1.沈良珍,「高速公路事故發生對車流衝擊之即時預測」,台灣大學土木工程研究所,碩士論文,民國88 年6 月。2.李穎,「類神經網路應用於國道客運班車旅行時間預測模式之研究」,成功大學交通管理研究所,碩士論文,民國91 年6 月。3.吳金杰,「融合偵測器與探測車資料預測高速公路旅行時間之研究」,中央大學土木工程研究所,碩士論文,民國93 年6 月。4.吳佳峰,「有GPS 資訊提供下之車輛旅行時間預估模式之研究」,交通大學運輸工程與管理研究所,碩士論文,民國90 年6 月。5.周文賢著,多變量統計分析SAS/STAT使用方法,智勝文化事業有限公司,民國91 年。
6.林士傑,「高速公路旅行時間預測模式之研究-類神經網路之應用」,成功大學交通管理研究所,碩士論文,民國90 年6 月。7.林良泰、張修榕、黃宏仁,「以衝擊波分析道路施工影響之研究」,第五屆運輸安全研討會,民國87 年11 月。8.林鄉鎮,「高速公路小汽車駕駛者跟車行為之研究-以虛擬實境(VR)技術所構建之駕駛模擬系統為工具」,成功大學交通管理科學系,博士論文,民國86 年。9.高速公路局,高速公路統計年報,民國94 年。
10.張學孔、吳英立、廖兆奎,「公車專用道公車旅行時間與延滯特性之分析」,運輸學刊,第9 卷,第1 期,第23-40 頁,民國85 年3 月。11.張修榕,「高速公路旅行時間之研究」,中央大學土木工程研究所,碩士論文,民國90 年6 月。
12.陳順宇,多變量分析,華泰書局,民國87 年。
13.陳順宇,廻歸分析,華泰書局,民國86 年。
14.曾莉莉,「高速公路動態路段旅行時間函數之研究」,中央大學土木工程學研究所,碩士論文,民國84 年7 月。15.黃守琮,「運用探針車與偵測器資料融合估計車輛旅行時間之研究」,淡江大學運輸管理學系,碩士論文,民國93 年6 月。16.黃志偉,「高速公路肇事處理時間預測之研究-應用類神經網路分析」,中央大學土木工程研究所,碩士論文,民國91 年6 月。17.葉怡成,應用類神經網路,儒林圖書公司,民國89 年。
18.鄭志平,「應用衝擊波理論在高速公路封閉部分車道時旅行時間推算之研究」,成功大學交通管理研究所,碩士論文,民國82 年7 月。19.魏健宏、林士傑、李穎,「高速公路客運車輛旅行時間預測之實證評析」,運輸計劃季刊,第32 卷,第4 期,第651-680 頁,民國92 年12 月。20.魏健宏、汪志忠、黃文鑑、鄭子玔,「台北市公車專用道旅行時間預測之初步研究」,TAIWAN’S International Conference and Exhibition on ITS 2000,民國89 年5 月。
21.魏健宏、陳奕志,「類神經網路模式在國內交通運輸研究之成果評析」,運輸計劃季刊,第30 卷,第2 期,第323-348 頁,民國90 年。22.Anderson, J. A., An introduction to neural networks, MIT Press, Cambridge, 1995.
23.Antony, R. T., Principle of data fusion automation, Artech House, Boston, 1995.
24.Coifman, B., “Vehicle Re-Identification and Travel Time Measurement in Real-Time on Freeways Using Existing Loop Detector Infrastructure,” Transportation Research Record, No. 1643, pp. 181-191, 1998.
25.Chen, M. and Chien, S. I. J. “Dynamic Freeway Travel Time Prediction Using Probe Vehicle Data: Link-based vs. Path-based,” Transportation Research Record, No. 1768, pp. 157-161, 2001.
26.Chen, T. Y., Lin, C. T. and Fang, M. W., “Application of Grey Relational Analysis to Evaluate Shopping Mall Projects in Taiwan,” The Journal of Grey Systems, Vol. 13, No. 4, pp. 327-338, 2001.
27.Choi, K. and Han, W., “KORTIC: An Implementation of a Korea Traffic Information Center over Metropolitan Seoul Region,” 4th ITS World Congress Proceedings, Berlin, Germany, 1997.
28.Dai, X. and Khorram, S., “Data fusion using artificial neural networks: a case study on multitemporal change analysis,” Computers, Environment and Urban Systems, Vol. 23, No. 1, pp. 19-31, 1999.
29.Dailey, D. J., Harn, P. and Lin, P. J., ITS DATA FUSION, Washington State Department of Transportation, 1996.
30.Hall, D. L., Mathematical techniques in Multisensor data fusion, Artech House, Boston, 1992.
31.Hellinga, B. and Fu, L., “Assessing Expected Accuracy of Probe Vehicle Travel Time Reports,” Journal of Transportation Engineering, Vol. 125, No. 6, pp. 524-530, 1999.
32.Lo, H. K., Luo, X. W. and Siu, B. W. Y., “Degradable transport network: Travel time budget of travelers with heterogeneous risk aversion,” Transportation Research, Part B, Vol. 40, No. 9, pp. 792-806, 2006.
33.Ivan, J. N. et al., “Real-Time Data Fusion for Arterial Street Incident Detection Using Neural Networks,” Transportation Research Record, No. 1497, pp. 27-35, 1995.
34.Ivan, J. N., “Neural Network Representations for Arterial Street Incident Detection Data Fusion,” Transportation Research, Part C, Vol. 5, No. 34, pp. 245-254, 1997.
35.D’Angelo, M. P., Al-Deek, H. M. and Wang, M. C., “Travel-time Prediction for Freeway Corridors,” Transportation Research Record, No. 1676, pp. 184-191, 1999.
36.Messer, C. J. , Dudek, C. L. and Friebele, J. D., “Method For Predicting Travel Time and other Operational Measures in Real Time During Freeway Incident Conditions,” HRR461, pp. 1-16, 1973.
37.Michalewicz, Z., Genetic algorithms + data structures = evolution programs, Springer, Berlin, 1992.
38.Nelson, P. C., Application of neural networks to data fusion: a feasibility study, Transportation research board, 1996.
39.Ricardo, G. R. , Maria, L. L. G. , Alejandro, N. A. and Doroteo, V. R., “A continuous whole-link travel time model with occupancy constraint,” European Journal of Operational Research, Vol. 175, No. 3, pp. 1455-1471, 2006.
40.Saporta, G., “Data fusion and data grafting,” Computational statistics & data analysis, Vol. 38, No. 4, pp. 465-473, 2002.
41.See, L. and Abrahart, R. J., “Multi-model data fusion for hydrological forecasting,” Computer geosciences, Vol. 27, No. 8, pp. 987-994, 2001.
42.Sohn, S. Y. and Lee, S. H., “Data fusion, ensemble and clustering to improve the classication accuracy for the severity of road traffic accidents in Korea,” Safety Science, Vol. 41, No. 1, pp. 1-14, 2003.
43.Wei, C. H. and Lee, Y., “Travel time forecasting model development using data fusion,” Proceedings of the sixth Asia Pacific-ITS Forum (CD-ROM), Taipei, Taiwan, 2003.
44.Yang, Z. S., Jian, F. and Bao, L., “Study on the Data Fusion Technology in Advanced Public Transportation System,” 9th ITS World Congress Proceedings, Chicago, USA, 2002.
45.Zurada, J. M., Introduction to Artificial Neural Systems, PWS publishing company, 1995.