|
1.Brown, J.M. and A.J. Giaccia, The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer Res, 1998. 58(7): p. 1408-16. 2.Harris, A.L., Hypoxia--a key regulatory factor in tumour growth. Nat Rev Cancer, 2002. 2(1): p. 38-47. 3.Bindra, R.S. and P.M. Glazer, Genetic instability and the tumor microenvironment: towards the concept of microenvironment-induced mutagenesis. Mutat Res, 2005. 569(1-2): p. 75-85. 4.Seimiya, H., et al., Hypoxia up-regulates telomerase activity via mitogen-activated protein kinase signaling in human solid tumor cells. Biochem Biophys Res Commun, 1999. 260(2): p. 365-70. 5.Ke, Q. and M. Costa, Hypoxia-inducible factor-1 (HIF-1). Mol Pharmacol, 2006. 70(5): p. 1469-80. 6.Semenza, G., Signal transduction to hypoxia-inducible factor 1. Biochem Pharmacol, 2002. 64(5-6): p. 993-8. 7.Tian, H., S.L. McKnight, and D.W. Russell, Endothelial PAS domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells. Genes Dev, 1997. 11(1): p. 72-82. 8.Ema, M., et al., A novel bHLH-PAS factor with close sequence similarity to hypoxia-inducible factor 1alpha regulates the VEGF expression and is potentially involved in lung and vascular development. Proc Natl Acad Sci U S A, 1997. 94(9): p. 4273-8. 9.Jiang, B.H., et al., Dimerization, DNA binding, and transactivation properties of hypoxia-inducible factor 1. J Biol Chem, 1996. 271(30): p. 17771-8. 10.Brahimi-Horn, C., N. Mazure, and J. Pouyssegur, Signalling via the hypoxia-inducible factor-1alpha requires multiple posttranslational modifications. Cell Signal, 2005. 17(1): p. 1-9. 11.Lando, D., et al., FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor. Genes Dev, 2002. 16(12): p. 1466-71. 12.Tanimoto, K., et al., Mechanism of regulation of the hypoxia-inducible factor-1 alpha by the von Hippel-Lindau tumor suppressor protein. Embo J, 2000. 19(16): p. 4298-309. 13.Arendt, C.S. and M. Hochstrasser, Eukaryotic 20S proteasome catalytic subunit propeptides prevent active site inactivation by N-terminal acetylation and promote particle assembly. Embo J, 1999. 18(13): p. 3575-85. 14.Zhong, H., et al., Overexpression of hypoxia-inducible factor 1alpha in common human cancers and their metastases. Cancer Res, 1999. 59(22): p. 5830-5. 15.Trastour, C., et al., HIF-1alpha and CA IX staining in invasive breast carcinomas: prognosis and treatment outcome. Int J Cancer, 2007. 120(7): p. 1451-8. 16.Hutchison, G.J., et al., Hypoxia-inducible factor 1alpha expression as an intrinsic marker of hypoxia: correlation with tumor oxygen, pimonidazole measurements, and outcome in locally advanced carcinoma of the cervix. Clin Cancer Res, 2004. 10(24): p. 8405-12. 17.Sivridis, E., et al., Association of hypoxia-inducible factors 1alpha and 2alpha with activated angiogenic pathways and prognosis in patients with endometrial carcinoma. Cancer, 2002. 95(5): p. 1055-63. 18.Aebersold, D.M., et al., Expression of hypoxia-inducible factor-1alpha: a novel predictive and prognostic parameter in the radiotherapy of oropharyngeal cancer. Cancer Res, 2001. 61(7): p. 2911-6. 19.Mizukami, Y., et al., Hypoxia-inducible factor-1-independent regulation of vascular endothelial growth factor by hypoxia in colon cancer. Cancer Res, 2004. 64(5): p. 1765-72. 20.Semenza, G.L., Targeting HIF-1 for cancer therapy. Nat Rev Cancer, 2003. 3(10): p. 721-32. 21.Zhang, X.A., et al., Function of the tetraspanin CD151-alpha6beta1 integrin complex during cellular morphogenesis. Mol Biol Cell, 2002. 13(1): p. 1-11. 22.Hasegawa, H., et al., Assignment of SFA-1 (PETA-3), a member of the transmembrane 4 superfamily, to human chromosome 11p15.5 by fluorescence in situ hybridization. Genomics, 1997. 40(1): p. 193-6. 23.Sincock, P.M., et al., PETA-3/CD151, a member of the transmembrane 4 superfamily, is localised to the plasma membrane and endocytic system of endothelial cells, associates with multiple integrins and modulates cell function. J Cell Sci, 1999. 112 ( Pt 6): p. 833-44. 24.Yauch, R.L., et al., Highly stoichiometric, stable, and specific association of integrin alpha3beta1 with CD151 provides a major link to phosphatidylinositol 4-kinase, and may regulate cell migration. Mol Biol Cell, 1998. 9(10): p. 2751-65. 25.Charrin, S., et al., Differential stability of tetraspanin/tetraspanin interactions: role of palmitoylation. FEBS Lett, 2002. 516(1-3): p. 139-44. 26.Dunphy, J.T. and M.E. Linder, Signalling functions of protein palmitoylation. Biochim Biophys Acta, 1998. 1436(1-2): p. 245-61. 27.Hemler, M.E., Specific tetraspanin functions. J Cell Biol, 2001. 155(7): p. 1103-7. 28.Zhang, X.A., A.L. Bontrager, and M.E. Hemler, Transmembrane-4 superfamily proteins associate with activated protein kinase C (PKC) and link PKC to specific beta(1) integrins. J Biol Chem, 2001. 276(27): p. 25005-13. 29.Hasegawa, H., et al., SFA-1/PETA-3 (CD151), a member of the transmembrane 4 superfamily, associates preferentially with alpha 5 beta 1 integrin and regulates adhesion of human T cell leukemia virus type 1-infected T cells to fibronectin. J Immunol, 1998. 161(6): p. 3087-95. 30.Yanez-Mo, M., et al., Regulation of endothelial cell motility by complexes of tetraspan molecules CD81/TAPA-1 and CD151/PETA-3 with alpha3 beta1 integrin localized at endothelial lateral junctions. J Cell Biol, 1998. 141(3): p. 791-804. 31.Testa, J.E., et al., Eukaryotic expression cloning with an antimetastatic monoclonal antibody identifies a tetraspanin (PETA-3/CD151) as an effector of human tumor cell migration and metastasis. Cancer Res, 1999. 59(15): p. 3812-20. 32.Takeda, Y., et al., Deletion of tetraspanin Cd151 results in decreased pathologic angiogenesis in vivo and in vitro. Blood, 2007. 109(4): p. 1524-32. 33.Sterk, L.M., et al., The tetraspan molecule CD151, a novel constituent of hemidesmosomes, associates with the integrin alpha6beta4 and may regulate the spatial organization of hemidesmosomes. J Cell Biol, 2000. 149(4): p. 969-82. 34.Wright, M.D., et al., Characterization of mice lacking the tetraspanin superfamily member CD151. Mol Cell Biol, 2004. 24(13): p. 5978-88. 35.Sachs, N., et al., Kidney failure in mice lacking the tetraspanin CD151. J Cell Biol, 2006. 175(1): p. 33-9. 36.Karamatic Crew, V., et al., CD151, the first member of the tetraspanin (TM4) superfamily detected on erythrocytes, is essential for the correct assembly of human basement membranes in kidney and skin. Blood, 2004. 104(8): p. 2217-23. 37.Cowin, A.J., et al., Wound healing is defective in mice lacking tetraspanin CD151. J Invest Dermatol, 2006. 126(3): p. 680-9. 38.Serru, V., et al., Selective tetraspan-integrin complexes (CD81/alpha4beta1, CD151/alpha3beta1, CD151/alpha6beta1) under conditions disrupting tetraspan interactions. Biochem J, 1999. 340 ( Pt 1): p. 103-11. 39.Kazarov, A.R., et al., An extracellular site on tetraspanin CD151 determines alpha 3 and alpha 6 integrin-dependent cellular morphology. J Cell Biol, 2002. 158(7): p. 1299-309. 40.Chattopadhyay, N., et al., alpha3beta1 integrin-CD151, a component of the cadherin-catenin complex, regulates PTPmu expression and cell-cell adhesion. J Cell Biol, 2003. 163(6): p. 1351-62. 41.Winterwood, N.E., et al., A critical role for tetraspanin CD151 in alpha3beta1 and alpha6beta4 integrin-dependent tumor cell functions on laminin-5. Mol Biol Cell, 2006. 17(6): p. 2707-21. 42.Stipp, C.S. and M.E. Hemler, Transmembrane-4-superfamily proteins CD151 and CD81 associate with alpha 3 beta 1 integrin, and selectively contribute to alpha 3 beta 1-dependent neurite outgrowth. J Cell Sci, 2000. 113 ( Pt 11): p. 1871-82. 43.Tokuhara, T., et al., Clinical significance of CD151 gene expression in non-small cell lung cancer. Clin Cancer Res, 2001. 7(12): p. 4109-14. 44.Hashida, H., et al., Clinical significance of transmembrane 4 superfamily in colon cancer. Br J Cancer, 2003. 89(1): p. 158-67. 45.Ang, J., et al., CD151 protein expression predicts the clinical outcome of low-grade primary prostate cancer better than histologic grading: a new prognostic indicator? Cancer Epidemiol Biomarkers Prev, 2004. 13(11 Pt 1): p. 1717-21. 46.Gesierich, S., et al., Colocalization of the tetraspanins, CO-029 and CD151, with integrins in human pancreatic adenocarcinoma: impact on cell motility. Clin Cancer Res, 2005. 11(8): p. 2840-52. 47.Kohno, M., et al., CD151 enhances cell motility and metastasis of cancer cells in the presence of focal adhesion kinase. Int J Cancer, 2002. 97(3): p. 336-43. 48.Chometon, G., et al., Dissociation of the complex between CD151 and laminin-binding integrins permits migration of epithelial cells. Exp Cell Res, 2006. 312(7): p. 983-95. 49.Lu, H., et al., Reversible inactivation of HIF-1 prolyl hydroxylases allows cell metabolism to control basal HIF-1. J Biol Chem, 2005. 280(51): p. 41928-39. 50.Metzen, E., et al., Nitric oxide impairs normoxic degradation of HIF-1alpha by inhibition of prolyl hydroxylases. Mol Biol Cell, 2003. 14(8): p. 3470-81. 51.Wouters, B.G. and J.M. Brown, Cells at intermediate oxygen levels can be more important than the "hypoxic fraction" in determining tumor response to fractionated radiotherapy. Radiat Res, 1997. 147(5): p. 541-50. 52.Teicher, B.A., J.S. Lazo, and A.C. Sartorelli, Classification of antineoplastic agents by their selective toxicities toward oxygenated and hypoxic tumor cells. Cancer Res, 1981. 41(1): p. 73-81. 53.Sierra, A., Metastases and their microenvironments: linking pathogenesis and therapy. Drug Resist Updat, 2005. 8(4): p. 247-57. 54.Erler, J.T., et al., Lysyl oxidase is essential for hypoxia-induced metastasis. Nature, 2006. 440(7088): p. 1222-6. 55.Kagan, H.M. and W. Li, Lysyl oxidase: properties, specificity, and biological roles inside and outside of the cell. J Cell Biochem, 2003. 88(4): p. 660-72. 56.Erler, J.T. and A.J. Giaccia, Lysyl oxidase mediates hypoxic control of metastasis. Cancer Res, 2006. 66(21): p. 10238-41. 57.Sogawa, K., et al., Possible function of Ah receptor nuclear translocator (Arnt) homodimer in transcriptional regulation. Proc Natl Acad Sci U S A, 1995. 92(6): p. 1936-40. 58.Chapman-Smith, A., J.K. Lutwyche, and M.L. Whitelaw, Contribution of the Per/Arnt/Sim (PAS) domains to DNA binding by the basic helix-loop-helix PAS transcriptional regulators. J Biol Chem, 2004. 279(7): p. 5353-62. 59.Swanson, H.I., W.K. Chan, and C.A. Bradfield, DNA binding specificities and pairing rules of the Ah receptor, ARNT, and SIM proteins. J Biol Chem, 1995. 270(44): p. 26292-302. 60.Wang, G.L., et al., Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A, 1995. 92(12): p. 5510-4. 61.Wood, S.M., et al., The role of the aryl hydrocarbon receptor nuclear translocator (ARNT) in hypoxic induction of gene expression. Studies in ARNT-deficient cells. J Biol Chem, 1996. 271(25): p. 15117-23. 62.Chen, K.F., et al., Transcriptional repression of human cad gene by hypoxia inducible factor-1alpha. Nucleic Acids Res, 2005. 33(16): p. 5190-8. 63.Pal, S., et al., mSin3A/histone deacetylase 2- and PRMT5-containing Brg1 complex is involved in transcriptional repression of the Myc target gene cad. Mol Cell Biol, 2003. 23(21): p. 7475-87.
|