab Sci, 2006. 43(1): p. 1-67. 23.Park, S.H., H. Kim, and B.J. Song, Down regulation of bcl2 expression in invasive ductal carcinomas is both estrogen- and progesterone-receptor dependent and associated with poor prognostic factors. Pathol Oncol Res, 2002. 8(1): p. 26-30. 24.Sun, Y., et al., Improved breast cancer prognosis through the combination of clinical and genetic markers. Bioinformatics, 2007. 23(1): p. 30-7. 25.Abba, M.C., et al., Gene expression signature of estrogen receptor alpha status in breast cancer. BMC Genomics, 2005. 6(1): p. 37. 26.Vinatzer, U., et al., Expression of HER2 and the coamplified genes GRB7 and MLN64 in human breast cancer: quantitative real-time reverse transcription-PCR as a diagnostic alternative to immunohistochemistry and fluorescence in situ hybridization. Clin Cancer Res, 2005. 11(23): p. 8348-57. 27.Yarden, Y. and M.X. Sliwkowski, Untangling the ErbB signalling network. Nat Rev Mol Cell Biol, 2001. 2(2): p. 127-37. 28.Citri, A. and Y. Yarden, EGF-ERBB signalling: towards the systems level. Nat Rev Mol Cell Biol, 2006. 7(7): p. 505-16. 29.Niu, G. and W.B. Carter, Human epidermal growth factor receptor 2 regulates angiopoietin-2 expression in breast cancer via AKT and mitogen-activated protein kinase pathways. Cancer Res, 2007. 67(4): p. 1487-93. 30.Pero, S.C., et al., Identification of novel non-phosphorylated ligands, which bind selectively to the SH2 domain of Grb7. J Biol Chem, 2002. 277(14): p. 11918-26. 31.Tanaka, S., et al., Specific peptide ligand for Grb7 signal transduction protein and pancreatic cancer metastasis. J Natl Cancer Inst, 2006. 98(7): p. 491-8. 32.Fiddes, R.J., et al., Analysis of Grb7 recruitment by heregulin-activated erbB receptors reveals a novel target selectivity for erbB3. J Biol Chem, 1998. 273(13): p. 7717-24. 33.Pero, S.C., et al., Combination treatment with Grb7 peptide and Doxorubicin or Trastuzumab (Herceptin) results in cooperative cell growth inhibition in breast cancer cells. Br J Cancer, 2007. 96(10): p. 1520-5. 34.Sohn, D.M., et al., Expression of survivin and clinical correlation in patients with breast cancer. Biomed Pharmacother, 2006. 60(6): p. 289-92. 35.Mirza, A., et al., Human survivin is negatively regulated by wild-type p53 and participates in p53-dependent apoptotic pathway. Oncogene, 2002. 21(17): p. 2613-22. 36.Shin, S., et al., An anti-apoptotic protein human survivin is a direct inhibitor of caspase-3 and -7. Biochemistry, 2001. 40(4): p. 1117-23. 37.Kennedy, S.M., et al., Prognostic importance of survivin in breast cancer. Br J Cancer, 2003. 88(7): p. 1077-83. 38.Koch, C.A., et al., Survivin: a novel neuroendocrine marker for pheochromocytoma. Eur J Endocrinol, 2002. 146(3): p. 381-8. 39.Blanc-Brude, O.P., et al., Therapeutic targeting of the survivin pathway in cancer: initiation of mitochondrial apoptosis and suppression of tumor-associated angiogenesis. Clin Cancer Res, 2003. 9(7): p. 2683-92. 40.Kang, A.D., et al., Differential modulation of Myb family genes by Ets-2. Oncogene, 2004. 23(23): p. 4177-81. 41.Lam, E.W., J.D. Bennett, and R.J. Watson, Cell-cycle regulation of human B-myb transcription. Gene, 1995. 160(2): p. 277-81. 42.Sala, A., B-MYB, a transcription factor implicated in regulating cell cycle, apoptosis and cancer. Eur J Cancer, 2005. 41(16): p. 2479-84. 43.Pilkinton, M., et al., Mip/LIN-9 regulates the expression of B-Myb and the induction of cyclin A, cyclin B, and CDK1. J Biol Chem, 2007. 282(1): p. 168-75. 44.Hanada, N., et al., Co-regulation of B-Myb expression by E2F1 and EGF receptor. Mol Carcinog, 2006. 45(1): p. 10-7. 45.Lo, Y.L., et al., Breast cancer risk associated with genotypic polymorphism of the mitosis-regulating gene Aurora-A/STK15/BTAK. Int J Cancer, 2005. 115(2): p. 276-83. 46.Cox, D.G., S.E. Hankinson, and D.J. Hunter, Polymorphisms of the AURKA (STK15/Aurora Kinase) Gene and Breast Cancer Risk (United States). Cancer Causes Control, 2006. 17(1): p. 81-3. 47.Briassouli, P., et al., Aurora-A regulation of nuclear factor-kappaB signaling by phosphorylation of IkappaBalpha. Cancer Res, 2007. 67(4): p. 1689-95. 48.Royce, M.E., et al., STK15/Aurora-A expression in primary breast tumors is correlated with nuclear grade but not with prognosis. Cancer, 2004. 100(1): p. 12-9. 49.Touny, L.H. and P.P. Banerjee, Identification of both Myt-1 and Wee-1 as necessary mediators of the p21-independent inactivation of the cdc-2/cyclin B1 complex and growth inhibition of TRAMP cancer cells by genistein. Prostate, 2006. 66(14): p. 1542-55. 50.Suzuki, T., et al., Nuclear cyclin B1 in human breast carcinoma as a potent prognostic factor. Cancer Sci, 2007. 98(5): p. 644-51. 51.Smits, V.A. and R.H. Medema, Checking out the G(2)/M transition. Biochim Biophys Acta, 2001. 1519(1-2): p. 1-12. 52.Yuan, J., et al., Cyclin B1 depletion inhibits proliferation and induces apoptosis in human tumor cells. Oncogene, 2004. 23(34): p. 5843-52. 53.Li, H., et al., Structure of human Ki67 FHA domain and its binding to a phosphoprotein fragment from hNIFK reveal unique recognition sites and new views to the structural basis of FHA domain functions. J Mol Biol, 2004. 335(1): p. 371-81. 54.Elzagheid, A., et al., Lymph node status as a guide to selection of available prognostic markers in breast cancer: the clinical practice of the future? Diagn Pathol, 2006. 1: p. 41. 55.de Azambuja, E., et al., Ki-67 as prognostic marker in early breast cancer: a meta-analysis of published studies involving 12,155 patients. Br J Cancer, 2007. 96(10): p. 1504-13. 56.Bromme, D., et al., Human cathepsin V functional expression, tissue distribution, electrostatic surface potential, enzymatic characterization, and chromosomal localization. Biochemistry, 1999. 38(8): p. 2377-85. 57.Santamaria, I., et al., Cathepsin L2, a novel human cysteine proteinase produced by breast and colorectal carcinomas. Cancer Res, 1998. 58(8): p. 1624-30. 58.Nomura, T. and N. Katunuma, Involvement of cathepsins in the invasion, metastasis and proliferation of cancer cells. J Med Invest, 2005. 52(1-2): p. 1-9. 59.Sioud, M. and M.H. Hansen, Profiling the immune response in patients with breast cancer by phage-displayed cDNA libraries. Eur J Immunol, 2001. 31(3): p. 716-25. 60.Selvey, S., et al., Stimulation of MMP-11 (stromelysin-3) expression in mouse fibroblasts by cytokines, collagen and co-culture with human breast cancer cell lines. BMC Cancer, 2004. 4: p. 40. 61.Andarawewa, K.L., et al., Stromelysin-3 is a potent negative regulator of adipogenesis participating to cancer cell-adipocyte interaction/crosstalk at the tumor invasive front. Cancer Res, 2005. 65(23): p. 10862-71. 62.Ishizuya-Oka, A., et al., Requirement for matrix metalloproteinase stromelysin-3 in cell migration and apoptosis during tissue remodeling in Xenopus laevis. J Cell Biol, 2000. 150(5): p. 1177-88. 63.Parl, F.F., Glutathione S-transferase genotypes and cancer risk. Cancer Lett, 2005. 221(2): p. 123-9. 64.Morel, F., et al., Gene and protein characterization of the human glutathione S-transferase kappa and evidence for a peroxisomal localization. J Biol Chem, 2004. 279(16): p. 16246-53. 65.Edvardsen, H., et al., Germline glutathione S-transferase variants in breast cancer: relation to diagnosis and cutaneous long-term adverse effects after two fractionation patterns of radiotherapy. Int J Radiat Oncol Biol Phys, 2007. 67(4): p. 1163-71. 66.Kelley, M.K., et al., Variability of glutathione S-transferase isoenzyme patterns in matched normal and cancer human breast tissue. Biochem J, 1994. 304 ( Pt 3): p. 843-8. 67.O'Reilly, D., et al., Multiple Ets factors and interferon regulatory factor-4 modulate CD68 expression in a cell type-specific manner. J Biol Chem, 2003. 278(24): p. 21909-19. 68.Doussis, I.A., K.C. Gatter, and D.Y. Mason, CD68 reactivity of non-macrophage derived tumours in cytological specimens. J Clin Pathol, 1993. 46(4): p. 334-6. 69.Townsend, P.A., et al., BAG-i expression in human breast cancer: interrelationship between BAG-1 RNA, protein, HSC70 expression and clinico-pathological data. J Pathol, 2002. 197(1): p. 51-9. 70.Townsend, P.A., et al., BAG-1 prevents stress-induced long-term growth inhibition in breast cancer cells via a chaperone-dependent pathway. Cancer Res, 2003. 63(14): p. 4150-7. 71.Kudoh, M., et al., Bag1 proteins regulate growth and survival of ZR-75-1 human breast cancer cells. Cancer Res, 2002. 62(6): p. 1904-9. 72.Wada, S., et al., PIK3CA and TFRC located in 3q are new prognostic factors in esophageal squamous cell carcinoma. Ann Surg Oncol, 2006. 13(7): p. 961-6. 73.Gatter, K.C., et al., Transferrin receptors in human tissues: their distribution and possible clinical relevance. J Clin Pathol, 1983. 36(5): p. 539-45. 74.Abo, Y., et al., Baculovirus-mediated expression and isolation of human ribosomal phosphoprotein P0 carrying a GST-tag in a functional state. Biochem Biophys Res Commun, 2004. 322(3): p. 814-9. 75.Barber, R.D., et al., GAPDH as a housekeeping gene: analysis of GAPDH mRNA expression in a panel of 72 human tissues. Physiol Genomics, 2005. 21(3): p. 389-95.
|