跳到主要內容

臺灣博碩士論文加值系統

(44.200.101.84) 您好!臺灣時間:2023/10/05 08:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林孝謇
研究生(外文):Hsiao-Chien Lin
論文名稱:人類胎盤絨毛組織中ABCG2+/CD90+間葉幹細胞之特性鑑定
論文名稱(外文):Characterization of ABCG2+/CD90+ mesenchymal stem cells from chorionic villi of human placenta
指導教授:黃玲惠
指導教授(外文):Lynn L.H. Huang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:生物科技研究所碩博士班
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:89
中文關鍵詞:間葉幹細胞胎盤
外文關鍵詞:mesenchymal stem cellsABCG2placentaCD90
相關次數:
  • 被引用被引用:0
  • 點閱點閱:136
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由不同人體組織分離間葉幹細胞的研究,為再生醫學的領域帶來很多新的期許。 然而經由不同分離方法所取的細胞,通常由不同種類的細胞所組成。 從近年來對幹細胞的研究中,ABCG2和CD90這兩個分子標誌不但皆能在不同來源的幹細胞中表現,並且和幹細胞在分化相關的原始特性及間葉幹細胞在人體可能存在的位置有極大的相關性。 以人體胎盤做細胞的組織來源,我們分離ABCG2+/CD90+的細胞,並以免疫染色、流式細胞儀及分化實驗進一步對這些細胞進行特性的分析。
以流式細胞儀分析可發現,初始分離的細胞皆有部分細胞表達間葉幹細胞的分子標誌,而ABCG2、CD73、CD90及CD105的表現則偏低。ABCG2的表現低於2%,而CD90的表現則在3-35%的範圍,且在檢體之間有較大的差異性。 有趣的是,表現ABCG2的細胞皆有CD90的表現。 另外,血球細胞及胚胎幹細胞的分子標定表現,也證實了初始分離的細胞包含了混合的細胞族群。
當這些細胞以低密度(1x104 cells/cm2)進行培養時,在第十到十四天會開始有具纖維母細胞型態的細胞聚落形成。 而聚落形成的比例會隨著胎盤檢體的不同,其範圍約在每一萬顆細胞有四到四十顆的前驅細胞。 這些會形成聚落的細胞,皆均一的表現典型間葉幹細胞的分子標誌,如CD29、CD44、CD90、CD105以及HLA-ABC,且不會有血球細胞相關的分子標誌表現。 此外,CD13、CD49a及CD63的表現則較為微弱。 經過不同代數的培養後,其分子標誌的表現及分化能力上都有逐漸增加的趨勢。
在分析聚落形成的細胞時,可發現兩種不同細胞族群(ABCG2+/CD90+ 及ABCG2-/CD90+)。但在這兩群細胞中,間葉幹細胞的分子標誌在表現上並沒有明顯的差異性。 在胚胎幹細胞分子標誌的分析上,也有相同的趨勢。 這些細胞皆會表現Oct-4、E-cadherin、Sox-2、TRA-1-61及TRA-1-80,但在SSEA-3和SSEA-4上則不會有表現。 而在分化誘導的部分,在不同的聚落細胞則具有不同程度的分化能力,且分化能力和ABCG2的表現似乎沒有明顯的相關性。
在我們實驗中可發現,在胎盤絨毛組織的細胞中的確也和造血幹細胞相同,具有表現ABCG2的細胞群。 然而ABCG2在這些間葉幹細胞的真實功能及角色,仍需要進一步的研究,才能有更深入的了解。
Studies of mesenchymal stem cells from various human tissues have brought new promises in regenerative medicine. However, most isolation methods result heterogeneous cell population. From recent studies on stem cells, expressions of ABCG2 (ATP-binding cassette, group 2) had been the key feature associated with a more primitive characteristic in most stem cells, while expression of CD90 was considered as common stem marker associated with stem cell residency in vivo. Therefore, by using human placenta as our tissue source, we isolated ABCG2+/CD90+ cells and characterized these cells by immunohistochemistry, flow cytometry and differentiation potentials.
In our study, flow cytometric analysis of fresh-isolated placental cells showed moderate shift for most MSC markers, except ABCG2, CD73, CD90 and CD105. Expression of ABCG2 was less than 2% while expression of CD90 was between 3-35% with strong individual variation. Interestingly, cells positive with ABCG2 also co-expressed CD90 in most cases. In addition, expression of hematopoietic cell and embryonic stem cell markers demonstrated the heterogeneous nature of placental cells.
When cells were cultured with a low seeding density of 1x104 cells/cm2, colony formation appeared approximately 10-14 days and exhibited a typical fibroblast-like morphology. Colony efficiency was around 4-40 per 10000 cells depending on placenta samples. These colonies uniformly expressed typical MSC markers, such as CD29, CD44, CD90, CD105 and HLA-ABC, and were devoid of hematopoietic cell marker. In addition, CD13, C49a, and CD63, were also weakly expressed in these cells. Furthermore, expressions of MSC markers and differentiation potentials were found to increase through culture.
When analyzing these colony-forming cells, two subpopulations (ABCG2+/CD90+ and ABCG2-/CD90+) were found. No significant difference of MSC marker expressions was found in both subpopulations. Similar results were obtained when expression of ESC markers was analyzed. Both subpopulations expressed Oct-4, Sox-2, E-cadherin, TRA-1-61 and TRA-1-80, but not SSEA-3 and SSEA-4. However, when differentiation potentials were analyzed between these subpopulations, individual variations were found in each colony with no correlation to ABCG2 expression.
In our study, we demonstrated that side population phenotype could also be found in placental chorionic villi similar to hematopoietic stem cells. However, further studies are still required in order to reveal the particular role of ABCG2 in mesenchymal stem cells.
Table of content

Chinese abstract………………………………………………………………..i
Abstract………….…………………………………………………………...iii
Special Thanks…………………………………………………………...…..iv
Table of content……………………………………………………………….v
Figures.............................................................................................................vii
Tables...……………………………………………………………………..viii
Abbreviation list……………………………………………………………...ix


1. Introduction………………..…………………………………………. 1
1.1 Mesenchymal stem/progenitor cells……………………………….. 1
1.1.1 Discovery and definition……………………………………. 1
1.1.2 Isolation and enrichment methods………………………….. 1
1.1.3 Immunophenotypic characteristics………………………..... 2
1.1.4 MSCs from different tissue sources………………………… 3
1.1.5 Possible residence and localization in post-natal organs and
tissues……………………………………………………….
4
1.1.6 MSCs application…………………………………………… 5
1.2 Extra-embryonic tissue/ placenta…………………………………. 6
1.2.1 Extra-embryonic mesoderm from embryogenesis………….. 6
1.2.2 Structure and function of placenta………………………….. 7
1.2.3 Chorionic villi……………………………………………..... 7
1.2.4 Placenta-derived mesenchymal stem cells (PDMSCs)……... 8
1.3 Specific stem cell markers for PDMSCs isolation………………... 9
1.3.1 CD90/ Thy-1………………………………………………... 9
1.3.2 ABCG2/BCRP……………………………………………… 10
1.4 Aim of study……………………………………………………… 11

2. Materials and Methods………………………………………………. 31
2.1 Instruments………………………………………………………... 31
2.2 Chemicals…………………………………………………………. 32
2.3 Experimental methods……………………………………………. 33
2.3.1 Collection of human placentas……………………………… 33
2.3.2 Tissue handling and cell extraction of placenta chorionic
villi………………………………………………………….
33
2.3.3 Primary cell culture and passage…………………………… 34
2.3.4 Colony forming unit fibroblast (CFU-F) assay and colony efficiency (CE)………………………………………………
34
2.3.5 Flow cytometric analysis…………………………………… 34
2.3.6 Growth kinetics analysis……………………………………. 35
2.3.7 Immunocytochemical / immunofluorescent staining……….. 35
2.3.8 Immunohistochemical staining (Frozen section/cytospin)…. 36
2.3.9 Differentiation assay………………………………………... 36
2.3.9.1 Osteogenic differentiation………………………….. 36
2.3.9.2 Adipogenic differentiation…………………………. 37
2.3.9.3 Neural differentiation………………………………. 37
2.3.10 Fluorescence-activated cell sorting……………………….. 37
2.3.11 Colony harvest………………………………………………. 38

3. Results………………………………………………………………… 46
3.1 Isolation and characterization of PDMSCs……………………….. 46
3.1.1 Cell yield……………………………………………………. 46
3.1.2 Immunophenotypic profile of uncultured placental cells…... 46
3.1.3 Colony formation and efficiency (CE)……………………... 46
3.1.4 Immunocytochemical staining of colony forming cells……. 47
3.1.5 Growth kinetics and characteristic of cultured PDMSCs…... 47
3.1.6 Differentiation assay………………………………………... 47
3.1.6.1 Osteogenic induction………………………………. 47
3.1.6.2 Adipogenic induction………………………………. 48
3.1.6.3 Neural induction…………………………………… 48
3.2 Isolation and characterization of ABCG2+/CD90+ cells from PDMSCs………………………………………………………….
48
3.2.1 Fluorescence-activated cell sorting…………………………. 48
3.2.2 Expression of ABCG2 and CD90 on colony forming cells… 49
3.2.3 Expression of MSC markers on ABCG2+/CD90+ cells……. 49
3.2.4 Expression of ESC markers on ABCG2+/CD90+ cells…….. 49
3.2.5 Differentiation potential of ABCG2+/CD90+ cells………… 49
3.2.5.1 Osteogenic induction………………………………. 49
3.2.5.2 Adipogenic induction………………………………. 49
3.2.5.3 Neural induction…………………………………… 50

4. Discussion……………………………………………………….......... 79
4.1 Characteristics of uncultured placental cells……………………... 79
4.2 Characteristics of cultured placental cells…………………………. 79
4.3 ABCG2 and CD90 double positive cells…………………………... 80

5. Reference………………………………………………………........... 83
1.Friedenstein AJ. Stromal mechanisms of bone marrow: cloning in vitro and retransplantation in vivo. Haematol Blood Transfus. 1980;25:19-29.
2.Bianco P, Riminucci M, Gronthos S, Robey PG. Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells. 2001;19(3):180-192.
3.Deans RJ, Moseley AB. Mesenchymal stem cells: biology and potential clinical uses. Exp Hematol. Aug 2000;28(8):875-884.
4.Igura K, Zhang X, Takahashi K, Mitsuru A, Yamaguchi S, Takashi TA. Isolation and characterization of mesenchymal progenitor cells from chorionic villi of human placenta. Cytotherapy. 2004;6(6):543-553.
5.Castro-Malaspina H, Gay RE, Resnick G, et al. Characterization of human bone marrow fibroblast colony-forming cells (CFU-F) and their progeny. Blood. Aug 1980;56(2):289-301.
6.Friedenstein AJ, Latzinik NW, Grosheva AG, Gorskaya UF. Marrow microenvironment transfer by heterotopic transplantation of freshly isolated and cultured cells in porous sponges. Exp Hematol. Feb 1982;10(2):217-227.
7.Javazon EH, Beggs KJ, Flake AW. Mesenchymal stem cells: paradoxes of passaging. Exp Hematol. May 2004;32(5):414-425.
8.Tondreau T, Lagneaux L, Dejeneffe M, et al. Isolation of BM mesenchymal stem cells by plastic adhesion or negative selection: phenotype, proliferation kinetics and differentiation potential. Cytotherapy. 2004;6(4):372-379.
9.Aslan H, Zilberman Y, Kendel A, et al. Osteogenic Differentiation of Noncultured Immunoisolated Bone Marrow-Derived CD105+ Cells. Stem Cells. Apr 6 2006.
10.Deschaseaux F, Gindraux F, Saadi R, Obert L, Chalmers D, Herve P. Direct selection of human bone marrow mesenchymal stem cells using an anti-CD49a antibody reveals their CD45med,low phenotype. Br J Haematol. Aug 2003;122(3):506-517.
11.Tondreau T, Meuleman N, Delforge A, et al. Mesenchymal stem cells derived from CD133-positive cells in mobilized peripheral blood and cord blood: proliferation, Oct4 expression, and plasticity. Stem Cells. Sep 2005;23(8):1105-1112.
12.Dennis JE, Carbillet JP, Caplan AI, Charbord P. The STRO-1+ marrow cell population is multipotential. Cells Tissues Organs. 2002;170(2-3):73-82.
13.Park PC, Selvarajah S, Bayani J, Zielenska M, Squire JA. Stem cell enrichment approaches. Semin Cancer Biol. Apr 29 2006.
14.Huang S, Terstappen LW. Formation of haematopoietic microenvironment and haematopoietic stem cells from single human bone marrow stem cells. Nature. Dec 24-31 1992;360(6406):745-749.
15.Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science. Apr 2 1999;284(5411):143-147.
16.鄭翔耀. Angiogenic potential of adipose-derived stem cells (ADSCs) in collagen matrix. 2006.
17.Simmons PJ, Torok-Storb B. Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody, STRO-1. Blood. Jul 1 1991;78(1):55-62.
18.Andrades JA, Nimni ME, Han B, Ertl DC, Hall FL, Becerra J. Type I collagen combined with a recombinant TGF-beta serves as a scaffold for mesenchymal stem cells. Int J Dev Biol. 1996;Suppl 1:107S-108S.
19.Vaananen HK. Mesenchymal stem cells. Ann Med. 2005;37(7):469-479.
20.Musina RA, Bekchanova ES, Sukhikh GT. Comparison of mesenchymal stem cells obtained from different human tissues. Bull Exp Biol Med. Apr 2005;139(4):504-509.
21.Wagner W, Wein F, Seckinger A, et al. Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Exp Hematol. Nov 2005;33(11):1402-1416.
22.Kern S, Eichler H, Stoeve J, Kluter H, Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells. May 2006;24(5):1294-1301.
23.Sakaguchi Y, Sekiya I, Yagishita K, Muneta T. Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source. Arthritis Rheum. Aug 2005;52(8):2521-2529.
24.Baksh D, Yao R, Tuan RS. Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow. Stem Cells. Jun 2007;25(6):1384-1392.
25.Bernardo ME, Emons JA, Karperien M, et al. Human mesenchymal stem cells derived from bone marrow display a better chondrogenic differentiation compared with other sources. Connect Tissue Res. 2007;48(3):132-140.
26.吳建勳. Identification and characterization of mesenchymal stem cells from placenta villi. 2006.
27.Panepucci RA, Siufi JL, Silva WA, Jr., et al. Comparison of gene expression of umbilical cord vein and bone marrow-derived mesenchymal stem cells. Stem Cells. 2004;22(7):1263-1278.
28.da Silva Meirelles L, Chagastelles PC, Nardi NB. Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci. Jun 1 2006;119(Pt 11):2204-2213.
29.Wexler SA, Donaldson C, Denning-Kendall P, Rice C, Bradley B, Hows JM. Adult bone marrow is a rich source of human mesenchymal 'stem' cells but umbilical cord and mobilized adult blood are not. Br J Haematol. Apr 2003;121(2):368-374.
30.Doherty MJ, Ashton BA, Walsh S, Beresford JN, Grant ME, Canfield AE. Vascular pericytes express osteogenic potential in vitro and in vivo. J Bone Miner Res. May 1998;13(5):828-838.
31.Dore-Duffy P, Balabanov R, Beaumont T, Katar M. The CNS pericyte response to low oxygen: early synthesis of cyclopentenone prostaglandins of the J-series. Microvasc Res. Jan 2005;69(1-2):79-88.
32.Farrington-Rock C, Crofts NJ, Doherty MJ, Ashton BA, Griffin-Jones C, Canfield AE. Chondrogenic and adipogenic potential of microvascular pericytes. Circulation. Oct 12 2004;110(15):2226-2232.
33.Diefenderfer DL, Brighton CT. Microvascular pericytes express aggrecan message which is regulated by BMP-2. Biochem Biophys Res Commun. Mar 5 2000;269(1):172-178.
34.Bartholomew A, Sturgeon C, Siatskas M, et al. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol. Jan 2002;30(1):42-48.
35.Matikainen T, Laine J. Placenta-an alternative source of stem cells. Toxicol Appl Pharmacol. Sep 1 2005;207(2 Suppl):544-549.
36.Carlson BM. Human embryology & developmental biology. 2nd edition, . 1999.
37.Sadler. Langman 醫學胚胎學. 1976.
38.Sadler TW. Langman's Medical Embryology, 10th Edition. 2005.
39.In 't Anker PS, Scherjon SA, Kleijburg-van der Keur C, et al. Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells. 2004;22(7):1338-1345.
40.Moore. KLa. The developing human - Clinically oriented Embryology. 1987.
41.Castellucci M, Kosanke G, Verdenelli F, Huppertz B, Kaufmann P. Villous sprouting: fundamental mechanisms of human placental development. Hum Reprod Update. Sep-Oct 2000;6(5):485-494.
42.Symonds EMSaIM. Essential Obstetrics and Gynaecology. 2001.
43.Fauza D. Amniotic fluid and placental stem cells. Best Pract Res Clin Obstet Gynaecol. Dec 2004;18(6):877-891.
44.Rama S, Rao AJ. Regulation of growth and function of the human placenta. Mol Cell Biochem. Nov 2003;253(1-2):263-268.
45.Li CD, Zhang WY, Li HL, et al. Isolation and Identification of a Multilineage Potential Mesenchymal Cell from Human Placenta. Placenta. Sep 17 2005.
46.Zhang Y, Li CD, Jiang XX, Li HL, Tang PH, Mao N. Comparison of mesenchymal stem cells from human placenta and bone marrow. Chin Med J (Engl). Jun 2004;117(6):882-887.
47.Zhang Y, Li C, Jiang X, et al. Human placenta-derived mesenchymal progenitor cells support culture expansion of long-term culture-initiating cells from cord blood CD34+ cells. Exp Hematol. Jul 2004;32(7):657-664.
48.Wulf GG, Viereck V, Hemmerlein B, et al. Mesengenic progenitor cells derived from human placenta. Tissue Eng. Jul-Aug 2004;10(7-8):1136-1147.
49.Fukuchi Y, Nakajima H, Sugiyama D, Hirose I, Kitamura T, Tsuji K. Human placenta-derived cells have mesenchymal stem/progenitor cell potential. Stem Cells. 2004;22(5):649-658.
50.Romanov YA, Svintsitskaya VA, Smirnov VN. Searching for alternative sources of postnatal human mesenchymal stem cells: candidate MSC-like cells from umbilical cord. Stem Cells. 2003;21(1):105-110.
51.Portmann-Lanz CB, Schoeberlein A, Huber A, et al. Placental mesenchymal stem cells as potential autologous graft for pre- and perinatal neuroregeneration. Am J Obstet Gynecol. Mar 2006;194(3):664-673.
52.Chien CC, Yen BL, Lee FK, et al. In vitro differentiation of human placenta-derived multipotent cells into hepatocyte-like cells. Stem Cells. Jul 2006;24(7):1759-1768.
53.Miao Z, Jin J, Chen L, et al. Isolation of mesenchymal stem cells from human placenta: Comparison with human bone marrow mesenchymal stem cells. Cell Biol Int. Apr 22 2006.
54.Chang CJ, Yen ML, Chen YC, et al. Placenta-derived multipotent cells exhibit immunosuppressive properties that are enhanced in the presence of interferon-gamma. Stem Cells. Nov 2006;24(11):2466-2477.
55.Battula VL, Bareiss PM, Treml S, et al. Human placenta and bone marrow derived MSC cultured in serum-free, b-FGF-containing medium express cell surface frizzled-9 and SSEA-4 and give rise to multilineage differentiation. Differentiation. Dec 11 2006.
56.Takeda H, Yamamoto M, Morita N, Tanizawa T. Relationship between Thy-1 expression and cell-cycle distribution in human bone marrow hematopoietic progenitors. Am J Hematol. Jul 2005;79(3):187-193.
57.Young JC, Lin K, Hansteen G, et al. CD34+ cells from mobilized peripheral blood retain fetal bone marrow repopulating capacity within the Thy-1+ subset following cell division ex vivo. Exp Hematol. Jun 1999;27(6):994-1003.
58.Mayani H, Lansdorp PM. Thy-1 expression is linked to functional properties of primitive hematopoietic progenitor cells from human umbilical cord blood. Blood. May 1 1994;83(9):2410-2417.
59.Craig W, Kay R, Cutler RL, Lansdorp PM. Expression of Thy-1 on human hematopoietic progenitor cells. J Exp Med. May 1 1993;177(5):1331-1342.
60.Shimazaki C, Sumikuma T, Inaba T. CD34+ CD90+ cells and late hematopoietic reconstitution after autologous peripheral blood stem cell transplantation. Leuk Lymphoma. Apr 2004;45(4):661-668.
61.Sumikuma T, Shimazaki C, Inaba T, et al. CD34+/CD90+ cells infused best predict late haematopoietic reconstitution following autologous peripheral blood stem cell transplantation. Br J Haematol. Apr 2002;117(1):238-244.
62.Thornley I, Sutherland DR, Nayar R, Sung L, Freedman MH, Messner HA. Replicative stress after allogeneic bone marrow transplantation: changes in cycling of CD34+CD90+ and CD34+CD90- hematopoietic progenitors. Blood. Mar 15 2001;97(6):1876-1878.
63.Masson NM, Currie IS, Terrace JD, Garden OJ, Parks RW, Ross JA. Hepatic progenitor cells in human fetal liver express the oval cell marker Thy-1. Am J Physiol Gastrointest Liver Physiol. Jul 2006;291(1):G45-54.
64.Hoppo T, Fujii H, Hirose T, et al. Thy1-positive mesenchymal cells promote the maturation of CD49f-positive hepatic progenitor cells in the mouse fetal liver. Hepatology. May 2004;39(5):1362-1370.
65.Nakamura Y, Muguruma Y, Yahata T, et al. Expression of CD90 on keratinocyte stem/progenitor cells. Br J Dermatol. Jun 2006;154(6):1062-1070.
66.Oishi K, Ito-Dufros Y. Angiogenic potential of CD44(+) CD90(+) multipotent CNS stem cells in vitro. Biochem Biophys Res Commun. Aug 31 2006.
67.Krishnamurthy P, Schuetz JD. Role of ABCG2/BCRP in biology and medicine. Annu Rev Pharmacol Toxicol. 2006;46:381-410.
68.Doyle LA, Ross DD. Multidrug resistance mediated by the breast cancer resistance protein BCRP (ABCG2). Oncogene. Oct 20 2003;22(47):7340-7358.
69.Maliepaard M, Scheffer GL, Faneyte IF, et al. Subcellular localization and distribution of the breast cancer resistance protein transporter in normal human tissues. Cancer Res. Apr 15 2001;61(8):3458-3464.
70.Tamaki T, Akatsuka A, Ando K, et al. Identification of myogenic-endothelial progenitor cells in the interstitial spaces of skeletal muscle. J Cell Biol. May 13 2002;157(4):571-577.
71.Scharenberg CW, Harkey MA, Torok-Storb B. The ABCG2 transporter is an efficient Hoechst 33342 efflux pump and is preferentially expressed by immature human hematopoietic progenitors. Blood. Jan 15 2002;99(2):507-512.
72.Lechner A, Leech CA, Abraham EJ, Nolan AL, Habener JF. Nestin-positive progenitor cells derived from adult human pancreatic islets of Langerhans contain side population (SP) cells defined by expression of the ABCG2 (BCRP1) ATP-binding cassette transporter. Biochem Biophys Res Commun. May 3 2002;293(2):670-674.
73.Zhou S, Schuetz JD, Bunting KD, et al. The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med. Sep 2001;7(9):1028-1034.
74.Islam MO, Kanemura Y, Tajria J, et al. Functional expression of ABCG2 transporter in human neural stem/progenitor cells. Neurosci Res. May 2005;52(1):75-82.
75.Hirschmann-Jax C, Foster AE, Wulf GG, et al. A distinct "side population" of cells with high drug efflux capacity in human tumor cells. Proc Natl Acad Sci U S A. Sep 28 2004;101(39):14228-14233.
76.Grube M, Reuther S, Meyer Zu Schwabedissen H, et al. Organic anion transporting polypeptide 2B1 and breast cancer resistance protein interact in the transepithelial transport of steroid sulfates in human placenta. Drug Metab Dispos. Jan 2007;35(1):30-35.
77.Roura S, Farre J, Soler-Botija C, et al. Effect of aging on the pluripotential capacity of human CD105(+) mesenchymal stem cells. Eur J Heart Fail. Feb 26 2006.
78.Ujhelly O, Ozvegy C, Varady G, et al. Application of a human multidrug transporter (ABCG2) variant as selectable marker in gene transfer to progenitor cells. Hum Gene Ther. Mar 1 2003;14(4):403-412.
79.Yeboah D, Sun M, Kingdom J, et al. Expression of breast cancer resistance protein (BCRP/ABCG2) in human placenta throughout gestation and at term before and after labor. Can J Physiol Pharmacol. Dec 2006;84(12):1251-1258.
80.Young AM, Allen CE, Audus KL. Efflux transporters of the human placenta. Adv Drug Deliv Rev. Jan 21 2003;55(1):125-132.
81.Yen BL, Huang HI, Chien CC, et al. Isolation of multipotent cells from human term placenta. Stem Cells. 2005;23(1):3-9.
82.Bailo M, Soncini M, Vertua E, et al. Engraftment potential of human amnion and chorion cells derived from term placenta. Transplantation. Nov 27 2004;78(10):1439-1448.
83.Krishnamurthy P, Ross DD, Nakanishi T, et al. The stem cell marker Bcrp/ABCG2 enhances hypoxic cell survival through interactions with heme. J Biol Chem. Jun 4 2004;279(23):24218-24225.
84.Krishnamurthy P, Schuetz JD. The ABC transporter Abcg2/Bcrp: role in hypoxia mediated survival. Biometals. Aug 2005;18(4):349-358.
85.Zhou S, Morris JJ, Barnes Y, Lan L, Schuetz JD, Sorrentino BP. Bcrp1 gene expression is required for normal numbers of side population stem cells in mice, and confers relative protection to mitoxantrone in hematopoietic cells in vivo. Proc Natl Acad Sci U S A. Sep 17 2002;99(19):12339-12344.
86.Geschwind DH, Ou J, Easterday MC, et al. A genetic analysis of neural progenitor differentiation. Neuron. Feb 2001;29(2):325-339.
87.K. R. Shockley CJR, G. A. Curchill, B. Lecka-Czenik. PPAR gamma2 regulates a molecular signature of marrow mesenchymal stem cells. Hindawi Journals 2007.
88.Szatmari I, Vamosi G, Brazda P, et al. Peroxisome proliferator-activated receptor gamma-regulated ABCG2 expression confers cytoprotection to human dendritic cells. J Biol Chem. Aug 18 2006;281(33):23812-23823.
89.Kolwankar D, Glover DD, Ware JA, Tracy TS. Expression and function of ABCB1 and ABCG2 in human placental tissue. Drug Metab Dispos. Apr 2005;33(4):524-529.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top