跳到主要內容

臺灣博碩士論文加值系統

(44.192.247.184) 您好!臺灣時間:2023/01/30 13:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蕭文助
研究生(外文):Wen-Chu Hsiao
論文名稱:離子掺雜於積體電路中介電層及源極/汲極的應用與性質之研究
論文名稱(外文):Applications and Characterizations of Doped Ions in Dielectric Materials and Source/Drain in Integrated Circuits (IC)
指導教授:劉全璞
指導教授(外文):Chuan-Pu Liu
學位類別:博士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:127
中文關鍵詞:摻雜對比氟化矽玻璃介電材料離子佈植磷化矽玻璃
外文關鍵詞:PSGFSGdielectric materialDopant contrast
相關次數:
  • 被引用被引用:1
  • 點閱點閱:433
  • 評分評分:
  • 下載下載:79
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要的目的在研究離子摻雜於積體電路中之元件區的源極/汲極以及介電層薄膜之性質與分析。吾人利用掃描式電子顯微鏡之二次電子激發原理定義離子佈植於源極及汲極的輪廓;除此之外並探討利用高密度電漿化學氣相沉積之金屬導線前介電層及金屬導線間介電層的化學及物理性質。

在本論文的第一部份將討論利用掃描式電子顯微鏡的二次電子影像定義離子佈植的輪廓。掃描式電子顯微鏡的二次電子影像已漸漸地被廣泛用來描繪二維的離子佈植的輪廓。然而摻雜(Doping)所造成的影像對比機制到目前為止還不是很清楚。本研究發現另一個對影像明暗對比有顯著貢獻的因素是來自p或n型金氧半電晶體的源極/汲極上矽化鈷結構所造成的應力應變。實驗結果顯示二次電子影像所呈現的亮區(Bright contrast)輪廓與利用穿透式電子顯微鏡(TEM)暗視野(Dark Field)技術拍攝到的應變輪廓範圍相當。另外,也證實在p型金氧半電晶體元件上的摻雜對比(Dopant Contrast)強度比實驗控片上的摻雜對比高出45%。因此可歸納出,p型或n型電晶體上二次電子訊號強度的增強是來自於矽化鈷結構在摻雜區域形成的應變而造成本區能帶的彎曲,使得二次電子的激發量增加。

本論文的第二部分將探討利用高密度電漿化學氣相沉積(HDP CVD)所成長的磷化矽玻璃(Phosphosilicate glass; PSG)當作金屬連結導線前介電層(Pre-metal dielectric; PMD)之物理與化學性質。磷矽玻璃薄膜是利用含磷的前驅物(PH3)與矽甲烷(SiH4)和氧氣在低於550oC下沉積而成。將初鍍的磷化矽玻璃薄膜在400oC的爐內退火10-30分鐘模擬在積體電路製程中金屬前介電層所經歷的熱循環。除此之外,還利用925oC的快速對退火製程(Rapid Thermal Process; RTP)10-30秒,測試磷矽玻璃在接近玻璃轉換溫度時的化學與物理性質。本實驗中利用各種分析儀器檢測磷矽玻璃薄膜的特性,如傅立葉紅外線吸收光譜儀(FTIR)、X-ray螢光分析儀(XRF)及X光化學分析儀(XPS)等。並測量PSG薄膜在熱循環過程中的應力磁滯現象,用以檢測磷矽玻璃薄膜在元件製程中經歷熱循環過程的熱穩定性。結果顯示有部分殘留的未鍵結的磷和P=O的化合物存在初鍍的PSG薄膜內,但後續的熱處理使得這些自由的磷原子與矽氧基(Si-O)產生再鍵結。除此之外,紅外線吸收光譜所標示的P=O吸收峰的強度經過退火後增強的結果與光化學分析儀所測得的結果一致。

最後一部份吾人將探討在積體電路中作為金屬導線間介電層(Inter-Metal Dielectric; IMD)的氟矽玻璃薄膜(Fluorosilicate Glass; FSG) 的性質。高密度電漿化學氣相沉積所沉積的氟矽玻璃薄膜由於它的低介電常數以及良好的間隙填充能力已經成功的被運用在超大型積體電路中的金屬導線間介電層。然而,在沉積過程中由於濺擊蝕刻所造成的溫度上升已經成為此薄膜性質不穩定的主要因素。因此,本研究利用沉積系統中獨立的氦氣冷卻系統(Independent Helium Cooling; IHC)將氟矽玻璃薄膜的沉積溫度控制在410oC~460oC之間。並檢驗在此溫度區間所沉積的薄膜性質:如氟的濃度及分佈、反射率、介電常數及間隙填充能力(Gap filling)與氦氣冷卻系統的關係。結果顯示,氟濃度隨著沉積時氦氣壓力的上升而增加,並且有較多的未鍵結氟原子存在薄膜中,這些未鍵結的氟原子可能會造成薄膜的缺陷,降低元件的良率; 同時,利用此氦氣冷卻系統,將氦氣壓力控制在9mtorr時得到一介電常數為3.43且擁有良好間隙填充能力的氟矽玻璃薄膜。
The objectives of this study are to investigate characterizes of ions doping in device’s source/drain regions and dielectric films used in integrated circuits (IC). The emission of secondary electron (SE) from scanning electron microscopy (SEM) was used to define the dopant profile of the source/drain region. In addition to, the chemical and physical properties of pre-metal dielectric (PMD) and inter-metal dielectric (IMD) deposited by high-density plasma chemical vapor deposition (HDP CVD) also investigate.

In the first section, secondary electron (SE) imaging with scanning electron microscopy has been used for two-dimensional dopant profiling. However, the mechanism of dopant contrast is still not yet understood. Here we propose another significant contribution from interface strain for the source/drain regions in p- and n-type metal-oxide-semiconductor (MOS) devices. The results show that the width of the dopant profile by SE imaging agrees well with the strain profile by dark-field technique with transmission electron microscopy. We demonstrate that the dopant contrast of the p-MOS device by SE imaging is higher than a test wafer by 45%. The enhanced SE signals for both p-MOS and n-MOS devices are caused by band bending through CoSi2-induced strain.

In the second part, high-density plasma chemical-vapor deposition (HDP CVD) phosphosilicate glass (PSG) films were evaluated for the application of pre-metal dielectric materials. The PSG films were deposited using phosphorous-related precursors reacted with silane and oxygen at a temperature ≦ 550℃. The as-deposited films were subsequently furnace-annealed at 400℃ for 10 to 30 minutes to simulate the effect of thermal budget on pre-metal dielectric layers in the current integrated circuit scheme. In addition, the PSG films were also annealed by rapid thermal processing at 925℃ for 10 to 30 seconds, to examine film stability near glass transformation temperature. Fourier transform infrared spectroscopy (FTIR), stress measurement, X-ray fluorescence analysis, and X-ray photoelectron spectroscopy (XPS) were used to characterize the PSG films. Film stress-measurement was used to examine the stress hysteresis of the PSG films in the thermal-budget process. The results show that residual inactive phosphorous and compounds with P=O bonds are present in the as-deposited PSG films. Some residual phosphorous became active after the thermal annealing. The FTIR results that show an increase in the P=O group upon numerous annealing treatments are in agreement with the XPS analysis.

In the last, the characterizations of fluorosilicate glass used as inter-metal dielectric material in integrated circuit (IC) will be discussed. High-density plasma chemical vapor deposited fluorosilicate glass (FSG) has been successfully used for the inter-metal dielectric material in ultra large semiconductor integration manufacturing due to its low dielectric constant and stable gap-filling capability. However, temperature rise and related effects due to sputter etch from the deposition process have become major concerns for film properties. In this paper, an independent helium cooling system was employed to control a suitable temperature range from 410ºC to 460ºC during FSG deposition. Subsequently, film properties including fluorine concentration, distribution, refractive index, dielectric constant and gap-filling capability were thus examined as a function of He pressure used in the cooling system. The results show that both deposition rate and fluorine concentration increase with increasing helium pressure, however, more fluorine becomes inactive, which might be present as defects. We have shown that a FSG film with a dielectric constant down to 3.43 as well as good gap-filling capability can be achieved when employing this new cooling system with 9 mtorr helium pressure.
中文摘要 Ⅰ
英文摘要 Ⅲ
誌謝 Ⅵ
總目錄 Ⅶ
表目錄 XI
圖目錄 XII

第一章 前言與研究目的 1
1-1 前言 1
1-2 研究目的 5

第二章 理論基礎 6
2-1 積體電路發展簡史 6
2-2 離子佈植 11
2-2-1 緒論 11
2-2-2離子佈值的基本原理 16
2-3 掃描式電子顯微鏡成像原理 25
2-3-1 緒論 25
2-3-2 成像原理 29
2-3-3 摻雜對比與二次電子理論 32
2-3-4 影響二次電子解析度的因素 36
2-4 介電材料 41
2-4-1 緒論 41
2-4-2 低介電常數材料的基本特性 41
2-4-3 材料的介電行為 49
2-4-4 介電常數材料的要求 53
2-4-5 介電材料介紹 56

第三章 實驗方法與步驟 62
3-1 實驗流程 62
3-1-1 利用掃描式電子顯微鏡定義離子佈植在汲極與源極的分佈流程圖 62
3-1-2 介電常數材料性質分析之實驗流程圖 63
3-2 試片製備 64
3-2-1 離子佈植試片之製備 64
3-2-2 介電薄膜之製備 70
3-3分析儀器 74
3-3-1 掃描式電子顯微鏡(SEM) 74
3-3-2 穿透式電子顯微鏡(TEM) 75
3-3-3 聚焦離子束顯微鏡(FIB) 75
3-3-4 傅立葉轉換紅外線光譜儀(FTIR) 76
3-3-5 二次離子質譜儀(SIMs) 76
3-3-6 多波長光學反射儀 77
3-3-7 化學分析電子光譜儀(ESCA) 78
3-3-8電容-電壓與電流-電壓量測分析儀 79
3-3-9 熱脫附質譜分析儀 81
3-3-10 曲率應力法 81

第四章 利用掃描式電子顯微鏡定義金氧半電晶體元件中離子佈植在汲極與源極的輪廓 83
4-1 緒論 83
4-2 試片準備方法對明暗對比的影響 84
4-3 金氧半電晶體元件上汲極及源極離子佈植的輪廓 85

第五章 熱處理對高密度電漿化學氣相沉積(HDP CVD)含磷矽玻璃(PSG)的影響 91
5-1 緒論 91
5-2 熱處理對磷矽玻璃鍵結的影響 92
5-3 熱處理對磷矽玻璃之厚度與磷濃度的影響 93
5-4 熱應力 94

第六章 高密度電漿化學氣相沉積(HDP-CVD)之沉積參數對金屬間介電層(IMD)含氟矽玻璃(FSG)之性質的影響 106
6-1 緒論 106
6-2沉積溫度對氟矽玻璃物理性質的影響 107
6-3 沉積溫度對氟濃度及分佈的影響 107
6-4 介電常數值(k)與間隙填充能力 109

第七章 總結論 118

參考文獻 120
自述
1. 摩爾定律, Intel 公司版本,摘自http://www.intel.com/technology/silicon/mooreslaw/

2. A. C. Adams and C. D. Capio, “ Planarization of phosphorous- Doped Silicon Dioxide,” J. Electrochem. Soc., 128, 423 (1981).

3. P. J. Wolf, “Overview of Dual Damascene Cu/Low-k Interconnect”, International Sematech., Augest (2003).

4. R. H. Havemann, “Overview of Process Integration Issue for Low k Dielectric”, Mat. Res. Soc. Symp. Proc., 511, 3 (1998).

5. W. S. Yoo, R. Swope, and D. Mordo, “Plasma Enhanced Chemical Vapor Deposition and Characterization of Fluorine Doped SiliconDioxide Films”, Jpn. J. Appl. Phys., 36, 267 (1997).

6. R. Swope, W. S. Yoo, J. Hsieh, H. Nijenhuis, S. Schuhmann, F. Nagy, and D. Mordo, in Proceedings of Dielectric for ULSI Multilevel Interconnection (1996).

7 Hong Xiao著, 羅正中, 張鼎張譯, “半導體製造技術導論”, 學銘圖書, 台灣, 2004.

8. N. Sherwani, Algorithms for VLSI physical Design Automation, 3 rd. Ed., (1999).

9. David G. Baldwin, Michael E. Williams, and Patrick L, Murphy, Chemical Safety Handbook for the Semiconductor/ Electronics Industry, 2d ed., OME Press, Beverly, MA, 1996.

10. S. M. Sze, Physics of Semiconductor Devices, 2d ed., John Wiley & Sons, Inc., New York, 1981.

11. W. Shockley, “The Theory of p-n Jucntions in Semiconductor and p-n Junction Transistors”, Bell System Technical Journal, 28, 435 (1949).

12. J. F. Ziegler, Ion Implantation- Science and Technology, Ion Implantation Technology Co., Yorktown, NY, 1996.

13. S. M. Sze, VLSI Technology, 2d ed., McGraw- Hill Companies, Inc., New York, 1988.

14. M. I. Current, Basics of Ion Implantation, Ion Beam Press, Austin, TX, 1997.

15. Wells and Oilver C., Scanning Electron Microscopy, McGraw-Hill, Chicago, ILL, 1968.

16. 楊永盛, 楊慶宗, 電子顯微鏡原理與應用 (文京圖書).

17. Y. C. Lin and T. E. Everhart, “Study on voltage contrast in SEM”, J. Vac. Sci. Technol. B, 16, 1856 (1979).

18. D. D. Perovic, M. R. Castell, A. Howie, C. Lawoie, T. Tiedje, J. S. W. Cole, “Field-emission SEM imaging of compositional and doping layer semiconductor superlattices”, Ultermicroscopy, 58, 104 (1995).

19. C. P. Sealy, M. R. Castell, and Wilshaw, J. Electron Microsc., 49, 311 (2000).

20. D. C. Joy and C. Joy, “Low Voltage Scanning Electron Microscopy”, Micron, 27, 247 (1996).

21. C. E. Mohler, B. G. Landes, G. F. Meyers, B. J. Kern, K. B. Ouellette, and S. Magonov, “Porosity Characrterization of porous SiLK Dielectric Films”, AIP Conf. Proc., 683, 562 (2003).

22. J. C. Maisonobe, G. Passemard, C. Lacour, P. Motte, P. Noel, J. Torres, “SiLK Compatibility with IMD Process Using Copper Metallization”, Microelectronics Engineering, 50, 25 (2000).

23. B. Pang, W. F. Yau, P. Lee, and M. Nalk, “A New CVD Process for Damascene Low k Applications”, Semiconductor FABTECH 10th Edition, 285 (1999).

24. S. M. Han and E. S. Aydil, “Reasons for lower dielectric constant of fluorinated SiO2 films”, J. Appl. Phys., 83, 2172 (1998).

25. D. Shamiryanl, T. Abell, F. Iacopil, and K. Maxel, “Low-k dielectric Materials”, MaterialsToday, 34, January 2004.

26. K. –M. Chang, J. –Y Yang and L. –W. Chen, “A novel technology to form air gap for ULSI application” IEEE Electron Dev. Lett., 20, 185 (1999).

27. S. R. Wilson, C. J. Tracy, and J. L. Freman, Jr., Handbook of Multilevel Metallization for Integrated Circuits, Chap. 1 (Noyes Publication, Park Ridge, New Jersey, USA, 1993).

28. G. W. Ray, “Low dielectric constant materials integration challenges,” Mat. Res. Soc. Symp. Proc., 511, 199(1998).

29. H. Z. Massoud, J. D. Plummer, and E. A. Irene, “Thermal Oxidation of Silicon in dry oxygen: Growth-rate enhancement in the thin region I.”, J. Electrochem. Soc., 132, 2685(1985).

30. M. Hammond, “Introduction to chemical vapor deposition,” Solid state Technology, Dec., 61(1979).31. V. G. Plotnichenko, V. O. Sokolov, V. V. Koltashev, and E. M. Dianov, “On the Structure of Phosphosilicate Glasses”, J. Non-Cryst. Solids, 306, 209 (2002).

31. 張簡旭珂, “氟化有機矽玻璃作為做為積體電路製程中低介電常數材料應用之特性研究”,Taiwan, 2004.

32. H. Treichel, G. Ruhl, P. Ansmann, R. Wurl. Ch. Muller, and M. Dietlmeier, “Low dielectric constant materials for interlayer dielectric,” Microelectronic Engineering, 40, 1 (1998).

33. P. Hirsch, Electron Microscopy of Thin Crystals (ROBERT E. KRIEGER, New York, 1997).

34. Lucille A. Giannuzzi, and Fred A. Stevie, “Introduction to focus ion beam: instrumentation, theory, techniques, and practice.” Springer, New York, 2005.

35. Ruth E. Whan, ASM Handbook-Materials Characterization Vol. 10 (ASM, 1986).

36. 蘇炎坤,“二次離子質譜儀之分析與應用”, 科儀新知, 9, 9 (1988).

37. 吳志寧, “二次離子質譜儀分析技術在半導體製程上的應用”, 電子月刊, 9, 138 (2000).

38. J. C. Jans, R. W. Hollering, and M. Erman, in Analysis of microelectronic materials and devices, M Grasserbauer and H. W. Werner, editor, (John Wiley & Sons, NY,1996).

39. 莊琇惠, “化學分析電子儀之分析與應用”, 電子月刊, 7, 128 (2001).

40. 潘扶民,“四極質譜儀與表面科學”,科儀新知, 13, 33(1991).

41. A.K. Shinha, H. J. Levinstein, and T. E. Smith, “Thermal stresses and cracking resistance of dielectric films (SiN, Si3N4, and SiO2) on Si substrate,” J. Appl. Phys., 49, 2423 (1978).

42. G. G. Stoney, Proc. R. Soc. London, Ser. A 82, 172 (1909).

43 V. A., P. J. Chen, J. T. Gray, C. F. Machala, L. K. Magel, and M. –C. Chang, “High-resolution two-dimensional dopant characterization using secondary ion mass spectrometry”, J. Vac. Sci. Technol. B, 18, 580 (2000).

44. K. Kobayashi, H. Yamada, and K. Matsushige, Appl. Phys. Lett., 81, 2629 (2002).

45. Z. Wang, T. Hirayama, K. Sasaki, H. Saka, and N. Kato, “Electron holographic characterization of electrostatic potential distributions in a transistor sample fabricated by focus ion beam”, Appl. Phys. Lett., 80, 246 (2002).

46. X. –D. Wang, R. Mahaffy, K. Tan, C. K. Shih, J. J. Lee, and M. Foisy, “Two-dimensional dopant profile of 0.2 um metal-oxide-semiconductor field effect transistors”, J. Vac. Sci. Technol. B, 18, 560 (2000).

47. I. Müllerová, M. M. El-Gomati, and L. Frank, Ultramicroscopy, 93, 223 (2002).

48. R.Turan, D. D. Perovic, and D. C. Houghton, “Mapping electrically active dopant profiles by field-emission scanning electron microscopy”, Appl. Phys. Lett., 69, 1593 (1996).

49. C. Schönjahn, C. J. Humphreys, and M. Glick, “Energy-filtered imaging in a field-emission scanning electron microscope for dopant mapping in semiconductors”, J. Appl. Phys., 92, 7667 (2002).

50. S. L. Elliott, R. F. Broom, and C. J. Humphreys, “Dopant profiling with the scanning electron microscope-A study of Si”, J. Appl. Phys., 91, 9116 (2002).

51. C. Schönjahn, R. F. Broom, C. J. Humphreys, A. Howie, and S. A. M. Mentink, “Optimizing and quantifying dopant mapping using a scanning electron microscope with a through-the-lens detector”, Appl. Phys. Lett., 83, 293 (2003).

52. A. Armigliato, R. Balboni, S. Frabboni, A. Benedetti, A. G. Cullis, G. P. Carnevale, P. Colpani, and G. Pavia, “Strain characterization of shallow trench isolation structures on a nanometer scale by convergent beam electron diffraction”, Mat. Sci. in Semiconductor Proc., 4, 97 (2001).

53. C. W. T. Bulle-Lieuwma, D. E. W. Vandenhoudt, J. Henz, N. Onda, and H. von Känel, “Investigation of the defect structure of thin single-crystalline CoSi2 (B) film on Si (111) by transmission electron microscopy”, J. Appl. Phys., 73, 3220 (1992).

54. C. J. Choi, T. Y. Seong, K. M. Lee, J. H. Lee, Y. J. Park, and H. D. Lee, “Abnormal junction profile of submicrometer complementary metal oxide semiconductor devices with Co silicidation and shallow trench isolation”, Electrochem. Solid-State Lett., 4, G88 (2001).

55. M. R. Castell, T. W. Simpson, I. V. Mitchell, D. D. Perovic, and J. –M. Baribeau, “Deactivation and diffusion of boron in ion-implanted silicon studied by secondary electron mapping”, Appl. Phys. Lett., 74, 2304 (1999).

56. E. Oborina, S. Campbell, A. M. Hoff, R. Gilbert, and E. Persson, “Hydrogen-related mobile charge in the phosphosilicate glass-SiO2-Si structure”, J. Appl. Phys., 92, 6773 (2002).

57. A. Modelli and S. Manzini, “Dielectric relaxation in chemical vapor deposited phosphosilicate glass”, J. Appl. Phys., 71, 5123 (1992).

58. J. E. Yu, J. Qiao, B. Jin, P. Gopalan, and J. G. Feng, “High density plasma deposited phosphosilicate glass as pre-metal dielectric for advanced self-aligned contacts in sub 0.25 μm device technology” J. Vac. Sci Technol. B, 17, 2272 (1999).

59. A. J. Muscat, A. G. Thorsness, and G. M.-Miranda, “Characterizations of residues formed by anhydrous hydrogen fluoride etching of doped oxide”, J. Vac. Sci. Technol. A, 19, 1854 (2001).

60. M. Modreanu, C. Moldovan, and R. Iosub, “The etching behavior of APCVD PSG thin films used as sacrificial layers for surface micromachined resonant microstructures”, Sensors and Actuators, A99, 82 (2002).

61. B. Bhushan and S. P. Murarka, “Stress in silicon dioxide films deposited using chemical vapor deposition techniques and the effect of annealing on these stresses”, J. Vac. Sci. Technol. B, 8, 1068 (1990).

62. R. P. S. Thakur, R. Singh, A. J. Nelson, H. S. Ullal, J. Chaudhuri, and V. Gondhalekar, “Comparative study of phosphosilicate glass on (100) silicon by furnace and rapid isothermal annealing”, J. Appl. Phys., 69, 367 (1991).

63. J. Thurn, R. F. Cook, M. Kamarajugadda, S. P. Bozeman, and L. C. Stearns, “Stress hysteresis and mechanical properties of plasma-enhanced chemical vapor deposited dielectric film”, J. Appl. Phys., 95, 967 (2004).

64. J. Thurn and R. F. Cook, “Stress hysteresis during thermal cycling of plasma-enhanced chemical vapor deposited silicon oxide films”, J. Appl. Phys., 91, 1988 (2002).

65. 莊達人, VLSI製造技術, 高立圖書, 台灣,5版,2003,p.254.

66. T. L. Barr, Journal Phys. Chem., 10, 760 (1990).

67. G. D. Khattak and M. A. Salim, Russian, J. Inorganic Chem., 20, 2307 (1975).

68. R. Swope and W. S. Yoo, “Analysis of Fourier transform infrared spectra and peak shifts in plasma enhanced chemical vapor deposited fluorinated silica glass”, J. Vac. Sci. Technol. B, 14, 1702 (1996).

69. Y.L. Cheng, Y. L. Wang and C. W. Liu, “Characterization and reliability of low dielectric constant fluorosilicate glass and silicon rich oxide process for deep sub-micro device application”, Thin Solid Films, 398-399, 533 (2001).

70. Y. L. Cheng, Y. L Wang and C. P. Liu, “Integration of a stack of two fluorine doped silicon film with ULSI interconnect metallization”, Materials Chemistry and Physics, 83, 150 (2004).

71. J. K. Lan, Y. L. Wang and Y. L. Wu, “Study the impact of liner thickness on the 0.18 um devices using low dielectric constant hydrogen silsesquioxane as the interlayer dielectric”, Thin Solid Films, 377-378, 776-780 (2000).

72. M. K. Bhan, J. Huang and D. Cheung, “Deposition of stable, low k and high deposition rate SiF4-doped TEOS fluorinated silicon dioxide (SiOF) films”, Thin Solid Films, 308-309, 507-511 (1997).

73. S. Sivaram, “Chemical Vapor Deposition: Thermal and Plasma Deposition of Electronic Materials”, USA, 1995, p.20.

74. S.P. Kim and S.K. Choi, “The origin of intrinsic stress and its relaxation for SiOF thin films deposited by electron cyclotron resonance plasma-enhanced chemical vapor deposition”, Thin Solid Films, 379, 259 (2000).

75. S.E. Kim and Ch. Steinbrűchel, “Metal/fluorinated-dielectric interactions in microelectronic interconnections: Rapid diffusion of fluorine through aluminum”, Appl. Phys. Lett., 13, 1902 (1999).

76. Z. C. Wu, Z. W. Shiung and C. C. Chiang, “Physical and electrical characteristics of F- and C-doped low dielectric constant chemical vapor deposited oxides”, J. Electrochemical Soc., 148, F115 (2001).

77. J. S. Chou and S. C. Lee, “Effect of porosity on infrared-absorption spectra of silicon dioxide”, J. Appl. Phys., 77, 1805 (1995).

78. S. Lee and J. W. Park, “Effect of fluorine on dielectric properties of SiOF films”, J. Appl. Phys., 80, 5260 (1996).

79. G. Harland and A. William, “Spectroscopic Ellipsometry and Reflectometry”, USA, 1999, p.28

80. S. M. Han and E. S. Aydil, “Reasons for lower dielectric constant of fluorinated SiO2 films”, J. Appl. Phys., 83, 2172 (1998).

81. J. E. Yu and J. Qiao, “High density plasma deposited phosphosilicate glass as pre-metal dielectrics for advanced self-aligned contacts in sub 0.25 µm device technology”, J. Vac. Sci. Technol. B, 17, 2272 (1999).

82. C.C. Tsan and Y.L. Wang, “Deposition temperature effects of high density plasma chemical vapor deposition films for subquarter micron devices application”, J. Vac. Sci. Technol. B, 17, 2341 (1999).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top