1.J.-M. Tarascon and M. A. Armand, “Issues and challenges facing rechargeable lithium batteries”, Nature, 414, p.359 (2001)
2.J. Hajek, French Patent, 8, 10 (1949)
3.M. S. Whittingham, “Electrochemical energy storage and intercalation chemistry”, Science, 192, p.1226 (1976).
4.M. S. Whittingham, Chalcogenide battery, US Patent 4009052
5.“Battery Recall Update”, Adv. Batt. Technol., 25, p.4 (1989)
6.R. Kanno, Y. Takeda, T. Ichikawa, K. Nakanishi and O. Yamamoto, “Carbon as negative Electrodes in Lithium Secondary Cells”, J. Power Sources, 26, p.535 (1989)
7.J. O. Besenhard, M. Hess and P. Komeda, “Dimensionally stable Li-alloy electrodes for secondary batteries”, Solid State Ionics, 40-41, p.525 (1990)
8.M. Lazzari and B. Scrosati, “A Cyclable Lithium Organic Electrolyte Cell Based on Two Intercalation Electrodes”, J. Electrochem. Soc., 127, p.733 (1980)
9.T. Nagaura, and K. Tozawa, “Lithium ion rechargeable battery”, Prog. Batteries Solar Cells, 9, p.209 (1990)
10.P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, and J.-M. Tarascon, “Nano-sized transition metal oxides as negative electrode material for lithium-ion batteries”, Nature, 407, p. 496 (2000)
11.C. L. Liao, Y. H. Lee, S. T. Chang and K. Z. Fung, “Structural Characterization and Electrochemical Properties of RF-Sputtered Nanocrystalline Co3O4 Thin-Film Anode”, J. Power Sources, in press
12.Y. H. Lee, I. C. Leu, S. T. Chang, C. L. Liao, K. Z. Fung, “The electrochemical capacities and cycle retention of electrochemically deposited Cu2O thin film toward lithium”, Electrochimica Acta, 50, p.551 (2004)
13.Y. H. Lee, I. C. Leu, C. L. Liao, S. T. Chang, M. T. Wu, J. H. Yen, and K. Z. Fung, “Fabrication and Characterization of Cu2O Nanorod Arrays and Their Electrochemical Performance in Li-Ion Batteries”, Electrochemical and Solid-State Letters, 9, p.A207 (2006)
14.E. Zhecheva, R. Stoyanova, G. Tyuliev, K. Tenchev, M. Mladenov, S. Vassilev, “Surface interaction of LiNi0.8Co0.2O2 cathodes with MgO”, Solid State Sciences, 5, p.711 (2003)
15.H. Zhao, L. Gao, W. Qiu, X. Zhang, “Improvement of electrochemical stability of LiCoO2 cathode by a nano-crystalline coating”, Journal of Power S ources, 132, p.195, (2004)
16.H. Liu, Z. Zhang, Z. Gong, Y. Yang, “A comparative study of LiNi0.8Co0.2O2 cathode materials modifiedby lattice-doping and surface-coating”, Solid State Ionics, 166, p.317 (2004)
17.L. J. Fu, H. Liu, C. Li, Y. P. Wu, E. Rahm, R. Holze, H. Q. Wu, “Surface modifications of electrode materials for lithium ion batteries”, Solid State Sciences, 8, p.113 (2006)
18.K. Kanehori, K. Matsumoto, K. Miyauchi; T. Kudo, “Thin film solid electrolyte and its application to secondary lithium cell”, Solid State Ionics, 9-10, p 1445 (1983)
19.J. B. Bates, D. R. Gruzalski, C. F. Luck, “ Rechargeable solid state lithium microbatteries”, IEEE Micro Electro Mechanical Systems, 7-10, p.82 (1993)
20.R. B. Goldner, S. Slaven, T. Y. Liu, T. E. Haas, F. O. Arntz, P. Zerigian, “Properties of a carbon negative electrode in completely inorganic thin film Li-ion batteries with a LiCoO2 positive electrode”, Materials Research Society Symposium-Proceedings, v.369, Solid State Ionics IV, p.137 (1995)
21.J. B. Bates and N. J. Dudney , “Thin Film Rechargeable Lithium Batteries for Implantable Devices” , American Society for Artificial Internal Organs Inc., 43 , p.M644 (1997)
22.F. Orsini et al., “In situ SEM study of the interfaces in plastic lithium cells”, J. Power Sources, 81–82, p.918 (1999)
23.許雪萍, “方形二次鋰離子電池材料介紹”, 工業材料, 130, p.104 (1997)24.J. C. Hunter, “Preparation of a new crystal form of manganese dioxide: ��-MnO2.”, J. Solid State Chem., 39, p.142 (1981)
25.林美雲譯, “使用LiMn2O4系正極材料的鋰離子二次電池”, 工業材料, 145, p.116 (1999)
26.洪逸明, “鋰離子二次電池陰極材料LiMn2O4±δ之合成及其電化學性質”, 國立成功大學材料科學及工程研究所博士論文, pp.16-24 (2001)27.K. Mizushima, P. C. Jones, P. J. Wiseman and J. B. Goodenough, “LixCoO2 (0<=x<=1): a new cathode material for batteries of high energy density”, Solid State Ionics, 3/4, p 171 (1980)
28.R. J. Gummow, M. M. Thackery, W. I. F. David and S. Won, “LixCoO2 (0<=x<=1): a new cathode material for batteries of high energy density”, Mat. Res. Bull., 15, p.783 (1980)
29.E. Rossen, J.N. Reimers, and J.R. Dahn, “Synthesis and electrochemistry of spinel LT-LiCoO2”, Solid State Ionics, 62, p.53 (1993)
30.B. Garcia, J. Farcy, J. P. Pereira-Ramos, J. Perichon, N. Baffier, “Low-temperature cobalt oxide as rechargeable cathodic material for lithium batteries”, J. Power Sources, 54, p.373 (1995)
31.T. Ohzuku, H. Konori, K. Sawai, and T. Hirai, “Natural graphite as an anode for rechargeable nonaqueous cells”, Chem. Express, 5, p.733 (1990)
32.R. J. Gummow, M. M. Thackeray, W. I. F. David and S. Hull, “Structure and electrochemistry of lithium cobalt oxide synthesized at 400℃” Mat. Res. Bull., 27, p.327 (1992)
33.M. Yoshio, Y. Todorov, K. Yamato, H. Noguchi, J. I. Itoh, M. Okada and T. Mouri, “Preparation of LiyNi1-xMnxO2 as a cathode for lithium-ion battery”, J. Power Sources, 74, p.46 (1998)
34.C. Delmas, Mater. Sci. Eng., B3, p.97 (1980)
35.L. P. L. M. Rabou and A. Roskam, “Cycle-life improvement of Li/LiCoO2 batteries”, J. Power Sources 54, p.316 (1995)
36.林世彬, “鋰離子二次電池陰極材料LiNiO2之合成及其性質”, 國立成功大學材料科學及工程研究所博士論文37.C. Delmas, J. P. Peres, A. Rougier, A. Demourgues, F. Weill, A. Chadwick, M. Broussely, F. Perton, Ph. Biensan, and P. Willmann, “On the behavior of the LixNiO2 system: an electrochemical and structure overview”, J. Power Sources, 68, p.120 (1997)
38.B. Banov, J. Bourilkov, M. Mladenov, “Cobalt stabilized layered lithium-nickel oxides, cathodes in lithium rechargeable cells”, J. Power Sources, 54, p.268 (1995)
39.C.-C. Chang, N. Scarr, P. N. Kumta, “Synthesis and electrochemical characterization of LiMO2 (M=Ni, Ni0.75Co0.25) for rechargeable lithium ion batteries”, Solid State Ionics, 112, p.329 (1998)
40.M.-J. Wang, A. Navrotsky, “Enthalpy of formation of LiNiO2, LiCoO2 and their solid solution, LiNi1-xCoxO2”, Solid State Ionics, 166, p.167 (2004)
41.B. J. Hwang, R. Santhanam, C. H. Chen, “Effect of synthesis conditions on electrochemical properties of LiNi1-yCoyO2 cathode for lithium rechargeable batteries”, J. Power Sources, 114, p.244 (2003)
42.G. T.-K. Fey, R. F. Shiu, V. Subramanian, C. L. Chen, “The effect of varying the acid to metal ion ratio R on the structural, thermal, and electrochemical properties of sol–gel derived lithium nickel cobalt oxides”, Solid State Ionics, 148, p.291 (2002)
43.G. T.-K. Fey, R. F. Shiu, T. Prem Kumar, C. L. Chen, “Preparation and characterization of lithium nickel cobalt oxide powders via a wet chemistry processing”, Materials Science and Engineering B, 100, p.234 (2003)
44.D. S. Richerby and A. Matthews, Advanced Surface Coatings: A Handbook of Surface Engineering, Chapaman and Hall, New York, pp.92-100 (1991)
45.S. M. Rossnagel et al., “Handbook of Plasma Processing Technology”, Noyes Publications, Park Ridge, New Jersey, U.S.A. (1982)
46.B. Chapman, ”Glow Discharge Processes”, John Wiley and Sons, New York (1980)
47.G. Wei, T. E. Haas, and R. B. Goldner, “Thin films of lithium cobalt oxide”, Solid State Ionics, 58, p.115 (1992)
48.J. F. Whitacre, W. C. West, B. V. Ratnakumar, “The influence of target history and deposition geometry on RF magnetron sputtered LiCoO2 thin films”, J. Power Sources, 103, p.134 (2001)
49.H. Benqlilou-Moudden, G. londiaux, P. Vinatier, A. Levasseur, “Amorphous lithium cobalt and nickel oxides thin films: preparation and characterization by RBS and PIGE”, Thin Solid Films, 333, p. 16 (1998)
50.P. Fragnaud, T. Brousse, D. M. Schleich, “Characterization of sprayed and sputter deposited LiCoO2 thin films for rechargeable microbatteries”, J. Power Sources, 63, p.187 (1996)
51.C. N. Polo Da Fonseca, J. Davalos, M. Kleinke, M. C. A. Fantini, A. Gorenstein, “ Studies of LiCoOx thin film cathodes produced by r.f. sputtering”, J. Power Sources, 81, p.575 (1999)
52.B. Wang, J. B. Bates, F. X. Hart, B. C. Sales, R. A. Zuhr, J. D. Robertson, “Characterization of thin-film rechargeable lithium batteries with lithium cobalt oxide cathodes”, J. Electrochem. Soc., 143, p.3203 (1996)
53.J. F. Whitacre, W. C. West, E. Brandon, B. V. Ratnakumar, “Crystallographically oriented thin-film nanocrystallineCathode layers prepared without exceeding 300°C”, J. Electrochem. Soc. 148, p.A1078 (2001)
54.Y.-S. Kang, H. Lee, Y.-M. Kang, Paul S. Lee, and J.-Y. Lee, “Crystallization of lithium cobalt oxide films by radio-frequency plasma irradiation”, J. of Applied Physics, 90, p.5940 (2001)
55.Y. I. Jang, B. J. Neudecker, and N. J. Dudney, “Lithium diffusion in LixCoO2 (0.45�� x ��0.7) intercalation cathodes”, Electrochem. Solid-State Lett., 4, p.A74 (2001)
56.P. J. Bouwman, B. A. Boukamp, H. J. M. Bouwmeester, H. J. Wondergem, and P. H. L. Notten, “Structural analysis of submicrometer LiCoO2 films”, J. Electrochem. Society, 148, p.A311 (2001)
57.J. C. Dupin, D. Gonbeau, H. Benqlilou-Moudden, Ph. Vinatier, A. Levasseur, “XPS analysis of new lithium cobalt oxide thin-films before and after lithium deintercalation”, Thin Solid Films, 384, p.23 (2001)
58.H.-C. Shin, S.-I. Pyun, “Investigation of lithium transport through lithium cobalt dioxide thin film sputter-deposited by analysis of cyclic voltammogram”, Electrochimica Acta, 46, p.2477 (2001)
59.J.-K. Lee, S.-J. Lee, H.-K. Baik, H.-Y. Lee, S.-W. Jang, and S.-M. Lee, “Substrate effect on the microstructure and electrochemical properties in the deposition of a thin film LiCoO2 electrode”, Electrochemical and Solid-State Letters, 2, p.512 (1999)
60.張榮芳, “反應磁控濺鍍透明導電ZnO:Al膜之成長特性及性質研究”, 國立成功大學材料科學及工程學系博士論文, 中華民國九十年九月, p. 3561.J. A. Thornton, “Stress-related effects in thin films”, Thin Solid Film, 171, p.5 (1989)
62.D. S. Rickerby, “Internal stress and adherence of titanium nitride coatings”, J. Vac. Sci. Technol., A4, p.2809 (1986)
63.R. Messier, “Structure-composition variation in rf-sputtered films of Ge caused by process parameter changes”, J. Vac. Sci. Technol., 13, p.1060 (1976)
64.F. M. D. Huerle and J. M. E. Harper, “Note on the origin of intrinsic stresses in films deposited via evaporation and sputtering”, Thin Solid Film, 81, p.171 (1989)
65.R. J. Gummow, D. C. Liles, and M. M. Thackeray, “Spinel versus layered structures for lithium cobalt oxide synthesized at 400°C”, Mater. Res. Bull., 28, p.235 (1993)
66.R. J. Gummow, D. C. Liles, M. M. Thackeray, and W. I. F. David, “Reinvestigation of the structures of lithium-cobalt-oxides with neutron-diffraction data”, Mater. Res. Bull., 28, p.1177 (1993)
67.B. Garcia, J. Farcy, J. P. Pereira-Ramos, and N. Baffier, “Electrochemical properties of low temperature crystallized LiCoO2”, J. Electrochem. Soc., 144, p.1179 (1997)
68.R. J. Gummow, M. M. Thackeray, W. I. F. David, and S. Hull, “Structure and electrochemistry of lithium cobalt oxide synthesised at 400oC”, Mater. Res. Bull., 27, p.327 (1992)
69.R. B. Goldner, P. Zerigian, T. Y. Liu, N. Clay, F. Vereda, T. E. Haas, “Ambient temperature synthesis of polycrystalline thin films of lithium cobalt oxide with controlled crystallites’ orientations”, Solid State Ionics, 548, p.131 (1999)
70.B. D. Cullity, “Elements of X-Ray Diffraction”, Addison Wesley, (1977)
71.P. Sigmund, Phys. Rev., 184, p.383 (1969)
72.J. B. Bates, N. J. Dudney, B. J. Neudecker, F. X. Hart, H. P. Jun, and S. A. Hackney, “Preferred orientation of polycrystalline LiCoO2 films”, J. Electrochem. Soc., 147, p.59 (2000)
73.W. G. Fately, Infrared and Raman Selection Rules for Molecular and Lattice Vibrations: The correlation Method, Wiley-Interscience, N. Y. (1972)
74.W. Huang, R. Frech, Solid State Ionics, “Vibrational spectroscopic and electrochemical studies of the low and high temperature phases of LiCo1-xMxO2 (M= Ni or Ti)”, 86-88, p.395 (1996)
75.M. Inaba, Y. Inyama, Z. Ogumi, Y. Todzuka, A. Tasaka, “Raman study of layered rock-salt LiCoO2 and its electrochemical lithium deintercalation”, J. Raman Spectrosc., 28, p.613 (1997)
76.J. D. Perkins, C. S. Balm, P. A. Parilla, J. M. McGraw, M. L. Fu, M. Duncan, H. Yu, D. S. Ginley, “LiCoO2 and LiCo1-xAlxO2 thin film cathodes grown by pulsed laser ablation”, J. Power Sources, 81-82, p.675 (1999)
77.C. Julien, M. A. Camacho-Lopez, L. Escobar-Alarcon, and E. Haro-Poniatowski, “Fabrication of LiCoO2 thin-film cathodes for rechargeable lithium microbatteries”, Materials Chemistry and Physics, 68, p.210 (2001)
78.N. J. Dudney, Young-II Jang, “Analysis of thin-film lithium batteries with cathodes of 50 nm to 4 m thick LiCoO2”, J. Power Sources, 119-121 (2003)
79.N. Yabuuchi, T. Ohzuku, “Novel lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for advanced lithium-ion batteries”, J. Power Sources, 119-121, p.171 (2003)
80.E. Antolini, “Lithium loss from lithium cobalt oxide: hexagonal Li0.5Co0.5O to cubic Li0.065Co0.935O phase transition”, International Journal of Inorganic Materials, 3, p.721 (2001)
81.H. Yan, X. Huang, Z. Lu, H. Huang, R. Xue, L. Chen, “Microwave synthesis of LiCoO2 cathode materials”, J. Power Sources, 68, p.530 (1997)
82.Y.-K. Sun, “Cycling behavior of LiCoO2 cathode materials prepared by PAA-assisted sol-gel method for rechargeable lithium batteries”, J. Power Sources, 83, p.223 (1999)
83.K. W. Kim, S. I. Woo, K.-H. Choi, K.-S. Han, Y.-J. Park, “Microfabrication of LiCoO2 film using liquid source misted chemical deposition technique”, Solid State Ionics, 159, p.25 (2003)
84.S. M. Lala, L. A. Montoro, J. M. Rosolen, “LiCoO2 sub-microns particles obtained from micro-precipitation in molten stearic acid”, J. Power Sources, 124, p.118 (2003)
85.J. Molenda, P. Wilk, J. Marzec, “Electronic and electrochemical properties of LixNi1-yCoyO2 cathode material”, Solid State Ionics, 157, p.115 (2003)
86.J. N. Reimers, J. R. Dalin, “Electrochemical and In Situ X-ray diffraction studies of lithium intercalation in LiCoO2”, J. Electrochem. Soc., 139, p.2091 (1992)
87.I. Uchida and H. Sato, “Preparation of binder-free, thin film LiCoO2 and its electrochemical responses in a propylene carbonate solution”, J. Electrochem. Soc., 142, p.L139 (1995)
88.C. J. Wen, B. A. Boukamp, R. A. Huggins, and W. Weppner, “ Thermodynamic and mass transport properties of left double quote LiAl right double quote”, J. Electrochem. Soc., 126, p.2258 (1979)
89.D. Aurbach, M. D. Levi, E. Levi, H. Teller, B. Markovsky, G. Salitra, U. Heider, and L. Heider, “Common electroanalytical behavior of Li intercalation processes into graphite and transition metal oxides”, J. Electrochem. Soc., 145, p.3024 (1998)
90.M. D. Levi, G. Salitra, B. Markovsky, H. Teller, D. Aurbach, U. Heider, and L. Heider, “Solid-state electrochemical kinetics of Li-ion intercalation into Li1-xCoO2: simultaneous application of electroanalytical techniques SSCV, PITT, and EIS”, J. Electrochem. Soc., 146, p.1279 (1999)
91.M. D. Levi, K. Gamolsky, D. Aurbach, U. Heider, and R. Oesten, “Determination of the Li ion chemical diffusion coefficient for the topotactic solid-state reactions occurring via a two-phase or single-phase solid solution pathway”, J. Electroanal. Chem., 477, p.32 (1999)
92.W. Weppner and R. A. Huggins, “Determination of the kinetic parameters of mixed-conducting electrodes and application to the system Li//3Sb”, J. Electrochem. Soc., 124, p.1569 (1977)
93.J. S. Hong and J. R. Selman, “Relationship between calorimetric and structural characteristics of lithium-ion cells. II. Determination of Li transport properties”, J. Electrochem. Soc., 147, p.3190 (2000)
94.Y.-M. Choi, S.-I. Pyun, J.-S. Bae, and S.-I. Moon, “Effects of lithium content on the electrochemical lithium intercalation reaction into LiNiO2 and LiCoO2 electrodes”, J. Power Sources, 56, p.25 (1995)
95.C. Ho, I. D. Raistrick, and R. A. Huggins, “ Application of AC technique to the study of lithium diffusion in tungsten trioxide thin films”, J. Electrochem. Soc., 127, p.343 (1980)
96.K. M. Shaju, G. V. Subba Rao, B. V. R. Chowdari, “EIS and GITT studies on oxide cathodes, O2-Li(2/3)+x(Co0.15Mn0.85)O2 (x=0 and 1/3)”, Electrochimica Acta, 48, p.2691 (2003)
97.H. Sato, D. Takahashi, T. Nishina, I. Uchida, “Electrochemical characterization of thin-film LiCoO2 electrodes in propylene carbonate solutions”, Journal of Power Sources, 68 (1997) 540
98.A. J. Bard, L. R. Faulkner, Electrochemical Methods, second ed., Wiley, New York, p.231 (2001)
99.S. Castro-García , A. Castro-Couceiro, M. A. Señarís-Rodríguez, F. Soulette , C. Julien, “Influence of aluminum doping on the properties of LiCoO2 and LiNi0.5Co0.5O2 oxides”, Solid State Ionics, 156, p.15 (2003)