跳到主要內容

臺灣博碩士論文加值系統

(100.26.196.222) 您好!臺灣時間:2024/03/01 04:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:施伯錚
研究生(外文):Po-Cheng Shih
論文名稱:錫-銀-銅銲錫接點中導入錫-鋅-鉍錫膏之界面反應、剪力和電性質研究
論文名稱(外文):Investigations on the Interfacial Reaction, Shear and Electrical Properties of Sn-Ag-Cu Solder Joints with Sn-Zn-Bi Paste Addition
指導教授:林光隆
指導教授(外文):Kwang-Lung Lin
學位類別:博士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:95
語文別:中文
論文頁數:199
中文關鍵詞:電阻剪力性質介金屬化合物
外文關鍵詞:electrical resistanceshear propertyintermetallic
相關次數:
  • 被引用被引用:2
  • 點閱點閱:675
  • 評分評分:
  • 下載下載:117
  • 收藏至我的研究室書目清單書目收藏:1
錫-銀-銅(Sn-Ag-Cu)三元合金為目前極具潛力可以取代傳統錫鉛(Sn-Pb)合金之銲錫材料,然而,由於該三元合金之共晶熔點(217°C),遠高於共晶鉛錫合金之熔點(183°C),使得Sn-Ag-Cu三元無鉛銲錫並無法完全取代Sn-Pb合金。在本研究中,為了降低Sn-Ag-Cu銲錫與基材之迴焊溫度,導入熔點較低之Sn-Zn-Bi錫膏(188-199oC),在不同的迴焊溫度下(210oC或240oC),以Sn-Zn-Bi錫膏為媒介而將Sn-Ag-Cu銲錫球銲接在BGA基板上,進而探討迴焊溫度的差異對Sn-Ag-Cu /Sn-Zn-Bi銲錫合金與Au /Ni /Cu金屬基材間界面反應之影響、並模擬銲錫接點之實際使用環境,在多次迴焊(Multiple reflows)與時效熱處理(Thermal aging)試驗後,量測銲錫接點之剪力強度以及電阻值變化,而本實驗之對照組為Sn-Ag-Cu合金之銲錫系統(不添加Sn-Zn-Bi錫膏)。
界面反應分析結果顯示,在不使用Sn-Zn-Bi錫膏為媒介時,Sn-Ag-Cu銲錫球與Au /Ni /Cu基材經過一次迴焊後,在界面產生(Ni, Cu)3Sn4以及(Cu, Ni)6Sn5化合物,而在銲錫合金內則有Ag3Sn和Au-Sn化合物;十次迴焊後,(Ni, Cu)3Sn4化合物顯著成長但外觀形態較為鬆散,而(Cu, Ni)6Sn5化合物亦有顯著成長,Ag3Sn化合物分佈在富Sn相之密度有增加的趨勢,而Au-Sn則無明顯之成長。時效1000小時後,(Ni, Cu)3Sn4化合物亦隨之成長但外觀形態則較為緻密,(Cu, Ni)6Sn5和部份Ag3Sn化合物顯著成長但Au-Sn化合物則不甚明顯。而Sn-Ag-Cu /Sn-Zn-Bi銲錫與Au /Ni /Cu基材在210oC經過一次迴焊後,其反應之產物為Ag-Au-Cu-Zn、Ni-Sn-Cu-Zn、Ag3Sn、Ag5Zn8和Ag-Sn-Zn化合物;Ag-Au-Cu-Zn化合物有脫離界面而進入銲錫合金內之情形,本研究亦針對此現象探討可能之機制;十次迴焊後,Ag-Au-Cu-Zn化合物有明顯分解的情形,甚至是消失在界面區域,而Ni-Sn-Cu-Zn和Ag3Sn化合物則有顯著成長,且Ni-Sn-Cu-Zn化合物層之形態較為緻密。在銲錫合金內之Ag-Zn-Sn化合物中的富Ag-Zn相似乎有減少的情形,反而富Ag-Sn相增加。Bi元素在銲錫接點多次迴焊過程中,並不參與反應與其他元素形成介金屬化合物,而是偏析或是固溶在Sn基地相中;而Sn-Ag-Cu /Sn-Zn-Bi銲錫與Au /Ni /Cu基材在240oC、一次迴焊後,其反應之產物與在210oC類似,然而,在十次迴焊後,Ni-Sn-Cu-Zn化合物之形態較為鬆散。不論在210oC或是240oC迴焊,經時效1000小時後,Ag-Au-Cu-Zn化合物成長之情形皆不明顯,而Ni-Sn-Cu-Zn和Ag3Sn化合物則有顯著成長,此外,Bi元素亦不參與反應形成化合物。而對於二種四元Ag-Au-Cu-Zn和Ni-Sn-Cu-Zn化合物,本研究亦以X光繞射分析儀嘗試探討其化合物之結晶相。
銲錫接點在多次迴焊和高溫時效後之剪力測試結果顯示,Sn-Ag-Cu銲錫接點之破斷面皆發生在銲錫合金內部,而Sn-Ag-Cu /Sn-Zn-Bi銲錫接點隨著不同迴焊溫度,在不同試驗條件後有不同之破斷面;而本研究根據銲錫接點之微結構解釋銲錫接點破斷面之位置,進而探討對應銲錫接點剪力強度之變化。
銲錫接點之電阻試驗結果顯示,銲錫接點之電阻值(R1)可分為三個次部份,分別為:(1)solder mask高度以上之銲錫合金(Rsolder bulk)、(2)solder mask間之銲錫合金與界面介金屬化合物(Rsolder/IMC)以及(3)BGA基板之銲錫墊和基板內部電路(Rsubstrate)之電阻值。Rsubstrate和Rsolder bulk 值不隨著迴焊次數和時效時間而有明顯增加,而銲錫接點電阻值(R1)的上升是Rsolder/IMC值的增加所導致,此外,Rsubstrate值佔R1值有著最大比例。Sn-Ag-Cu /Sn-Zn-Bi銲錫接點中之R1、Rsolder/IMC以及Rsolder bulk值在對應之測試條件下都較Sn-Ag-Cu銲錫接點之R1、Rsolder/IMC以及Rsolder bulk值大,相關原因亦予以探討,此外,(Ni, Cu)3Sn4和Ni-Sn-Cu-Zn化合物對該銲錫接點電阻值的貢獻在不同試驗條件下有顯著的不同,此現象亦予以探討,並經由計算比較之。
Among proposed lead-free solders, Sn-Ag-Cu ternary alloy has been regarded as the most potential candidate to replace the conventional Sn-Pb alloy. However, the eutectic melting point of Sn-Ag-Cu solder is notably higher (roughly 34oC) than that of Sn-Pb alloy, denoting that the soldering temperature is expected to surge which may cause reliability concerns during soldering process. Therefore, Sn-Zn-Bi solder paste of lower melting point (188-199oC) was introduced as a medium to joint Sn-Ag-Cu solder ball with Au /Ni /Cu metallized BGA (Ball Grid Array) substrates and the soldering temperature was successfully dropped to 210oC, close to manufacturing temperature of Sn-Pb alloys. This study targeted the effect of the addition of Sn-Zn-Bi paste in Sn-Ag-Cu joint systems on interfacial reaction between Sn-Ag-Cu /Sn-Zn-Bi solder and Au /Ni /Cu metallization, shear and electrical properties of Sn-Ag-Cu /Sn-Zn-Bi joints under multiple reflows and thermal aging tests. Besides, the Sn-Ag-Cu joints without Sn-Zn-Bi addition were compared as a control system.
Interfacial compounds formed in Sn-Ag-Cu joints were (Cu, Ni)6Sn5 and (Ni, Cu)3Sn4 while Ag3Sn and Au-Sn compounds were identified in the bulk solder. After ten reflow cycles, (Cu, Ni)6Sn5 and (Ni, Cu)3Sn4 compounds coarsened significantly, but the latter grew morphologically loose. Ag3Sn compounds became intensive in Sn-rich bulk solder but Au-Sn compounds seemed not to grow with reflow cycles. After aging for 1000 hrs, as similar to multi-reflowed joints, (Cu, Ni)6Sn5, (Ni, Cu)3Sn4 and Ag3Sn compounds coarsened notably, but Au-Sn compounds did not. Furthermore the morphology of (Ni, Cu)3Sn4 compounds was compact after aging for 1000 hrs.
The Sn-Ag-Cu /Sn-Zn-Bi joints soldered at 210oC formed Ag-Au-Cu-Zn, Ni-Sn-Cu-Zn, Ag3Sn, Ag5Zn8 and Ag-Zn-Sn compounds. The spallation behavior of Ag-Au-Cu-Zn compounds during various soldering time at 210oC was examined and discussed. Interfacial Ag-Au-Cu-Zn compounds shrunk, even disappeared with increasing reflow cycles whereas Ni-Sn-Cu-Zn and Ag3Sn compounds grew notably. Moreover Ni-Sn-Cu-Zn compounds were morphologically compact. Ag-Sn phases of ternary Ag-Zn-Sn compounds became rich with reflow cycles but Ag-Zn phases did the reverse way. Bi was not involved in compound formation but dissolved in Sn-rich phase or separated in the bulk solder.
In 240oC-soldered Sn-Ag-Cu/Sn-Zn-Bi joints, the formation of compounds was similar to 210oC-soldered joints. Nevertheless, the morphology of the Ni-Sn-Cu-Zn compounds was loose after 10 reflow cycles. After aging for 1000 hrs at 150oC, the joints reflowed at 210oC or 240oC gave rise to compact Ni-Sn-Cu-Zn compounds while the Ag-Au-Cu-Zn compounds hardly coarsened. Moreover Bi was not involved in compound formation. XRD analysis was carried out to examine the crystalline phases of two quaternary Ag-Au-Cu-Zn and Ni-Sn-Cu-Zn compounds.
Based on the results of shear test, Sn-Ag-Cu joints fractured in the solder bulk after 1, 10 reflows and aging for 1000 hrs, whereas Sn-Ag-Cu /Sn-Zn-Bi joints exhibited various fractured regions upon various tests. The detailed results were respectively investigated and discussed, including the effect of microstructural evolution of the joints on fractured regions and on strength variation under tests.
The electrical resistance of the joint (R1) consisted of three sub-proportions:the solder bulk (Rsolder bulk, upper solder highly beyond the mask), interfacial solder /IMCs (Rsolder/IMC), and the substrate (Rsubstrate). The Rsolder/IMC raised but Rsolder bulk and Rsubstratre did not change with respect to reflow cycle or aging time. In addition, Rsubstratre is a major proportion of R1. R1, Rsolder bulk and Rsolder/IMC of Sn-Ag-Cu /Sn-Zn-Bi joints were respectively higher than those of Sn-Ag-Cu joints. Electrical resistance contributions of (Ni, Cu)3Sn4 and Ni-Sn-Cu-Zn compounds to R1 of Sn-Ag-Cu and Sn-Ag-Cu /Sn-Zn-Bi joints under various tests were also calculated and discussed.
中文摘要……………………………………………………………I
英文摘要……………………………………………………………III
誌謝…………………………………………………………………VI
總目錄………………………………………………………………VII
表目錄………………………………………………………………XI
圖目錄………………………………………………………………XII
第一章 緒論……………………………………………………… 1
1-1電子構裝技術………………………………………………… 1
1-2球陣列式接合技術…………………………………………… 2
1-3傳統銲錫合金材料、性質及其影響………………………… 6
1-4無鉛銲錫合金之發展………………………………………… 11
1-4-1錫-銀系統…………………………...…………………… 11
1-4-2錫-鉍系統…………………...…………………………… 15
1-4-3錫-銦系統………..……………………………………… 16
1-4-4錫-鋅系統……..………………………………………… 16
1-5銲錫合金與基材接合之界面反應…………………………… 17
1-6研究目的…………..……………………………………….… 20
第二章 實驗方法與步驟……………………………………………22
2-1實驗構想……………………………………………………… 22
2-2銲錫合金與基材之接合………………………………………22
2-2-1 BGA基板之製備………………………………………... 22
2-2-2錫膏之製備……………………………………………… 26
2-2-3銲錫球之製備…………………………………………… 26
2-2-4迴焊前銲錫合金與基板間之黏合固定………………... 26
2-2-5迴焊接合製程…………………………………………… 26
2-2-6多次迴焊與高溫時效試驗............................30
2-3銲錫合金與Au /Ni /Cu基材接合後之微結構與界面反應分析30
2-4銲錫接點之剪力強度試驗..............................33
2-5銲錫接點之電性試驗..................................33
第三章 結果與討論......................................44
3-1 Sn-Ag-Cu銲錫球與Au /Ni /Cu基材間之材料反應……….. 44
3-2 Sn-Ag-Cu /Sn-Zn-Bi銲錫合金與Au /Ni /Cu基材間之
材料反應...............................................53
3-2-1多次迴焊對Sn-Ag-Cu /Sn-Zn-Bi銲錫與Au /Ni /Cu
材料反應之影響…………………………………………….......53
3-2-1-1迴焊曲線之頂峰溫度為210oC…………………… 53
3-2-1-2迴焊曲線之頂峰溫度為240oC…………………… 66
3-2-1-3多次迴焊下Sn-Ag-Cu /Sn-Zn-Bi銲錫與Au /Ni /Cu
基材間之材料反應探討……………………….................77
3-2-2高溫時效對Sn-Ag-Cu /Sn-Zn-Bi銲錫與Au /Ni /Cu
材料反應之影響…………………………………………… 96
3-2-2-1迴焊曲線之頂峰溫度為210oC……………………. 96
3-2-2-2迴焊曲線之頂峰溫度為240oC……………………. 103
3-2-2-3在不同峰值溫度下接合之Sn-Ag-Cu /Sn-Zn-Bi
銲錫接點之結晶相分析………………………………...........108
3-3在210oC峰值溫度下接合之Sn-Ag-Cu /Sn-Zn-Bi
銲錫接點內Ag-Au-Cu-Zn化合物之脫離行為…………………..…111
3-3-1在210oC峰值溫度、不同迴焊時間接合後,Sn-Ag-Cu /
Sn-Zn-Bi銲錫接點內Ag-Au-Cu-Zn化合物之脫離現象..........111
3-3-2在210oC峰值溫度下,Sn-Ag-Cu /Sn-Zn-Bi銲錫接點內
Ag-Au-Cu-Zn化合物隨迴焊時間之脫離行為探討…...... 117
3-4多次迴焊和高溫時效後,Sn-Ag-Cu和Sn-Ag-Cu /Sn-Zn-Bi
銲錫接點之剪力試驗分析…………………………………… 124
3-4-1多次迴焊和高溫時效後,Sn-Ag-Cu和Sn-Ag-Cu /
Sn-Zn-Bi銲錫接點之剪力強度……………………….. 124
3-4-2多次迴焊和高溫時效下Sn-Ag-Cu和Sn-Ag-Cu /Sn-Zn- Bi
銲錫接點經過剪力試驗後之破斷面分析…………... .........127
3-4-3多次迴焊和高溫時效下Sn-Ag-Cu和Sn-Ag-Cu /Sn-Zn-Bi
銲錫接點之剪力行為探討…………...……………… .........133
3-4-3-1多次迴焊和高溫時效下Sn-Ag-Cu銲錫接點之剪力行為探討……………………………………….......................133
3-4-3-2多次迴焊和高溫時效下Sn-Ag-Cu /Sn-Zn-Bi銲錫接點
之剪力行為探討……………………………….................136
3-4-3-2-1在210oC迴焊條件下,Sn-Ag-Cu /Sn-Zn-Bi銲錫接點
在多次迴焊和高溫時效後之剪力行為探討……………………….136
3-4-3-2-2在240oC迴焊條件下,Sn-Ag-Cu /Sn-Zn-Bi銲錫接點
在多次迴焊和高溫時效後之剪力行為探討……………………….140
3-4-3-3多次迴焊和高溫時效下Sn-Ag-Cu和Sn-Ag-Cu / Sn-Zn-Bi
銲錫接點經剪力試驗後,接點剪力強度之綜合比較與探討…….144
3-5多次迴焊和高溫時效後,Sn-Ag-Cu和Sn-Ag-Cu /Sn-Zn-Bi
銲錫接點之電阻量測……………………………………….. 147
3-5-1多次迴焊和高溫時效後,Sn-Ag-Cu和Sn-Ag-Cu /
Sn-Zn-Bi銲錫接點中三個部份(R1、R2和R3)試片之準備結果...148
3-5-2多次迴焊和高溫時效後,銲錫接點以及接點中三個次部份
(Rsolder bulk、Rsolder/IMC和Rsubstrate)之電阻值........152
3-5-2-1 Sn-Ag-Cu銲錫系統中,接點及三個次部份
(Rsolder bulk、Rsolder/IMC和Rsubstrate)之電阻值........152
3-5-2-2不同頂峰溫度(210oC和240oC)迴焊之Sn-Ag-Cu /
Sn-Zn-Bi銲錫系統中,接點及三個次部份
(Rsolder bulk、Rsolder/IMC和Rsubstrate)之電阻值........154
3-5-3多次迴焊和高溫時效後,Sn-Ag-Cu和Sn-Ag-Cu /
Sn-Zn-Bi銲錫接點(R1)之間以及對應接點中三個次部份
(Rsolder bulk、Rsolder/IMC和Rsubstrate)間之電阻變化行為探討.....................................................158
3-6本論文中可持續深入探討以及後續研究之方向…………… 172
第四章 結論............................................174
參考文獻…………………………………………………………….178
自述………………………………………………………………….197
1.R. R. Tummala and E. J. Rymaszewski, Microelectronics Packaging Handbook, New York, Van Nostrand Reihold, p. 3, 1989.
2.D. P. Seraphim, R. C. Lasky and C. Y. Li, Principles of Electronic Packaging, McGraw-Hill, Inc., p. 3, 1989.
3.D. D. L. Chung, Material for Electronic Packaging, Butterworth- Heinemann, pp. 3-4, 1995.
4.C. A. Harper, Electronic Packaging and Interconnection Handbook, McGraw-Hill, Inc., Chap. 10, pp. 22-26, 1991.
5.J. H. Lau, Chip on Board Technologies for Multichip Modules, Van Nostrand Reinhold, New York, USA, Chap. 1, pp. 1-100, 1994.
6.M. Abtew and G. Selvaduray, “Lead-Free Solders in Microelectronics”, Materials Science and Engineering R, Vol. 27, No. 5-6, pp. 95-141, 2000.
7.陳信文,陳立軒,林永森,陳志銘,電子構裝技術與材料,高立圖書有限公司, Chap. 14, pp. 115-122, 2004.
8.C. E. Ho, W. T. Chen and C. R. Kao, “Interactions between Solder and Metallization during Long-Time Aging of Advanced Microelectronic Packages”, Journal of Electronic Materials, Vol. 30, No. 4, pp. 379-385, 2001.
9.M. Hansen and K. Anderko, Constitution of Binary Alloys, McGraw-Hill, New York, pp. 1106-1107, 1958.
10.H. H. Manko, Solders and Soldering, 2nd Edn., McGraw-Hill, New York, Chap. 3, pp. 55-153, 1979.
11.J. S. Hwang, Solder Paste in Electronics Packaging, Van Nostrand Reinhold, New York, Chap. 4, pp. 71-121, 1992.
12.S. Jin, “Developing Lead-Free Solders: A Challenge and Opportunity”, Journal of the Minerals Metals & Materials Society (JOM), Vol. 45, No. 7, p. 13, 1993.
13.B. Trumble, “Get the Lead Out!”, IEEE Spectrum, Vol. 35, No. 5, pp. 55-60, 1998.
14.P. T. Vianco and D.R. Frear, “Issues in the Replacement of Lead-Bearing Solders”, Journal of the Minerals Metals & Materials Society (JOM), Vol. 45, No. 7, pp. 14-19, 1993.
15.A. Z. Miric and A. Girusd, “Lead-Free Alloys”, Soldering & Surface Mount Technology, Vol. 10, No. 1, pp. 19-25, 1998.
16.R. R. Tummala, Fundamentals of Microsystems Packaging, McGraw-Hill, Chap. 21, p. 856, 2001.
17.J. Glazer, “Metallurgy of Low Temperature Pb-Free Solders for Electronic Assembly”, Internationals Materials Reviews, Vol. 40, No. 2, pp. 65-92, 1995.
18.M. McCormack, S. Jin, H. S. Chen and D. A. Machusak, “New Lead-Free Sn-Zn-In Solder Alloys”, Journal of Electronic Materials, Vol. 23, No. 7, pp. 687-690, 1994.
19.C. H. Wang and S. W. Chen, “Sn-0.7wt. %Cu /Ni Interfacial Reactions at 250oC”, Acta Materialia, Vol. 54, No. 1, pp. 247-253, 2006.
20.謝哲松,王壬,無鉛銲錫對我電子產業之衝擊,化工資訊,第14之12期, pp. 61-66, 2000.
21.W. J. Tomlinson and A. Fullylove, “Strength of Tin-Based Soldered Joints”, Journal of Materials Science, Vol. 27, No. 21, pp. 5777-5782, 1992.
22.S. Kang and A. Sarkhel, “ Lead (Pb)-Free Solders for Electronic Packaging”, Journal of Electronic Materials, Vol. 23, No. 8, pp. 701-707, 1994.
23.W. Yang, L. E. Felton and R. W. Messler Jr., “The Effect of Soldering Process Variables on the Microstructure and Mechanical Properties of Eutectic Sn-Ag /Cu Solder Joints”, Journal of Electronic Materials, Vol. 24, No. 10, pp. 1465-1472, 1995.
24.C. Kanchanomai, Y. Miyashita and Y. Mutoh, “Low-Cycle Fatigue Behavior and Mechanisms of a Lead-Free Solder 96.5Sn /3.5Ag”, Journal of Electronic Materials, Vol. 31, No. 2, pp. 142-151, 2002.
25.N. C. Lee, “Getting Ready for Lead-Free Solders”, Soldering & Surface Mount Technology, Vol. 9, No. 2, pp. 65-68, 1997.
26.F. Guo, J. P. Lucas and K. N. Subramanian, “Creep Behavior in Cu and Ag Particle-Reinforced Composite and Eutectic Sn-3.5Ag and Sn-4.0Ag-0.5Cu Non-Composite Solder Joints”, Journal of Materials Science:Materials in Electronics, Vol. 12, No. 1, pp. 27-35, 2001.
27.M. McCormack, S. Jin, G. W. Kammlott and H. S. Chen, “New Pb-Free Solder Alloy with Superior Mechanical-Properties”, Applied Physics Letters, Vol. 63, No. 1, pp. 15-17, 1993.
28.P. T. Vianco and J. A. Rejent, “Properties of Ternary Sn-Ag-Bi Solder Alloys:Part I-Thermal Properties and Microstructural Analysis”, Journal of Electronic Materials, Vol. 28, No. 10, pp. 1127-1136, 1999.
29.P. T. Vianco and J. A. Rejent, “Properties of Ternary Sn-Ag-Bi Solder Alloys:Part II-Wettability and Mechanical Properties Analysis”, Journal of Electronic Materials, Vol. 28, No. 10, pp. 1138-1143, 1999.
30.L. Ye, Z. Liu and A. Tholen, “Recent Achievement in Microstructure Investigation of Sn-0.5Cu-3.4Ag Lead-Free Alloy by Adding Boron”, Advanced Packaging Materials: Processes, Properties and Interfaces, Proceedings-International Symposium, Braselton, GA, USA, pp. 262-267, 1999.
31.S. K. Kang, W. K. Choi, D. Y. Shih, D. W. Henderson and T. Gosselin, “Formation of Ag3Sn Plates in Sn-Ag-Cu Alloys and Optimization of their Alloy Composition”, Proceedings-Electronic Components and Technology Conference, New Orleans, LA, USA, pp. 64-70, 2003.
32.K. Zeng, V. Vuorinen and J. K. Kivilahti, “Intermetallic Reactions between Lead-Free SnAgCu Solder and Ni(P) /Au Surface Finish on PWBs”, Proceedings-Electronic Components and Technology Conference, Orlando, FL, USA, pp. 693-698, 2001.
33.I. E. Anderson, B. A. Cook, J. Harringa, R. L. Terpstra, J. C. Foley and O. Unal, “Effects of Alloying in Near-Eutectic Tin-Silver-Copper Solder Joints”, Materials Transactions (JIM), Vol. 43, No. 8, pp. 1827-1832, 2002.
34.T. B. Massalski, Binary Alloy Phase Diagrams, ASM, Metals Park, Ohio, USA, Volume 1, pp.540-541, 1986.
35.N. M. Poon, C. M. L. Wu, J. K. L. Lai and Y. C. Chan, “Residual Shear Strength of Sn-Ag and Sn-Bi Lead-Free SMT Joints After Thermal Shock”, IEEE Transactions on Advanced Packaging, Vol. 23, No. 4, pp. 708-714, 2000.
36.T. A. Powers, T. J. Singler and J. A. Clum, “Role of Tin Content in the Wetting of Cu and Au by Tin-Bismuth Solders”, Journal of Electronic Materials, Vol. 23, No. 8, pp. 773-778, 1994.
37.L. E. Felton, C. H. Raeder and D. B. Knorr, “The Properties of Tin-Bismuth Alloy Solders”, Journal of the Minerals Metals & Materials Society (JOM), Vol. 45, No. 7, pp. 28-32, 1993.
38.K. Suganuma, “Interface Phenomena in Lead-Free Soldering”, Environmentally Conscious Design and Inverse Manufacturing, Tokyo, pp. 620-625, 1999.
39.J. W. Morris Jr. and J. L. F. Goldstein, “Effect of Substrate on the Microstructure and Creep of Eutectic In-Sn”, Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science, Vol. 25, No. 12, pp. 2715-2722, 1994.
40.M. S. Yeh, “Effects of Indium on the Mechanical Properties of Ternary Sn-In-Ag Solders”, Metallurgical and Materials Transactions A, Vol. 34A, No. 2, pp. 361-365, 2003.
41.K. Suganuma and K. Niihara, “Wetting and Interface Microstructure between Sn-Zn Binary Alloys and Cu”, Journal of Materials Research, Vol. 13, No. 10, pp. 2859-2865, 1998.
42.S. Vaynman and M. E. Fine, “Flux Development for Lead-Free Solders Containing Zinc”, Journal of Electronic Materials, Vol. 29, No. 10, pp. 1160-1163, 2000.
43.K. L. Lin and C. L. Shih, “Wetting Interaction between Sn-Zn-Ag Solders and Cu”, Journal of Electronic Materials, Vol. 32, No. 2, pp. 95-100, 2003.
44.T. Takemoto and T. Funaki, “Role of Electrode Potential Difference between Lead-Free Solder and Copper Base Metal in Wetting”, Materials Transactions (JIM), Vol. 43, No. 8, pp. 1784-1790, 2002.
45.J. M. Song, G. F. Lan, T. S. Lui and L. H. Chen, “Microstructural Features and Vibration Fracture Behavior of Sn-Zn-Ag Solder Alloys”, IEEE CMPT, Internationl Symposium on Electronic Materials Packaging, Taiwan, pp. 276-281, 2002.
46.K. L. Lin, L. H. Wen and T. P. Liu, “The Microstructures of the Sn-Zn-Al Solder Alloys”, Journal of Electronic Materials, Vol. 27, No. 3, pp. 97-105, 1998.
47.K. L. Lin and T. P. Liu, “High-Temperature Oxidation of A Sn-Zn-Al Solder”, Oxidation of Metals, Vol. 5, No. 3-4, pp. 255-267, 1998.
48.S. P. Yu, M. H. Hon and M. C. Wang, “The Adhesion Strength of a Lead-Free Solder Hot-Dipped on Copper Substrate”, Journal of Electronic Materials, Vol. 29, No. 2, pp. 237-243, 2000.
49.M. McCormack and S. Jin, “Progress in the Design of New Lead-Free Solder Alloys”, Journal of the Minerals Metals & Materials Society (JOM), Vol. 45, No. 7, pp. 36-40, 1993.
50.A. M. Jackson, P. T. Vianco and I. Artaki, “Manufacturing Feasibility of Several Lead-Free Solders for Electronic Assembly”, Proceeding of the 7th International SAMPE Electronics Conference, Parsippany, NJ, USA, pp. 381-393, 1994.
51.T. Sugizaki, H. Nakao, T. Kimura, and T. Watanabe, “BGA Jointing Property of Sn-8.8 mass % Zn and Sn-8.0 mass % Zn-3.0 mass % Bi Solder on Electroless Nickel-Phosphorus /Immersion Gold Plated Substrates”, Materials Transactions (JIM), Vol. 44, No. 9, pp. 1790-1796, 2003.
52.R. A. Islam, B. Y. Wu, M. O. Alam, Y. C. Chan and W. Jillek, “Investigations on Microhardness of Sn-Zn Based Lead-Free Solder Alloys as Replacement of Sn-Pb Solder”, Journal of Alloys and Compounds, Vol. 392, No. 1-2, pp. 149-158, 2005.
53.F. Hua and J. Glazer, “Lead-Free Solders for Electronic Assembly”, TMS Annual Meeting, Design Reliability of Solders and Soder Interconnections, Orlando, USA, pp. 65-73, 1997.
54.J. M. Song and Z. M. Wu, “Variable Eutectic Temperature Caused by Inhomogeneous Solute Distribution in Sn-Zn System”, Scripta Materialia, Vol. 54, No. 8, pp. 1479-1483, 2006.
55.K. I. Chen and K. L. Lin, “The Microstructures and Mechanical Properties of the Sn-Zn-Ag-Al-Ga Solder Alloys-The Effect of Ga”, Journal of Electronic Materials, Vol. 32, No. 10, pp. 1111-1116, 2003.
56.K. L. Lin, K. I. Chen and P. C. Shih, “A Potential Drop-In Replacement for Eutectic Sn-Pb Solder-The Sn-Zn-Ag-Al-Ga Solder”, Journal of Electronic Materials, Vol. 32, No. 12, pp. 1490-1495, 2003.
57.C. Y. Liu, H. K. Kim and K. N. Tu, “Dewetting of Molten Sn on Au /Cu /Cr Thin-Film Metallization”, Applied Physics Letter, Vol. 69, No. 23, pp. 4014-4016, 1996.
58.C. E. Ho, R. Y. Tsai, Y. L. Lin and C. R. Kao, “Effect of Cu Concentration on the Reactions between Sn-Ag-Cu Solders and Ni”, Journal of Electronic Materials, Vol. 31, No. 6, pp. 584-590, 2002.
59.Y. D. Jeon, S. Nieland, A. Ostmann, H. Reichl and K. W. Paik, “Studies on the Interfacial Reactions between Electroless Ni UBM and 95.5Sn-4.0Ag-0.5Cu Alloy”, Proceedings-Electronic Components and Technology Conference, pp. 740-746, 2002.
60.A. Zribi, A. Clark, L. Zavalij, P. Borgesen and E. J. Cotts, “The Growth of Intermetallics Compounds at Sn-Ag-Cu Solder /Cu and Sn-Ag-Cu Solder /Ni Interfaces and The Associated Evolution of the Solder Microstructure”, Journal of Electronic Materials, Vol. 30, No. 6, pp. 1157-1164, 2001.
61.A. Hirose, T. Fujii, T. Imamura and K. F. Kobayashi, “Influence of Interfacial Reaction on Reliability of QFP Joints with Sn-Ag Based Pb Free Solders”, Materials Transactions (JIM), Vol. 42, No. 5, pp. 794-802, 2001.
62.A. D. Roming Jr., F. G. Yost and P. F. Hlava, “Intermetallic Layer Growth in Cu /Sn-In Solder Joints”, Proceedings-Annual Conference Microbeam Analysis Society, Bethlehem, USA, pp. 87-92, 1984.
63.K. Suganuma, T. Murata, H. Noguchi and Y. Toyoda, “Heat Resistance of Sn-9Zn Solder /Cu Interface with or without Coating”, Journal of Materials Research, Vol. 15, No. 4, pp. 884-891, 2000.
64.M. Date, T. Shoji, M. Fujiyoshi, K. Sato and K. N. Tu, “Ductile-to-Brittle Transition in Sn-Zn Solder Joints Measured by Impact Test”, Scripta Materialia, Vol. 51, No. 7, pp. 641-645, 2004.
65.K. Suganuma, “Advances in Lead-Free Electronics Soldering”, Current Opinion in Solid State and Materials Science, Vol. 5, No. 1, pp. 55-64, 2001.
66.S. P. Yu, M. C. Wang and M. H. Hon, “Formation of Intermetallic Compounds at Eutectic Sn-Zn-Al Solder /Cu Interface”, Journal of Materials Research, Vol. 16, No. 1, pp. 76-82, 2001.
67.Y. Chonan, T. Komiyama, J. Onuki, R. Urao, T. Kimura and T. Nagano, “Influence of P Content in Electroless Plated Ni-P Alloy Film on Interfacial Structures and Strength between Sn-Zn Solder and Plated Au /Ni-P Alloy Film”, Materials Transactions (JIM), Vol. 43, No. 8, pp. 1887-1890, 2002.
68.C. H. Yu, K. S. Kim, H. I. Kim and H. J. Jeon, “Influence of Interfacial Reaction Layer on Reliability of Chip-Scale Package Joint from Using Sn-37Pb and Sn-8Zn-3Bi Solder”, Journal of Electronic Materials, Vol. 34, No. 2, pp. 161-167, 2005.
69.S. K. Kang, W. K. Choi, M. J. Yim and D. Y. Shih, “Studies of the Mechanical and Electrical Properties of Lead-Free Solder Joints”, Journal of Electronic Materials, Vol. 31, No. 11, pp. 1292-1303, 2002.
70.M. O. Alam and Y. C. Chan, “Solid-State Growth Kinetics of Ni3Sn4 at the Sn-3.5Ag Solder /Ni Interface”, Journal of Applied Physics, Vol. 98, No. 12, pp. 123527(1)-123527(4), 2005.
71.C. W. Huang and K. L. Lin, “ Interfacial Reactions of Lead-Free Sn-Zn Based Solders on Cu and Cu Plated Electroless Ni-P /Au Layer under Aging at 150°C”, Journal of Materials Research, Vol. 19, No. 12, pp. 3560-3568, 2004.
72.C. M. Chuang, P. C. Shih and K. L Lin, “Mechanical Strength of Sn-3.5Ag-Based Solders and Related Bondings”, Journal of Electronic Materials, Vol. 33, No. 1, pp. 1-6, 2004.
73.V. Vuorinen, T. Laurila, H. Yu and J. K. Kiviahti, “Phase Formation between Lead-Free Sn-Ag-Cu Solder and Ni(P) /Au Finishes”, Journal of Applied Physics, Vol. 99, No. 2, pp. 023530(1)-023530(6), 2006.
74.G. Ghosh, “Interfacial Reaction between Multicomponent Lead-Free Solders and Ag, Cu, Ni and Pd Substrates”, Journal of Electronic Materials, Vol. 33, No. 10, pp. 1080-1091, 2004.
75.Y. L. Lin, W. C. Luo, Y. H. Lin, C. E. Ho and C. R. Kao, “Effects of the Gold Thickness of the Surface Finish on the Interfacial Reactions in Flip-Chip Solder Joints”, Journal of Electronic Materials, Vol. 33, No. 10, pp. 1092-1097, 2004.
76.G. Y. Jang, C. S. Huang, L. Y. Hsiao, J. G. Duh and H. Takahashi, “Mechanism of Interfacial Reaction for the Sn-Pb Solder Bump with Ni /Cu Under-Bump Metallization in Flip-Chip Technology”, Journal of Electronic Materials, Vol. 33, No. 10, pp. 1118-1129, 2004.
77.J. Y. Tsai, C. W. Chang, Y. C. Shieh, Y. C. Hu and C. R. Kao, “Controlling the Microstructures from the Gold-Tin Reaction”, Journal of Electronic Materials, Vol. 34, No. 2, pp. 182-187, 2005.
78.J. Lee, J. Kim and C. D. Yoo, “Thermosonic Bonding of Lead-Free Solder with Metal Bump for Flip-Chip Bonding”, Journal of Electronic Materials, Vol. 34, No. 1, pp. 96-102, 2005.
79.T. B. Massalski, Binary Alloy Phase Diagrams, ASM, Metals Park, Ohio, USA, Volume 1, p. 71, 1986.
80.J. M. Song, G. F. Lan, T. S. Lui and L. H. Chen, “Microstructure and Tensile Properties of Sn–9Zn–xAg Lead-Free Solder Alloys”, Scripta Materialia, Vol. 48, No. 8, pp. 1047-1051, 2003.
81.T. C. Chang, Y. T. Hsu, M. H. Hon and M. C. Wang, “Enhancement of the Wettability and Solder Joint Reliability at the Sn–9Zn–0.5Ag Lead-Free Solder Alloy–Cu Interface by Ag Precoating”, Journal of Alloys and Compounds, Vol. 360, No. 1-2, pp. 217-224, 2003.
82.T. B. Massalski, Binary Alloy Phase Diagrams, ASM, Metals Park, Ohio, USA, Volume 1, pp. 85-86, 1986.
83.M. Hansen and K. Anderko, Constitution of Binary Alloys, McGraw-Hill, New York, pp. 336-339, 1958.
84.T. B. Massalski, Binary Alloy Phase Diagrams, ASM, Metals Park, Ohio, USA, Volume 2, p. 1759, 1986.
85.T. B. Massalski, Binary Alloy Phase Diagrams, ASM, Metals Park, Ohio, USA, Volume 1, pp. 964-965, 1986.
86.T. B. Massalski, Binary Alloy Phase Diagrams, ASM, Metals Park, Ohio, USA, Volume 2, p. 2086, 1986.
87.B. F. Dyson, “Diffusion of Gold and Silver in Tin Single Crystals”, Journal of Applied Physics, Vol. 37, No. 6, pp. 2375-2377, 1966.
88.I. Dutta, C. Park and S. Choi, “Impression Creep Characterization of Rapidly Cooled Sn-3.5Ag Solders”, Materials Science and Engineering:A, Vol. 379, No. 1-2, pp. 401-410, 2004.
89.J. H. Lee, J. W. Park, D. H. Shin and Y. S. Kim, “Kinetics of the Au-Ni-Sn Ternary Intermetallic Layer Redeposition at the Solder /Under-Bump Metallurgy Interface during Aging Treatment”, Journal of Electronic Materials, Vol. 33, No. 1, pp. 28-33, 2004.
90.B. F. Dyson, T. R. Anthony and D. Turnbull, “Interstitial Diffusion of Copper in Tin”, Journal of Applied Physics, Vol. 38, No. 8, p. 3408, 1967.
91.F. H. Huang and H. B. Huntington, “Diffusion of Sb124, Cd109, Sn113 and Zn65 in Tin”, Physical Review B, Vol. 9, No. 4, pp. 1479-1488, 1974.
92.K. N. Tu, “Irreversible Process of Spontaneous Whisker Growth in Bimetallic Cu-Sn Thin-Film Reactions”, Physical Review B, Vol. 49, No. 3, pp. 2030-2034, 1994.
93.I. Shohji, T. Nakamura, F. Mori and S. Fujiuchi, “Interface Reaction and Mechanical Properties of Lead-Free Sn-Zn Alloy /Cu Joints”, Materials Transactions (JIM), Vol. 43, No. 8, pp. 1797-1801, 2002.
94.H. M. Lee, S. W. Yoon and B. J. Lee, “Thermodynamic Prediction of Interface Phases at Cu /Solder Joints”, Journal of Electronic Materials, Vol. 27, No. 11, pp. 1161-1166, 1998.
95.S. W. Yoon, W. K. Choi and H. M. Lee, “Interfacial Reaction between Sn-1Bi-5In-9Zn Solder and Cu Substrate”, Scripta Materialia, Vol. 40, No. 3, pp. 327-332, 1999.
96.T. B. Massalski, Binary Alloy Phase Diagrams, ASM, Metals Park, Ohio, USA, Volume 1, p. 7, 1986.
97.T. B. Massalski, Binary Alloy Phase Diagrams, ASM, Metals Park, Ohio, USA, Volume 1, pp. 337-338, 1986.
98.T. B. Massalski, Binary Alloy Phase Diagrams, ASM, Metals Park, Ohio, USA, Volume 1, pp. 18-19, 1986.
99.T. B. Massalski, Binary Alloy Phase Diagrams, ASM, Metals Park, Ohio, USA, Volume 1, pp. 980-981, 1986.
100.T. B. Massalski, Binary Alloy Phase Diagrams, ASM, Metals Park, Ohio, USA, Volume 1, pp. 253-254, 1986.
101.G. Petzow and G. Effenberg, Ternary Alloys:A Comprehensive Compendium of Evaluated Constitutional Data and Phase Diagrams, Volume 1, pp. 60-68, 1988.
102.C. H. Yu and K. L. Lin, “Early Stage Soldering Reaction and Interfacial Microstructure Formed between Molten Sn-Zn-Ag Solder and Cu Substrate”, Journal of Materials Research, Vol. 20, No. 5, pp. 1242-1249, 2005.
103.R. Hultgren, Selected Values of the Thermodynamic Properties of Binary Alloys, American Society for Metals, Ohio, p. 118, 1973.
104.R. Hultgren, Selected Values of the Thermodynamic Properties of Binary Alloys, American Society for Metals, Ohio, p. 120, 1973.
105.R. Hultgren, Selected Values of the Thermodynamic Properties of Binary Alloys, American Society for Metals, Ohio, p. 337, 1973.
106.R. Hultgren, Selected Values of the Thermodynamic Properties of Binary Alloys, American Society for Metals, Ohio, p. 816, 1973.
107.R. Hultgren, Selected Values of the Thermodynamic Properties of Binary Alloys, American Society for Metals, Ohio, p. 819, 1973.
108.T. Y. Lee, K. N. Tu and D. R. Frear, “Electromigration of Eutectic SnPb and SnAg3.8Cu0.7 Flip Chip Solder Bumps and Under-Bump Metallization”, Journal of Applied Physics, Vol. 90, No. 9, pp. 4502-4508, 2001.
109.S. Y. Jang, J. Wolf and K. W. Paik, “Under Bump Metallurgy Study for Pb-Free Bumping”, Journal of Electronic Materials, Vol. 31, No. 5, pp. 478-487, 2002.
110.T. Y. Lee, W. J. Choi, K. N. Tu, J. W. Jang, S. M. Kuo, J. K. Lin, D. R. Frear, K. Zeng and J. K. Kivilahti, “Morphology, Kinetics and Thermodynamics of Solid-State Aging of Eutectic SnPb and Pb-Free Solders (Sn-3.5Ag, Sn-3.8Ag-0.7Cu and Sn-0.7Cu) on Cu”, Journal of Materials Research, Vol. 17, No. 2, pp. 291-301, 2002.
111.Y. Zheng, C. Hillman, and P. McCluskey, “Intermetallic Growth on PWBs Soldered with Sn3.8Ag0.7Cu”, Proceedings-Electronic Components and Technology Conference, pp. 1226-1231, 2002.
112.K. S. Kim, S. H. Huh and K. Suganuma, “Effects of Fourth Alloying Additive on Microstructures and Tensile Properties of Sn-Ag-Cu Alloy and Joints with Cu”, Microelectronics Reliability, Vol. 43, No. 2, pp. 259-267, 2003.
113.M. J. Rizvi, Y. C. Chan, C. Bailey, H. Lu and M. N. Islam, “Effect of Adding 1 wt% Bi into the Sn-2.8Ag-0.5Cu Solder Alloy on the Intermetallic Formations with Cu-Substrate during Soldering and Isothermal Aging”, Journal of Alloys and Compounds, Vol. 407, No. 1-2, pp. 208-214, 2006.
114.C. B. Lee, S. B. Jung, Y. E. Shin and C. C. Shur, “Effect of Isothermal Aging on Ball Shear Strength in BGA Joints with Sn-3.5Ag-0.75Cu Solder”, Materials Transactions (JIM), Vol. 43, No. 8, pp. 1858-1863, 2002.
115.J. W. Nah, F. Ren, K. N. Tu, S. Venk and G. Camara, “Electromigration in Pb-Free Flip Chip Solder Joints on Flexible Substrates”, Journal of Applied Physics, Vol. 99, No. 2, pp. 023520(1)-023520(6), 2006.
116.M. He, Z. Chen and G. Qi, “Solid State Interfacial Reaction of Sn-Pb and Sn-3.5Ag Solders with Ni-P Under Bump Metallization”, Acta Materialia, Vol. 52, No. 7, pp. 2047-2056, 2004.
117.K. S. Kim, S. H. Huh and K. Suganuma, “Effects of Intermetallic Compounds on Properties of Sn-Ag-Cu Lead-Free Soldered Joints”, Journal of Alloys and Compounds, Vol. 352, No. 1-2, pp. 226-236, 2003.
118.K. W. Paik, Y. D. Jeon and M. G. Cho, “Interfacial Reactions and Bump Reliability of Various Pb-Free Solder Bumps on Electroless Ni-P UBMs”, Proceedings-Electronic Components and Technology Conference, pp. 675-682, 2004.
119.B. S. Berry and I. Ames, “Studies of the SLT Chip Terminal Metallurgy”, IBM Journal Research Development, Vol. 13, No. 3, pp. 286-296, 1969.
120.P. G. Kim, J. W. Jang, T. Y. Lee and K. N. Tu, “Interfacial Reaction and Wetting Behavior in Eutectic SnPb Solder on Ni /Ti Thin Films and Ni Foils”, Journal of Applied Physics, Vol. 86, No. 12, pp. 6746-6751, 1999.
121.A. Liu, H. K. Kim and K. N. Tu, “Spalling of Cu6Sn5 Spheroids in the Soldering Reaction of Eutectic SnPb on Cr /Cu /Au Thin Films”, Journal of Applied Physics, Vol. 80, No. 5, pp. 2774-2780, 1996.
122.G. Z. Pan, A. A. Liu, H. K. Kim and K. N. Tu, “Microstructures of Phased-in Cr-Cu /Cu /Au Bump-Limiting Metallization and its Soldering Behavior with High Pb Content and Eutectic PbSn Solders”, Applied Physics Letter, Vol. 71, No. 20, pp. 2946-2948, 1997.
123.P. G. Kim, K. N. Tu and D. C. Abbott, “Time- and Temperature- Dependent Wetting Behavior of Eutectic SnPb on Cu Leadframes Plated with Pd /Ni and Au /Pd /Ni Thin Films”, Journal of Applied Physics, Vol. 84, No. 2, pp. 770-775, 1998.
124.P. G. Kim, K. N. Tu and D. C. Abbott, “Soldering Reaction between Eutectic SnPb and Plated Pd /Ni Thin Films on Cu Leadframe”, Applied Physics Letter, Vol. 71, No. 1, pp. 61-63, 1997.
125.Y. D. Jeon, K. W. Paik, A. Ostmann and H. Reichl, “Effects of Cu Contents in Pb-Free Solder Alloys on Interfacial Reactions and Bump Reliability of Pb-Free Solder Bumps on Electroless Ni-P Under-Bump Metallurgy”, Journal of Electronic Materials, Vol. 34, No. 1, pp. 80-90, 2005.
126.F. Zhang, M. Li, C. C. Chum and Z. C. Shao, “Effects of Substrate Metallization on Solder /Under-Bump Metallization Interfacial Reactions in Flip-Chip Packages during Multiple Reflow Cycles”, Journal of Electronic Materials, Vol. 32, No. 3, pp. 123-130, 2003.
127.C. K. Shin, Y. J. Baik and J. Y. Huh, “Effects of Microstructural Evolution and Intermetallic Layer Growth on Shear Strength of Ball-Grid-Array Sn-Cu Solder Joints”, Journal of Electronic Materials, Vol. 30, No. 10, pp. 1323-1331, 2001.
128.S. W. Kim, J. W. Yoon and S. B. Jung, “Interfacial Reactions and Shear Strengths between Sn-Ag-based Pb-Free Solder Balls and Au /EN /Cu Metallization”, Journal of Electronic Materials, Vol. 33, No. 10, pp. 1182-1189, 2004.
129.J. W. Jang, D. R. Frear, T. Y. Lee and K. N. Tu, “Morphology of Interfacial Reaction between Lead-Free Solders and Electroless Ni-P Under Bump Metallization”, Journal of Applied Physics, Vol. 88, No. 11, pp. 6359-6363, 2000.
130.M. Li, F. Zhang, W. T. Chen, K. Zeng, K. N. Tu, H. Balkan and P. Elenius, “Interfacial Microstructure Evolution between Eutectic SnAgCu Solder and Al /Ni(V) /Cu Thin Films”, Journal of Materials Research, Vol. 17, No. 7, pp. 1612-1621, 2002.
131.H. K. Kim, K. N. Tu and P. A. Totta, “Ripening-Assisted Asymmetric Spalling of Cu-Sn Compound Spheroids in Solder Joints on Si Wafers”, Applied Physics Letter, Vol. 68, No. 16, pp. 2204-2206, 1996.
132.C. Y. Liu, C. Chen, A. K. Mal and K. N. Tu, “Direct Correlation between Mechanical Failure and Metallurgical Reaction in Flip Chip Solder Joints”, Journal of Applied Physics, Vol. 85, No. 7, pp. 3882-3886, 1999.
133.S. J. Wang, H. J. Kao and C. Y. Liu, “Correlation between Interfacial Reactions and Mechanical Strengths of Sn(Cu) /Ni(P) Solder Bumps”, Journal of Electronic Materials, Vol. 33, No. 10, pp. 1130-1136, 2004.
134.Metals Handbook, American Society for Metals, 7031 Euclid Avenue Cleveland, Ohio, pp. 78-81, 1939.
135.H. E. Boyer and T. Lyman, Metals Handbook 8th Edition Vol. 1:Properties and Selection of Metals, American Society for Metals, Metals Park, Novelty, Ohio, pp. 1142-1217, 1976.
136.K. Chinthakindi, D. Bhusari, B. P. Dusch and P. A. Hohl, “Recrystallization and Intermetallic Formation in Au /Al and Au /Zn Bimetallic Films”, Journal of Electronic Materials, Vol. 31, No. 10, pp. 1080-1089, 2002.
137.H. K. Kim, H. K. Liou and K. N. Tu, “Morphology of Instability of the Wetting Tips of Eutectic SnBi, Eutectic SnPb and Pure Sn on Cu”, Journal of Materials Research, Vol. 10, No. 3, pp. 497-504, 1995.
138.J. N. Lalena, N. F. Dean and M. W. Weiser, “Experimental Investigation of Ge-Doped Bi-11Ag as a New Pb-Free Solder Alloy for Power Die Attachment”, Journal of Electronic Materials, Vol. 31, No. 11, pp. 1244-1249, 2002.
139.N. Jiang, J. A. Clum, R. R. Chromik and E. J. Cotts, “Thermal Expansion of Several Sn-based Intermetallic Compounds”, Scripta Materialia, Vol. 37, No. 12, pp. 1851-1854, 1997.
140.M. He, W. H. Lau, G. Qi and Z. Chen, “Intermetallic Compound Formation between Sn-3.5Ag Solder and Ni-based Metallization during Liquid State Reaction”, Thin Solid Films, Vol. 462-463, pp. 376-383, 2004.
141.C. Y. Liu, K. N. Tu, T. T. Sheng, C. H. Tung, D. R. Frear and P. Elenius, “Electron Microscopy Study of Interfacial Reaction between Eutectic SnPb and Cu /Ni(V) /Al Thin Film Metallization”, Journal of Applied Physics, Vol. 87, No. 2, pp. 750-754, 2000.
142.K. S. Kim, T. Matsuura and K. Suganuma, “Effects of Bi and Pb on Oxidation in Humidity for Low-Temperature Lead-Free Solder Systems”, Journal of Electronic Materials, Vol. 35, No. 1, pp. 41-47, 2006.
143.Y. S. Kim, K. S. Kim, C. H. Hwang and K. Suganuma, “Effect of Composition and Cooling Rate on Microstructure and Tensile Properties of Sn–Zn–Bi Alloys”, Journal of Alloys and Compounds, Vol. 352, No. 1-2, pp. 237-245, 2003.
144.C. M. L. Wu, M. L. Huang, J. K. L. Lai and Y. C. Chan, “Developing a Lead-Free Solder Alloy Sn-Bi-Ag-Cu by Mechanical Alloying”, Journal of Electronic Materials, Vol. 29, No. 8, pp. 1015-1020, 2000.
145.M. L. Huang, C. M. L. Wu, J. K. L. Lai and Y. C. Chan, “Microstructural Evolution of a Lead-Free Solder Alloy Sn-Bi-Ag-Cu Prepared by Mechanical Alloying during Thermal Shock and Aging”, Journal of Electronic Materials, Vol. 29, No. 8, pp. 1021-1026, 2000.
146.M. Kamal, M. S. Meikhail, E. B. Abu Bakr and E. S. Gouda, “Structure, Electrical, Mechanical and Wettability of Quenched Lead-Free Solder Alloys”, Radiation Effects & Defects in Solids, Vol. 160, No. 1-2, pp. 37-44, 2005.
147.B. A. Cook, I. E. Anderson, J. L. Harringa and R. L. Terpstra, “Effect of Heat Treatment on the Electrical Resistivity of Near-Eutectic Sn-Ag-Cu Pb-Free Solder Alloys”, Journal of Electronic Materials, Vol. 31, No. 11, pp. 1190-1194, 2002.
148.B. S. Chiou, K. C. Liu, J. G. Duh and P. S. Palanisamy, “Intermetallic Formation on the Fracture of Sn /Pb Solder and Pd /Ag Conductor Interfaces”, IEEE Transactions on Components, Hybrids and Manufacturing Technology, Vol. 13, No. 2, pp. 267-274, 1990.
149.J. W. Yoon, S. W. Kim, J. M. Koo and D. G. Kim and S. B. Jung “Reliability Investigation and Interfacial Reaction of Ball-Grid-Array Packages Using the Lead-Free Sn-Cu Solder”, Journal of Electronic Materials, Vol. 33, No. 10, pp. 1190-1199, 2004.
150.H. P. R. Frederikse, R. J. Fields and A. Feldman, “Thermal and Electrical Properties of Copper-Tin and Nickel-Tin Intermetallics”, Journal of Applied Physics, Vol. 72, No. 7, pp. 2879-2882, 1992.
151.C. N. Liao and C. T. Wei, “Effect of Intermetallic Compound Formation on Electrical Properties of Cu /Sn Interface during Thermal Treatment,” Journal of Electronics Materials, Vol. 33, No. 10, pp. 1137-1143, 2004.
152.C. D. Hodgman and W. R. Veazey, Handbook of Chemistry and Physics, Chemical Rubber Publishing Co., pp. 2626-2633, 1977.
153.F. Seitz, The Modern Theory of Solids, McGraw-Hill, New York, pp. 10-12, 1940.
154.S. K. Kang, J. Horkans, P. C. Andricacos, R. A. Carruthers, J. Cotte, M. Datta, P. Gruber, J. M. E. Harper, K. Kwietniak, C. Sambucetti, L. Shi, G. Brouillette and D. Danovitch, “Pb-Free Solder Alloys for Flip Chip Applications”, Proceedings-Electronic Components and Technology Conference, San Diego, CA, USA, pp. 283-288, 1999.
155.H. C. Ohanian, Physics 2nd Edition Expanded, W. W. Norton & Company, Inc., pp. 685-687, 1985.
156.Y. Sogo, T. Hojo, H. Iwanishi, A. Hirose, K. F. Kobayashi, A. Yamaguchi, A. Furusawa, and K. Nishida, “Influence of the Interfacial Reaction Layer on Reliability of CSP Joints Using Sn-8Zn-3Bi Solder and Ni/Au Plating”, Materials Transactions, Vol. 45, No. 3, pp. 734-740, 2004.
157.A. A. El-Daly, “Superplasticity in a Relatively Low Melting Point Sn-31.1Pb-3.4Zn Solder Alloy”, Physica Status Solidi A, Vol. 200, No. 2, pp. 333-338, 2003.
158.S. K. Kang, P. A. Lauro, D. Y. Shih, D. W. Henderson and K. J. Puttlitz, “Microstructure and Mechanical Properties of Lead-Free Solders and Solder Joints Used in Microelectronic Applications”, IBM Journal Research Development, Vol. 49, No. 4-5, pp. 607-620, 2005.
159.E. Bradley and J. Hranisavljevic, “Characterization of the Melting and Wetting of Sn-Ag-X Solders”, Proceedings-Electronic Components and Technology Conference, Las Vegas, NV, USA, pp. 1443-1448, 2000.
160.T. Ogawa, R. Kaga and T. Ohsawa, “Microstructure and Mechanical Properties Predicted by Indentation Testing of Lead-Free Solder”, Journal of Electronic Materials, Vol. 34, No. 3, pp. 311-317, 2006.
161.E. P. Lopez, P. T. Vianco and J. A. Rejent, “Solderability Testing of 95.5Sn-3.9Ag-0.6Cu Solder on Oxygen-Free High-Conductivity Copper and Au-Ni-Plated Kovar”, Journal of Electronic Materials, Vol. 32, No. 4, pp. 254-260, 2003.
162.E. P. Lopez, P. T. Vianco and J. A. Rejent, “Solderability Testing of Sn-Ag-XCu Pb-Free Solders on Copper and Au-Ni-Plated Kovar Substrates”, Journal of Electronic Materials, Vol. 34, No. 3, pp. 299-310, 2005.
163.S. C. Kang, C. Kim, J. Muncy and D. F. Baldwin, “Experimental Wetting Dynamics Study of Eutectic and Lead-Free Solders with Various Fluxes, Isothermal Conditions and Bond Pad Metallizations”, IEEE Transactions on Advanced Packaging, Vol. 28, No. 3, pp. 465-474, 2005.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top