跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/02/19 09:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:廖政龍
研究生(外文):Cheng-Lung Liao
論文名稱:射頻磁控濺鍍LiNixCo1-xO2(x=0、0.5)陰極薄膜及其電化學性質
論文名稱(外文):RF-Sputtered LiNixCo1-xO2 (x=0、0.5) Cathode Films and the Electrochemical Properties
指導教授:方冠榮
指導教授(外文):Kuan-Zong Fung
學位類別:博士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:95
語文別:中文
論文頁數:127
中文關鍵詞:陰極薄膜射頻磁控濺鍍LiNiCoO2LiCoO2鋰離子電池
外文關鍵詞:cathode filmLi-ion batteryRF sputterlithium cobalt nickel oxidelithium cobalt oxide
相關次數:
  • 被引用被引用:0
  • 點閱點閱:319
  • 評分評分:
  • 下載下載:55
  • 收藏至我的研究室書目清單書目收藏:0
本研究採用射頻磁控濺鍍法(RF magnetron sputtering)成長LiNixCo1-xO2 (x=0~1.0)薄膜。全文可分為三個部分,第一部份探討探討改變射頻磁控濺鍍的製程參數(工作壓力、氧氣分率及射頻功率)對HT-LiCoO2薄膜成長速率及薄膜組成的影響,並分析HT-LiCoO2初鍍膜之結構。第二部分以成長LiNixCo1-xO2 (x=0.5)薄膜為主,分析LiNixCo1-xO2 (x=0.5)初鍍膜之組成及結構。第三部分探討熱處理對HT-LiCoO2薄膜及LiNixCo1-xO2 (x=0.5)薄膜其結晶性與電化學性質之影響,並比較HT-LiCoO2薄膜與鎳添加的LiNixCo1-xO2 (x=0.5)薄膜其電化學性質之差異。
結果顯示,隨著工作壓力降低、氧氣分率降低及射頻功率提高,HT-LiCoO2薄膜成長速率呈現明顯的增加,最高可達14.77 nm/min,然而過高的射頻功率雖可提升薄膜成長速率卻也導致過高的壓應力殘留造成薄膜剝落。HT-LiCoO2薄膜中Li/Co之比例則隨著工作壓力降低、氧氣分率降低及射頻功率提高呈現先升後降的趨勢。不同濺鍍條件所製備的HT-LiCoO2初鍍膜及經過熱處理的薄膜皆呈現具(104)面擇優取向成長的奈米晶薄膜。熱處理製程對薄膜的結晶性與組成有明顯的影響。循環伏安分析顯示出經過熱處理的薄膜具有鋰離子嵌入及嵌出的電化學活性。在10 μA•cm-2的充放電速率下,經過500oC、600oC及700oC熱處理後的薄膜其第一次放電電容量分別為41.77、50.62及61.16 μAh•μm-1•cm-2;而其第五十次放電容量則分別為第一次的58.1%、72.2%及74.9%。熱處理溫度亦影響薄膜中鋰離子的擴散速率,熱處理溫度越高,薄膜的結晶性越好,鋰離子於薄膜電極中的擴散速率隨著熱處理溫度提高而提升,鋰離子擴散速率較高的薄膜在高放電速率測試下能有較低的電容量損失。

為了降低成本的考量,以鎳添加進入HT-LiCoO2中並利用射頻磁控濺鍍法製備LiNixCo1-xO2 (x=0~1.0)薄膜。在基板溫度為250oC下所製備的LiNixCo1-xO2 (x=0~1.0)初鍍膜已具R-3m對稱結構,且呈現以(104)面擇優取向成長,其結晶性隨著熱處理溫度的提高而提升。LiNixCo1-xO2 (x=0.5)初鍍膜的成分為Li1.29Ni0.49Co0.51O2,薄膜中的鋰含量隨著熱處理溫度越高而呈現略微缺乏的情形。熱處理後的LiNixCo1-xO2 (x=0.5)薄膜具有鋰離子嵌入及嵌出的電化學活性,其放電電容量隨著熱處理溫度提高而上升,在10 μA•cm-2的充放電速率下,LiNixCo1-xO2 (x=0.5)薄膜經過500oC、600oC及700oC熱處理後的第一次放電電容量分別為42.95、51.20及60.07 μAh•μm-1•cm-2;而其第五十次放電容量則分別皆為第一次的60.6、65.4及68.6%左右。熱處理溫度亦影響薄膜的鋰離子擴散速率,鋰離子於LiNixCo1-xO2 (x=0.5)薄膜電極中的擴散速率隨著熱處理溫度升高而提高,鋰離子擴散速率較高的薄膜在高放電速率測試下能有較低的電容量損失。於不同放電速率(10、20及50 μA•cm-2)下,LiNixCo1-xO2 (x=0.5)薄膜的放電電容量皆接近於相同放電條件下的HT-LiCoO2薄膜,針對降低材料合成成本之考量,鎳添加之LiNixCo1-xO2 (x=0.5)薄膜實具有相當的經濟效益以取代HT-LiCoO2薄膜。
In this work, LiNixCo1-xO2 (x=0~1.0) films were deposited by RF magnetron sputtering. First, the effect of various sputtering parameters (such as working pressure, O2 fraction, and rf power) on the film growth rate and film composition of HT-LiCoO2 deposited on Pt-coated silicon were investigated. The effect of annealing temperature and annealing time on crystallinity and electrochemical properties of HT-LiCoO2 films were also discussed. Second, LiNixCo1-xO2 (x=0.5) films were deposited on Pt-coated silicon. The structure and composition were investigated. Consequently, the effect of annealing process on crystallinity and electrochemical properties of LiNixCo1-xO2 (x=0.5) films were illustrated.
The results indicated that film growth rate of HT-LiCoO2 was obviously enhanced by the decreasing pressure, decreasing O2 fraction, and increasing RF power. However, it also resulted in high compress stress and film peeling. In addition, the Li/Co ratio of HT-LiCoO2 film initially increased with the inceeasing pressure, increasing O2 fraction, and increasing RF power but finally decreased at higher pressure, O2 fraction, and RF power. The as-deposited films and annealed films show crystalline HT-LiCoO2 single phase with (104) preferred orientation under various sputtering parameters. From ICP-MS results, it was observed that the sputtering parameters and annealing process affected the compositions of the films significatly. The annealing process enhanced the crystallinity of HT-LiCoO2 films. The CV curve shows three well-defined redox peaks. The LiCoO2 films deposited by RF sputtering were electrochemically active. The 1st discharge capacity of 500oC, 600oC, and 700oC-annealed LiCoO2 thin films was about 41.77, 50.62, and 61.16 �嫀h�泌m-2���慆-1, respectively. The 50th discharge capacity remained 58.1%, 72.2%, and 74.9% of the 1st discharge capacity for LiCoO2 films annealed at 500oC, 600oC, and 700oC, respectively. Films showed difference in crystallinity and resulted in the variation of Li+ diffusion coefficient that was measured and estimated by slow-scan-rate cyclic voltammetry (SSCV). The charge/discharge tests indicated that films that exhibit higher DLi+ showed better rate capability.

LiNixCo1-xO2 (x=0~1.0) thin-film cathodes were grown on Pt-coated silicon substrate by RF sputtering. From XRD, TEM, and Raman spectra analyses, the structure of the 250oC as-deposited LiNixCo1-xO2 (x=0~1.0) films exhibited layered (R-3m symmetry) crystalline structure with (104) out-of-plane texture. From XRD and Raman spectra analyses, the crystallinity of the as-deposited films was enhanced by postannealing due to the rearrangement of atoms during the annealing process. The stoichiometry of LiNixCo1-xO2 (x=0.5) film was Li1.29Ni0.49Co0.51O2, the content of Li in film decreased with the increasing annealing temperature. The Li+ diffusion coefficient and discharge capacity of the LiNixCo1-xO2 (x=0.5) thin-film cathode were direct proportion to the annealing temperature. The 1st discharge capacities of 500, 600, and 700oC-annealed films were 42.95, 51.20, and 60.07 μAh•μm-1•cm-2, respectively. The 50th discharge capacity remained 60.6, 65.4, and 68.6% of the initial discharge capacity. Annealed films showed difference in crystallinity and resulted in the variation of Li+ diffusion coefficient that was measured and estimated by slow-scan-rate cyclic voltammetry (SSCV). The charge/discharge tests indicated that films exhibit higher DLi+ showed better rate capability. The electrochemical properties of LiNixCo1-xO2 (x=0.5) films are close to that of HT-LiCoO2 films under the same discharge condition. Based on the motive for decreasing the cost of material synthesis, LiNixCo1-xO2 (x=0.5) exhibits practical interest to substitute for commercial cathode material- HT-LiCoO2.
中文摘要-----------------------------------------------------I
英文摘要---------------------------------------------------III
誌謝--------------------------------------------------------VI
總目錄-----------------------------------------------------VII
表目錄-------------------------------------------------------X
圖目錄------------------------------------------------------XI
重要名詞英漢對照及符號說明---------------------------------XVI

第一章 緒論-------------------------------------------------1
1-1 能源工業之現況及發展趨勢--------------------------------1
1-2 鋰離子電池之發展沿革與薄膜電池--------------------------1
1-3 研究動機與目的------------------------------------------6

第二章 理論基礎與文獻回顧-----------------------------------8
2-1 鋰離子二次電池之工作原理--------------------------------8
2-2 鋰離子二次電池之陰極材料-------------------------------10
2-3 濺鍍理論-----------------------------------------------15
2-4 低掃瞄速率循環伏安法量測鋰離子擴散速率之理論基礎-------17

第三章 實驗步驟與方法--------------------------------------23
3-1 實驗流程 ----------------------------------------------23
3-2 系統設計 ----------------------------------------------24
3-3 原料選擇-----------------------------------------------26
3-4 鍍膜參數及步驟-----------------------------------------27
3-5 鍍膜結構分析 ------------------------------------------28
3-6 電池組裝-----------------------------------------------29
3-7 電化學性質測試-----------------------------------------31

第四章 LiCoO2薄膜之成長特性--------------------------------32
4-1 濺鍍參數對LiCoO2薄膜其成長速率及組成之影響 ------------32
4-1-1 射頻功率對成長速率之影響 ----------------------------32
4-1-2 氧氣分率對成長速率之影響---------------------------37
4-1-3 工作壓力對成長速率之影響 --------------------------39
4-1-4 濺鍍參數對LiCoO2薄膜組成之影響-----------------------41
4-2 LiCoO2初鍍膜之晶體結構---------------------------------43
4-3 熱處理對LiCoO2薄膜其結構及組成之影響 ------------------50
4-3-1 熱處理溫度之影響-----------------------------------50
4-3-2 熱處理時間之影響 ----------------------------------57
4-4 小結 --------------------------------------------------61

第五章 鎳添加之LiCoO2薄膜----------------------------------63
5-1 鎳添加對LiCoO2結構之影響-------------------------------63
5-2 LiNixCo1-xO2 (x=0.5)初鍍膜之晶體結構-------------------68
5-3 熱處理對LiNixCo1-xO2 (x=0.5)薄膜其結構及組成之影響 ----72
5-4 小結 --------------------------------------------------77

第六章 LiNixCo1-xO2 (x=0、0.5)薄膜之電化學性質 ------------78
6-1 熱處理對HT-LiCoO2薄膜其電化學性質之影響----------------78
6-1-1 循環伏安分析 --------------------------------------78
6-1-2 熱處理對鋰離子擴散速率之影響 ----------------------81
6-1-3 熱處理對充放電性質之影響---------------------------86
6-1-3-1 熱處理溫度的影響 ----------------------------------86
6-1-3-2 熱處理時間之影響-----------------------------------90
6-1-4 放電速率之影響---------------------------------------92
6-2 熱處理對LiNixCo1-xO2 (x=0.5)薄膜其電化學性質之影響------95
6-2-1 循環伏安分析---------------------------------------95
6-2-2 熱處理對鋰離子擴散速率之影響-----------------------97
6-2-3 熱處理溫度對充放電性質之影響 ----------------------97
6-2-4 放電速率之影響-------------------------------------100
6-3 LiNixCo1-xO2 (x=0.5)薄膜與HT-LiCoO2薄膜之性質比較-----104
6-4 小結--------------------------------------------------107

第七章 總結論---------------------------------------------109

參考文獻---------------------------------------------------111
自述-------------------------------------------------------123
個人著作---------------------------------------------------124
1.J.-M. Tarascon and M. A. Armand, “Issues and challenges facing rechargeable lithium batteries”, Nature, 414, p.359 (2001)
2.J. Hajek, French Patent, 8, 10 (1949)
3.M. S. Whittingham, “Electrochemical energy storage and intercalation chemistry”, Science, 192, p.1226 (1976).
4.M. S. Whittingham, Chalcogenide battery, US Patent 4009052
5.“Battery Recall Update”, Adv. Batt. Technol., 25, p.4 (1989)
6.R. Kanno, Y. Takeda, T. Ichikawa, K. Nakanishi and O. Yamamoto, “Carbon as negative Electrodes in Lithium Secondary Cells”, J. Power Sources, 26, p.535 (1989)
7.J. O. Besenhard, M. Hess and P. Komeda, “Dimensionally stable Li-alloy electrodes for secondary batteries”, Solid State Ionics, 40-41, p.525 (1990)
8.M. Lazzari and B. Scrosati, “A Cyclable Lithium Organic Electrolyte Cell Based on Two Intercalation Electrodes”, J. Electrochem. Soc., 127, p.733 (1980)
9.T. Nagaura, and K. Tozawa, “Lithium ion rechargeable battery”, Prog. Batteries Solar Cells, 9, p.209 (1990)
10.P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, and J.-M. Tarascon, “Nano-sized transition metal oxides as negative electrode material for lithium-ion batteries”, Nature, 407, p. 496 (2000)
11.C. L. Liao, Y. H. Lee, S. T. Chang and K. Z. Fung, “Structural Characterization and Electrochemical Properties of RF-Sputtered Nanocrystalline Co3O4 Thin-Film Anode”, J. Power Sources, in press
12.Y. H. Lee, I. C. Leu, S. T. Chang, C. L. Liao, K. Z. Fung, “The electrochemical capacities and cycle retention of electrochemically deposited Cu2O thin film toward lithium”, Electrochimica Acta, 50, p.551 (2004)
13.Y. H. Lee, I. C. Leu, C. L. Liao, S. T. Chang, M. T. Wu, J. H. Yen, and K. Z. Fung, “Fabrication and Characterization of Cu2O Nanorod Arrays and Their Electrochemical Performance in Li-Ion Batteries”, Electrochemical and Solid-State Letters, 9, p.A207 (2006)
14.E. Zhecheva, R. Stoyanova, G. Tyuliev, K. Tenchev, M. Mladenov, S. Vassilev, “Surface interaction of LiNi0.8Co0.2O2 cathodes with MgO”, Solid State Sciences, 5, p.711 (2003)
15.H. Zhao, L. Gao, W. Qiu, X. Zhang, “Improvement of electrochemical stability of LiCoO2 cathode by a nano-crystalline coating”, Journal of Power S ources, 132, p.195, (2004)
16.H. Liu, Z. Zhang, Z. Gong, Y. Yang, “A comparative study of LiNi0.8Co0.2O2 cathode materials modifiedby lattice-doping and surface-coating”, Solid State Ionics, 166, p.317 (2004)
17.L. J. Fu, H. Liu, C. Li, Y. P. Wu, E. Rahm, R. Holze, H. Q. Wu, “Surface modifications of electrode materials for lithium ion batteries”, Solid State Sciences, 8, p.113 (2006)
18.K. Kanehori, K. Matsumoto, K. Miyauchi; T. Kudo, “Thin film solid electrolyte and its application to secondary lithium cell”, Solid State Ionics, 9-10, p 1445 (1983)
19.J. B. Bates, D. R. Gruzalski, C. F. Luck, “ Rechargeable solid state lithium microbatteries”, IEEE Micro Electro Mechanical Systems, 7-10, p.82 (1993)
20.R. B. Goldner, S. Slaven, T. Y. Liu, T. E. Haas, F. O. Arntz, P. Zerigian, “Properties of a carbon negative electrode in completely inorganic thin film Li-ion batteries with a LiCoO2 positive electrode”, Materials Research Society Symposium-Proceedings, v.369, Solid State Ionics IV, p.137 (1995)
21.J. B. Bates and N. J. Dudney , “Thin Film Rechargeable Lithium Batteries for Implantable Devices” , American Society for Artificial Internal Organs Inc., 43 , p.M644 (1997)
22.F. Orsini et al., “In situ SEM study of the interfaces in plastic lithium cells”, J. Power Sources, 81–82, p.918 (1999)
23.許雪萍, “方形二次鋰離子電池材料介紹”, 工業材料, 130, p.104 (1997)
24.J. C. Hunter, “Preparation of a new crystal form of manganese dioxide: ��-MnO2.”, J. Solid State Chem., 39, p.142 (1981)
25.林美雲譯, “使用LiMn2O4系正極材料的鋰離子二次電池”, 工業材料, 145, p.116 (1999)
26.洪逸明, “鋰離子二次電池陰極材料LiMn2O4±δ之合成及其電化學性質”, 國立成功大學材料科學及工程研究所博士論文, pp.16-24 (2001)
27.K. Mizushima, P. C. Jones, P. J. Wiseman and J. B. Goodenough, “LixCoO2 (0<=x<=1): a new cathode material for batteries of high energy density”, Solid State Ionics, 3/4, p 171 (1980)
28.R. J. Gummow, M. M. Thackery, W. I. F. David and S. Won, “LixCoO2 (0<=x<=1): a new cathode material for batteries of high energy density”, Mat. Res. Bull., 15, p.783 (1980)
29.E. Rossen, J.N. Reimers, and J.R. Dahn, “Synthesis and electrochemistry of spinel LT-LiCoO2”, Solid State Ionics, 62, p.53 (1993)
30.B. Garcia, J. Farcy, J. P. Pereira-Ramos, J. Perichon, N. Baffier, “Low-temperature cobalt oxide as rechargeable cathodic material for lithium batteries”, J. Power Sources, 54, p.373 (1995)
31.T. Ohzuku, H. Konori, K. Sawai, and T. Hirai, “Natural graphite as an anode for rechargeable nonaqueous cells”, Chem. Express, 5, p.733 (1990)
32.R. J. Gummow, M. M. Thackeray, W. I. F. David and S. Hull, “Structure and electrochemistry of lithium cobalt oxide synthesized at 400℃” Mat. Res. Bull., 27, p.327 (1992)
33.M. Yoshio, Y. Todorov, K. Yamato, H. Noguchi, J. I. Itoh, M. Okada and T. Mouri, “Preparation of LiyNi1-xMnxO2 as a cathode for lithium-ion battery”, J. Power Sources, 74, p.46 (1998)
34.C. Delmas, Mater. Sci. Eng., B3, p.97 (1980)
35.L. P. L. M. Rabou and A. Roskam, “Cycle-life improvement of Li/LiCoO2 batteries”, J. Power Sources 54, p.316 (1995)
36.林世彬, “鋰離子二次電池陰極材料LiNiO2之合成及其性質”, 國立成功大學材料科學及工程研究所博士論文
37.C. Delmas, J. P. Peres, A. Rougier, A. Demourgues, F. Weill, A. Chadwick, M. Broussely, F. Perton, Ph. Biensan, and P. Willmann, “On the behavior of the LixNiO2 system: an electrochemical and structure overview”, J. Power Sources, 68, p.120 (1997)
38.B. Banov, J. Bourilkov, M. Mladenov, “Cobalt stabilized layered lithium-nickel oxides, cathodes in lithium rechargeable cells”, J. Power Sources, 54, p.268 (1995)
39.C.-C. Chang, N. Scarr, P. N. Kumta, “Synthesis and electrochemical characterization of LiMO2 (M=Ni, Ni0.75Co0.25) for rechargeable lithium ion batteries”, Solid State Ionics, 112, p.329 (1998)
40.M.-J. Wang, A. Navrotsky, “Enthalpy of formation of LiNiO2, LiCoO2 and their solid solution, LiNi1-xCoxO2”, Solid State Ionics, 166, p.167 (2004)
41.B. J. Hwang, R. Santhanam, C. H. Chen, “Effect of synthesis conditions on electrochemical properties of LiNi1-yCoyO2 cathode for lithium rechargeable batteries”, J. Power Sources, 114, p.244 (2003)
42.G. T.-K. Fey, R. F. Shiu, V. Subramanian, C. L. Chen, “The effect of varying the acid to metal ion ratio R on the structural, thermal, and electrochemical properties of sol–gel derived lithium nickel cobalt oxides”, Solid State Ionics, 148, p.291 (2002)
43.G. T.-K. Fey, R. F. Shiu, T. Prem Kumar, C. L. Chen, “Preparation and characterization of lithium nickel cobalt oxide powders via a wet chemistry processing”, Materials Science and Engineering B, 100, p.234 (2003)
44.D. S. Richerby and A. Matthews, Advanced Surface Coatings: A Handbook of Surface Engineering, Chapaman and Hall, New York, pp.92-100 (1991)
45.S. M. Rossnagel et al., “Handbook of Plasma Processing Technology”, Noyes Publications, Park Ridge, New Jersey, U.S.A. (1982)
46.B. Chapman, ”Glow Discharge Processes”, John Wiley and Sons, New York (1980)
47.G. Wei, T. E. Haas, and R. B. Goldner, “Thin films of lithium cobalt oxide”, Solid State Ionics, 58, p.115 (1992)
48.J. F. Whitacre, W. C. West, B. V. Ratnakumar, “The influence of target history and deposition geometry on RF magnetron sputtered LiCoO2 thin films”, J. Power Sources, 103, p.134 (2001)
49.H. Benqlilou-Moudden, G. londiaux, P. Vinatier, A. Levasseur, “Amorphous lithium cobalt and nickel oxides thin films: preparation and characterization by RBS and PIGE”, Thin Solid Films, 333, p. 16 (1998)
50.P. Fragnaud, T. Brousse, D. M. Schleich, “Characterization of sprayed and sputter deposited LiCoO2 thin films for rechargeable microbatteries”, J. Power Sources, 63, p.187 (1996)
51.C. N. Polo Da Fonseca, J. Davalos, M. Kleinke, M. C. A. Fantini, A. Gorenstein, “ Studies of LiCoOx thin film cathodes produced by r.f. sputtering”, J. Power Sources, 81, p.575 (1999)
52.B. Wang, J. B. Bates, F. X. Hart, B. C. Sales, R. A. Zuhr, J. D. Robertson, “Characterization of thin-film rechargeable lithium batteries with lithium cobalt oxide cathodes”, J. Electrochem. Soc., 143, p.3203 (1996)
53.J. F. Whitacre, W. C. West, E. Brandon, B. V. Ratnakumar, “Crystallographically oriented thin-film nanocrystallineCathode layers prepared without exceeding 300°C”, J. Electrochem. Soc. 148, p.A1078 (2001)
54.Y.-S. Kang, H. Lee, Y.-M. Kang, Paul S. Lee, and J.-Y. Lee, “Crystallization of lithium cobalt oxide films by radio-frequency plasma irradiation”, J. of Applied Physics, 90, p.5940 (2001)
55.Y. I. Jang, B. J. Neudecker, and N. J. Dudney, “Lithium diffusion in LixCoO2 (0.45�� x ��0.7) intercalation cathodes”, Electrochem. Solid-State Lett., 4, p.A74 (2001)
56.P. J. Bouwman, B. A. Boukamp, H. J. M. Bouwmeester, H. J. Wondergem, and P. H. L. Notten, “Structural analysis of submicrometer LiCoO2 films”, J. Electrochem. Society, 148, p.A311 (2001)
57.J. C. Dupin, D. Gonbeau, H. Benqlilou-Moudden, Ph. Vinatier, A. Levasseur, “XPS analysis of new lithium cobalt oxide thin-films before and after lithium deintercalation”, Thin Solid Films, 384, p.23 (2001)
58.H.-C. Shin, S.-I. Pyun, “Investigation of lithium transport through lithium cobalt dioxide thin film sputter-deposited by analysis of cyclic voltammogram”, Electrochimica Acta, 46, p.2477 (2001)
59.J.-K. Lee, S.-J. Lee, H.-K. Baik, H.-Y. Lee, S.-W. Jang, and S.-M. Lee, “Substrate effect on the microstructure and electrochemical properties in the deposition of a thin film LiCoO2 electrode”, Electrochemical and Solid-State Letters, 2, p.512 (1999)
60.張榮芳, “反應磁控濺鍍透明導電ZnO:Al膜之成長特性及性質研究”, 國立成功大學材料科學及工程學系博士論文, 中華民國九十年九月, p. 35
61.J. A. Thornton, “Stress-related effects in thin films”, Thin Solid Film, 171, p.5 (1989)
62.D. S. Rickerby, “Internal stress and adherence of titanium nitride coatings”, J. Vac. Sci. Technol., A4, p.2809 (1986)
63.R. Messier, “Structure-composition variation in rf-sputtered films of Ge caused by process parameter changes”, J. Vac. Sci. Technol., 13, p.1060 (1976)
64.F. M. D. Huerle and J. M. E. Harper, “Note on the origin of intrinsic stresses in films deposited via evaporation and sputtering”, Thin Solid Film, 81, p.171 (1989)
65.R. J. Gummow, D. C. Liles, and M. M. Thackeray, “Spinel versus layered structures for lithium cobalt oxide synthesized at 400°C”, Mater. Res. Bull., 28, p.235 (1993)
66.R. J. Gummow, D. C. Liles, M. M. Thackeray, and W. I. F. David, “Reinvestigation of the structures of lithium-cobalt-oxides with neutron-diffraction data”, Mater. Res. Bull., 28, p.1177 (1993)
67.B. Garcia, J. Farcy, J. P. Pereira-Ramos, and N. Baffier, “Electrochemical properties of low temperature crystallized LiCoO2”, J. Electrochem. Soc., 144, p.1179 (1997)
68.R. J. Gummow, M. M. Thackeray, W. I. F. David, and S. Hull, “Structure and electrochemistry of lithium cobalt oxide synthesised at 400oC”, Mater. Res. Bull., 27, p.327 (1992)
69.R. B. Goldner, P. Zerigian, T. Y. Liu, N. Clay, F. Vereda, T. E. Haas, “Ambient temperature synthesis of polycrystalline thin films of lithium cobalt oxide with controlled crystallites’ orientations”, Solid State Ionics, 548, p.131 (1999)
70.B. D. Cullity, “Elements of X-Ray Diffraction”, Addison Wesley, (1977)
71.P. Sigmund, Phys. Rev., 184, p.383 (1969)
72.J. B. Bates, N. J. Dudney, B. J. Neudecker, F. X. Hart, H. P. Jun, and S. A. Hackney, “Preferred orientation of polycrystalline LiCoO2 films”, J. Electrochem. Soc., 147, p.59 (2000)
73.W. G. Fately, Infrared and Raman Selection Rules for Molecular and Lattice Vibrations: The correlation Method, Wiley-Interscience, N. Y. (1972)
74.W. Huang, R. Frech, Solid State Ionics, “Vibrational spectroscopic and electrochemical studies of the low and high temperature phases of LiCo1-xMxO2 (M= Ni or Ti)”, 86-88, p.395 (1996)
75.M. Inaba, Y. Inyama, Z. Ogumi, Y. Todzuka, A. Tasaka, “Raman study of layered rock-salt LiCoO2 and its electrochemical lithium deintercalation”, J. Raman Spectrosc., 28, p.613 (1997)
76.J. D. Perkins, C. S. Balm, P. A. Parilla, J. M. McGraw, M. L. Fu, M. Duncan, H. Yu, D. S. Ginley, “LiCoO2 and LiCo1-xAlxO2 thin film cathodes grown by pulsed laser ablation”, J. Power Sources, 81-82, p.675 (1999)
77.C. Julien, M. A. Camacho-Lopez, L. Escobar-Alarcon, and E. Haro-Poniatowski, “Fabrication of LiCoO2 thin-film cathodes for rechargeable lithium microbatteries”, Materials Chemistry and Physics, 68, p.210 (2001)
78.N. J. Dudney, Young-II Jang, “Analysis of thin-film lithium batteries with cathodes of 50 nm to 4 m thick LiCoO2”, J. Power Sources, 119-121 (2003)
79.N. Yabuuchi, T. Ohzuku, “Novel lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for advanced lithium-ion batteries”, J. Power Sources, 119-121, p.171 (2003)
80.E. Antolini, “Lithium loss from lithium cobalt oxide: hexagonal Li0.5Co0.5O to cubic Li0.065Co0.935O phase transition”, International Journal of Inorganic Materials, 3, p.721 (2001)
81.H. Yan, X. Huang, Z. Lu, H. Huang, R. Xue, L. Chen, “Microwave synthesis of LiCoO2 cathode materials”, J. Power Sources, 68, p.530 (1997)
82.Y.-K. Sun, “Cycling behavior of LiCoO2 cathode materials prepared by PAA-assisted sol-gel method for rechargeable lithium batteries”, J. Power Sources, 83, p.223 (1999)
83.K. W. Kim, S. I. Woo, K.-H. Choi, K.-S. Han, Y.-J. Park, “Microfabrication of LiCoO2 film using liquid source misted chemical deposition technique”, Solid State Ionics, 159, p.25 (2003)
84.S. M. Lala, L. A. Montoro, J. M. Rosolen, “LiCoO2 sub-microns particles obtained from micro-precipitation in molten stearic acid”, J. Power Sources, 124, p.118 (2003)
85.J. Molenda, P. Wilk, J. Marzec, “Electronic and electrochemical properties of LixNi1-yCoyO2 cathode material”, Solid State Ionics, 157, p.115 (2003)
86.J. N. Reimers, J. R. Dalin, “Electrochemical and In Situ X-ray diffraction studies of lithium intercalation in LiCoO2”, J. Electrochem. Soc., 139, p.2091 (1992)
87.I. Uchida and H. Sato, “Preparation of binder-free, thin film LiCoO2 and its electrochemical responses in a propylene carbonate solution”, J. Electrochem. Soc., 142, p.L139 (1995)
88.C. J. Wen, B. A. Boukamp, R. A. Huggins, and W. Weppner, “ Thermodynamic and mass transport properties of left double quote LiAl right double quote”, J. Electrochem. Soc., 126, p.2258 (1979)
89.D. Aurbach, M. D. Levi, E. Levi, H. Teller, B. Markovsky, G. Salitra, U. Heider, and L. Heider, “Common electroanalytical behavior of Li intercalation processes into graphite and transition metal oxides”, J. Electrochem. Soc., 145, p.3024 (1998)
90.M. D. Levi, G. Salitra, B. Markovsky, H. Teller, D. Aurbach, U. Heider, and L. Heider, “Solid-state electrochemical kinetics of Li-ion intercalation into Li1-xCoO2: simultaneous application of electroanalytical techniques SSCV, PITT, and EIS”, J. Electrochem. Soc., 146, p.1279 (1999)
91.M. D. Levi, K. Gamolsky, D. Aurbach, U. Heider, and R. Oesten, “Determination of the Li ion chemical diffusion coefficient for the topotactic solid-state reactions occurring via a two-phase or single-phase solid solution pathway”, J. Electroanal. Chem., 477, p.32 (1999)
92.W. Weppner and R. A. Huggins, “Determination of the kinetic parameters of mixed-conducting electrodes and application to the system Li//3Sb”, J. Electrochem. Soc., 124, p.1569 (1977)
93.J. S. Hong and J. R. Selman, “Relationship between calorimetric and structural characteristics of lithium-ion cells. II. Determination of Li transport properties”, J. Electrochem. Soc., 147, p.3190 (2000)
94.Y.-M. Choi, S.-I. Pyun, J.-S. Bae, and S.-I. Moon, “Effects of lithium content on the electrochemical lithium intercalation reaction into LiNiO2 and LiCoO2 electrodes”, J. Power Sources, 56, p.25 (1995)
95.C. Ho, I. D. Raistrick, and R. A. Huggins, “ Application of AC technique to the study of lithium diffusion in tungsten trioxide thin films”, J. Electrochem. Soc., 127, p.343 (1980)
96.K. M. Shaju, G. V. Subba Rao, B. V. R. Chowdari, “EIS and GITT studies on oxide cathodes, O2-Li(2/3)+x(Co0.15Mn0.85)O2 (x=0 and 1/3)”, Electrochimica Acta, 48, p.2691 (2003)
97.H. Sato, D. Takahashi, T. Nishina, I. Uchida, “Electrochemical characterization of thin-film LiCoO2 electrodes in propylene carbonate solutions”, Journal of Power Sources, 68 (1997) 540
98.A. J. Bard, L. R. Faulkner, Electrochemical Methods, second ed., Wiley, New York, p.231 (2001)
99.S. Castro-García , A. Castro-Couceiro, M. A. Señarís-Rodríguez, F. Soulette , C. Julien, “Influence of aluminum doping on the properties of LiCoO2 and LiNi0.5Co0.5O2 oxides”, Solid State Ionics, 156, p.15 (2003)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top