跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/01/19 02:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡智弘
研究生(外文):Chih-Hung Tsai
論文名稱:磷酸鈣骨水泥微結構、性質及動物實驗研究
論文名稱(外文):Structure, properties and animal study of calcium phosphate cement
指導教授:陳瑾惠朱建平朱建平引用關係
指導教授(外文):Jiin-Huey Chern LinChien-Ping Ju
學位類別:博士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:208
中文關鍵詞:鈣磷系骨水泥氫氧基磷灰石四鈣磷酸鹽伽瑪射線皮下植入吸收率
外文關鍵詞:hydroxyapatitecalcium phosphate cementγ-radiationtetracalcium phosphateresorption ratesubcutaneously implant
相關次數:
  • 被引用被引用:0
  • 點閱點閱:515
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
鈣磷系骨水泥(CPC)由於具有優異的生物相容性及引骨性,因此在牙科及外科手術上常用來當作填充修補材料。植入前,所有的生醫材料都必須經過消毒滅菌處理,本論文第一部分就是在探討四鈣磷酸鹽(TTCP)和由TTCP為原料之鈣磷系骨水泥經不同γ-ray照射劑量消毒滅菌後,對其結構、機械性質、工作時間、硬化時間、孔隙度及抗壓強度的影響。
實驗結果發現,在低劑量組(0-30 kGy)骨水泥的硬化時間為10-12分鐘,然而在高劑量組(40-120 kGy)其硬化時間縮短為8-10分鐘。不同劑量的γ-ray對於本實驗四鈣磷酸鹽骨水泥的孔隙度及抗壓強度均無明顯的影響。所有CPC試片的pH值落在8.5-9.1的相對窄區間內。當γ-ray的劑量為10或20kGy時,四鈣磷酸鹽-氫氧基磷灰石轉換率與無經過γ-ray照射的試片相同,但是當γ-ray的劑量為30 kGy時,轉換率明顯升高並達到一個最高值,隨著照射劑量繼續增加(40-120 kGy)轉換率快速下降。 當γ-ray的劑量增加,骨水泥的表面形態變的較為多孔狀且磷灰石的顆粒也會變大。由TEM的選區繞射及晶格影像分析可觀察到,當四鈣磷酸鹽粉末經由120kGy的γ-ray照射後,四鈣磷酸鹽粉末顆粒表面會被打出小孔洞,且γ-ray會誘發磷灰石相生成於四鈣磷酸鹽粉末表面。
CPC在植入體內時,除了會與骨頭接觸外,也會與周圍的軟組織接觸,且軟組織一般認為比起骨組織更容易產生發炎反應,所以在研究CPC與骨頭間的反應前,通常會先將CPC植入皮下觀察其生物相容性。
本論文第二部分是以TTCP為原料之CPC製成柱狀試片,分別浸泡在Hanks’人工體液及植入大白鼠皮下進行研究。結果顯示,浸泡在Hanks’人工體液的CPC試片,表面型態比體內測試的試片較為粗糙且多孔,試片表面覆蓋一層細小的磷灰石結晶。當CPC試片植入皮下4週或是更長的時間,其表面被纖維莢膜軟組織所包覆,此纖維軟組織主要是以平行試片表面的方向成長,在試片更外層的軟組織包含了大量的脂肪細胞,這層纖維莢膜的厚度並不是固定的,當植入時間由4週增加到12週時,其厚度有明顯的增加,12週以後厚度就無顯著的改變。植入皮下試片的周圍並無多型態間葉細胞、骨母細胞及骨細胞被觀察到,這表示CPC試片植入大白鼠皮下並無誘骨性。
CPC製成的柱狀試片不論浸泡在Hanks’人工體液或是植入大白鼠皮下,再經過1天實驗後其相皆已轉換成磷灰石相,只有很小量的TTCP相在1週後仍存在。由XRD和FTIR分析顯示,體外與體內實驗的結果皆十分相似,這表示在此兩種環境下有相似的相轉換反應。CPC試片浸泡在Hanks’人工體液之平均孔隙度,其值在浸泡4週到24週明顯大於浸泡1天和1週。植入大白鼠皮下不同週期(1天到24週)的CPC試片,其孔隙度無明顯的變化。CPC試片浸泡在Hanks’人工體液之徑向拉伸強度,在浸泡到4週時,強度大幅度的衰退;然而體內測試CPC試片之徑向拉伸強度在整個實驗週期(1天到24週)仍保有其強度,無衰退的現象。
本論文第三研究部分,將探討CPC植入後的吸收率,這是CPC最重要的性質之ㄧ。本實驗將CMRT實驗室發展出之CPC,植入紐西蘭大白兔大腿骨遠端內踝,以有系統及定量的方式研究CPC吸收率和植入位置的關連性。結果顯示,本實驗所使用之CPC在所有實驗週期中,植入材與骨骼的接觸面無引起發炎反應、無產生骨疽,在試片周圍也無纖維狀的莢膜被發現。CPC植入後與海棉骨相當緊密的接合在一起,植入1週後,CPC顯示為緻密的結構無空孔被發現;植入4週後,所有的植入材被新生骨所包覆;植入12和24週後,在植入材與骨頭的界面顯示更廣的再塑作用。
由組織切片分析結果顯示,CPC與宿主的骨頭有極佳的結合。植入4週後,在鑽孔處與植入材之間,因CPC被吸收所產生的空孔皆由大量的新生骨所填滿,由再塑區可發現,CPC被吸收,類骨母細胞排列於植入材表面形成活性新生骨,新生血管、骨細胞和骨單位皆在植入材表面被觀察到;植入12週後,新生骨在鑽孔處發展成網狀結構,植入之CPC與新生骨完全的結合,CPC被蝕骨細胞吸收且被新生骨分割成孤島狀,到處可觀察到被吸收之CPC由成熟的板狀骨所取代;植入24週後,大量的新生骨長入並取代CPC,活性再塑作用相當全面,殘留之CPC與新生骨間之界面變的不易分辨。
本研究顯示CPC之吸收率對於植入部位的變化相當敏感,整體而言,在所有的植入部位,吸收率會隨著植入時間的增加而上升。分區來看,當CPC植入4週或是更長的時間(12及24週), CPC之吸收率在外層處(近皮質骨部位)明顯大於在內層處(海棉骨部位)。當植入週期為24週時,在皮質骨處之CPC幾乎完全被吸收,骨骼之再塑形作用在此時幾乎完成。
Due to its superior biocompatibility and osteoconductivity, calcium phosphate cement (CPC) has been suggested for use as a filling material in dental and orthopedic applications. Before implantation, all of biomaterials need to be sterilized. The first purpose of the present study is to investigate the γ-radiation effect with different doses on the structure and properties, such as working/setting time, porosity, and compressive strength, of the single-phase tetracalcium phosphate (TTCP) powder and its derived calcium phosphate cement (CPC).
Experimental results show that low-dosed (0-30 kGy) CPC has a setting time of 10-12 min, while high-dosed (40-120 kGy) CPC has a setting time of 8-10 min. The low dose γ-radiation does not significantly change porosity volume fraction or compressive strength of the CPC. The pH values of all CPC samples fell in a relatively narrow band with a band width of 8.5-9.1 (in terms of pH value). With a dose of 10 or 20 kGy, the TTCP-apatite conversion ratio does not change much. With 30 kGy, the conversion ratio significantly increases and reaches a maximum value. With further increase in dose, the conversion ratio quickly declines. With increasing γ-ray dose, the CPC morphology becomes more porous/loose and apatite particles become larger in size. When exposed to high dose (120 kGy) γ-ray, TTCP structure is radiation-damaged and γ-ray-induced formation of apatite is confirmed by TEM/SAD/lattice imaging analyses.
It is worth noting that sometimes CPC is not only in contact with bone, but also with the surrounding soft tissues. Apparently not only CPC-bone interaction, the interaction between CPC and soft tissue also needs to be evaluated. These soft tissues are generally considered to show a more severe inflammatory response than bone. Therefore, before implanting in bone CPC need to implant subcutaneously in order to observe the biocompatibility.
The second part of the study contained a pre-hardened, TTCP-derived CPC was immersed in Hanks’ solution as well as subcutaneously implanted into abdomen of rats. The implant-soft tissue interfacial morphology was examined and properties of the CPC were evaluated under both in vitro and in vivo conditions.
The results indicate that surface of the immersed samples appeared rougher and more porous than that of the implanted samples and was covered with a layer of tiny, presumably apatite crystals. The CPC samples implanted for 4 weeks or longer were surrounded by a layer of fibrous tissue, which was further surrounded by a soft tissue capsule comprising numerous fat cells. The soft tissue capsule had a non-uniform distribution in thickness, which increased most significantly between 4 and 12 weeks after implantation.
None of polymorphic cells, osteoblast cells or bone cells adjacent to the implant were observed. The majority of original TTCP powder was transformed into apatite after one day of either immersion in Hanks’ solution or implantation. The average porosity values of samples immersed in Hanks’ solution for 4 weeks or longer were significantly larger than those immersed for 1 day or 1 week. The porosity values of samples implanted for different times were not significantly different. The DTS values of Hanks’ solution-immersed samples largely decreased after a few weeks of immersion. The implanted samples maintained their strengths throughout the study.
Thirdly, one primary focus of the present study was to clarify the crucial resorption-location relationship of a recently developed single-phase TTCP-derived CPC implanted in rabbit femur in a systematic and quantitative way.
Gross examination of retrieved CPC/bone composite samples indicated that the CPC implant did not evoke inflammatory response, necrosis or fibrous encapsulation in surrounding bony tissues. Histological examination revealed excellent CPC-host bone bonding. At 4 weeks, the resorption-induced voids between terminals of bone defects and implants were largely filled with new bone. CPC resorption, new blood vessels, osteocytes, osteons and osteoblast-like cells lining up with active new bone were observed at remodeling sites. At 12 weeks, a new bone network was developed within femoral defect, while CPC became islands incorporated in the new bone. At this stage, crevices filled with lamellar new bone structure were frequently observed. At 24 weeks, bone ingrowth and remodeling activities became so extensive that the interface between residual cement and new bone became less identifiable.
In general, at all implant locations the resorption ratio values increased with implantation time, while at all implantation times the resorption ratios decreased from the exterior (cortical site) to the interior (cancellous site) of implants. At the end of 24 weeks, CPC was almost completely resorbed and bone remodeling almost finished at the cortical site.
中文摘要……………………………………………………………………………………1
Abstract……………………………………………………………………………………3
誌謝…………………………………………………………………………………………5
總目錄………………………………………………………………………………………6
圖目錄………………………………………………………………………………………11
表目錄………………………………………………………………………………………15
第一章 總緒論……………………………………………………………………………17
1-1 導言………………………………………………………………………………18
1-2 生醫材料的定義…………………………………………………………………18
1-3 生醫材料之歷史發展……………………………………………………………19
1-4 生醫材料之分類…………………………………………………………………23
1-4-1 依材料種類分類…………………………………………………………………23
1-4-2 依活性分類………………………………………………………………………24
1-5 骨科植入材之性質要求…………………………………………………………26
1-6 人體硬組織結構成分及性質簡介………………………………………………29
1-7 氫氧基磷灰石性質簡介…………………………………………………………36
第二章 理論基礎與文獻回顧……………………………………………………………41
2-1 鈣磷系骨水泥的發展與簡介……………………………………………………42
2-1-1 前言………………………………………………………………………………42
2-1-2 磷酸鈣鹽類生醫陶瓷分類與發展………………………………………………43
2-1-3 鈣磷系鹽類的溶解相圖…………………………………………………………46
2-1-4 鈣磷系鹽類水解形成氫氧基磷灰石……………………………………………49
2-1-5 鈣磷系骨水泥的優點及應用……………………………………………………52
2-2 消毒滅菌方法的發展與簡介……………………………………………………55
2-2-1 消毒滅菌的發展史………………………………………………………………54
2-2-2 消毒滅菌方法的分類……………………………………………………………56
2-2-3 消毒滅菌方法對生醫植入材性質的影響………………………………………66
2-2-4 研究動機及目的(I)……………………………………………………………69
2-3 動物實驗理論基礎與文獻回顧…………………………………………………70
2-3-1 動物實驗的重要性………………………………………………………………70
2-3-2 實驗動物選擇……………………………………………………………………73
2-3-3 植入部位選擇……………………………………………………………………74
2-3-4 植入週期選擇……………………………………………………………………78
2-3-5 測試影響評估……………………………………………………………………80
2-4 鈣磷系骨水泥體外與體內(皮下植入)性質測試之理論基礎與文獻回顧……81
2-4-1 體外測試…………………………………………………………………………81
2-4-2 影響體外測試機械性質之因素…………………………………………………83
2-4-3 CPC皮下植入之文獻回顧…………………………………………………………85
2-4-4 研究動機及目的(Ⅱ)……………………………………………………………89
2-5 鈣磷系骨水泥吸收率之理論基礎與文獻回顧…………………………………90
2-5-1 鈣磷系骨水泥與骨組織之反應…………………………………………………90
2-5-2 鈣磷系骨水泥吸收率量測方法之文獻回顧……………………………………94
2-5-3 研究動機及目的(Ⅲ)……………………………………v………………………97
第三章 實驗步驟與方法…………………………………………………………………98
3-1 γ-ray消毒滅菌法對骨水泥性質影響之實驗方法及步驟………………………99
3-1-1 鈣磷系骨水泥材料製備…………………………………………………………99
3-1-2 抗壓強度測試……………………………………………………………………99
3-1-3 工作及硬化時間的測量………………………………………………K………100
3-1-4 硬化期間pH值分析………………………………………………………………101
3-1-5 X光繞射分析………………………………………………………………………101
3-1-6 四鈣磷酸鹽-氫氧基磷灰石相對相轉換率的計算………………………………102
3-1-7 孔隙度量測………………………………………………………………………102
3-1-8 掃描式電子顯微鏡分析…………………………………………………………103
3-1-9 傅立葉轉換紅外線光譜分析……………………………………………………103
3-1-10 穿透式電子顯微鏡分析…………………………………………………………104
3-2 鈣磷系骨水泥體外與體內(皮下植入)實驗其表面型態與機械性質測試之實驗
步驟與方法………………………………………………………………………108
3-2-1 鈣磷系骨水泥材料製備…………………………………………………………108
3-2-2 骨水泥體外徑向拉伸強度測試…………………………………………………108
3-2-3 骨水泥體內徑向拉伸強度測試…………………………………………………109
3-2-4 pH值測試…………………………………………………………………………110
3-2-5 孔隙度量測………………………………………………………………………110
3-2-6 X光繞射分析………………………………………………………………………111
3-2-7 傅立葉轉換紅外線光譜分析……………………………………………………111
3-2-8 掃描式電子顯微鏡分析…………………………………………………………111
3-2-9 組織切片製作之步驟與方法……………………………………………………112
3-2-10 體內植入試片表面纖維組織厚度量測方法……………………………………115
3-3 鈣磷系骨水泥植入紐西蘭大白兔大腿骨遠端內踝吸收率之實驗步驟與方法122
3-3-1 鈣磷系骨水泥材料製備…………………………………………………………122
3-3-2 動物實驗方法與植入步驟………………………………………………………122
3-3-3 CPC吸收率量測之步驟與方法……………………………………………………124
3-3-4 X光繞射分析………………………………………………………………………125
3-3-5 傅立葉轉換紅外線光譜分析……………………………………………………125
第四章 結果與討論………………………………………………………………………129
4-1 γ-ray消毒滅菌法對鈣磷系骨水泥性質影響之結果與討論……………………130
4-1-1 表面顏色觀察……………………………………………………………………130
4-1-2 工作及硬化時間測量結果………………………………………………………130
4-1-3 硬化過程pH值的變化……………………………………………………………131
4-1-4 抗壓強度測試結果………………………………………………………………131
4-1-5 X光繞射分析………………………………………………………………………132
4-1-6 四鈣磷酸鹽-氫氧基磷灰石相轉換率分析………………………………………133
4-1-7 傅立葉轉換紅外線光譜分析……………………………………………………133
4-1-8 孔隙度量測結果…………………………………………………………………134
4-1-9 掃描式電子顯微鏡表面型態觀察………………………………………………134
4-1-10 穿透式電子顯微鏡分析結果與討論……………………………………………135
4-2 鈣磷系骨水泥體外與體內(皮下植入)實驗其表面型態與機械性質測試之結果與討論……………………………………………………………………………………………156
4-2-1 組織切片觀察……………………………………………………………………156
4-2-2 掃描式電子顯微鏡表面型態觀察………………………………………………157
4-2-3 X光繞射分析………………………………………………………………………158
4-2-4 傅立葉轉換紅外線光譜分析………………………………………………………159
4-2-5 實驗過程pH值的變化……………………………………………………………159
4-2-6 孔隙度量測結果與討論…………………………………………………………160
4-2-7 徑向拉伸強度結果與討論………………………………………………………160
4-3 鈣磷系骨水泥植入大白兔大腿骨遠端內踝吸收率之結果與討論……………174

4-3-1 CPC植入大白兔大腿骨遠端內踝不同週期之反應結果…………………………174
4-3-2 組織切片觀察……………………………………………………………………175
4-3-3 CPC植入大白兔大腿骨遠端內踝其吸收率之結果與討論………………………176
4-3-4 X光繞射分析………………………………………………………………………179
4-3-5 傅立葉轉換紅外線光譜分析……………………………………………………180
第五章 總結論……………………………………………………………………………191
參考文獻……………………………………………………………………………………195
作者簡介及論文著作………………………………………………………………………207
Albee F, Morrison H. Studies in bone growth. Annals of Surg 1920;71:32-38.
Apelt D, Theiss F, El-Warrak AO, Zlinszky K, Bettschart-Wolfisberger R, Bohner M, Matter S, Auer JA, von Rechenberg B. In vivo behavior of three different injectable hydraulic calcium phosphate cements. Biomaterials 2004;25:1439-1451.
Bai B, Jazrawi L, Kummer F, Spivak J. The use of an injectable, biodegradable calcium phosphate bone substitute for the prophylactic augmentation of osteoporotic vertebrae and management of vertebral compression fractures. Spine 1999;24:1521-1526.
Barralet J, Akao M, Aoki H, Aoki H. Dissolution of dense carbonate apatite subcutaneously implanted in Wistar rats. J Biomed Mater Res 2000;49:176-182.
Bohner M. Calcium orthophosphates in medicine: from ceramics to calcium phosphate cements. Injury Int J Care Injured 2000;31:S-D37-47.
Brown WE, Chow LC. A new calcium phosphate setting cement. J Dent Res Abs 1983;207:62-672.
Brown WE, Chow LC. Combinations of sparingly soluble calcium phosphates in slurries and paste as mineralizers and cements. US Patent 1986, No. 4612053.
Brown WE, Epstein EF. Crystallography of tetracalcium phosphate. J Res Nbs A Phys Ch 1965;6:69A.
Brown WE, Chow LC. Dental resptorative cement pastes. US. Patent 1985, No. 4518430.
Brown WE, Chow LC. Singular points in the chemistry of teeth. J Dent. Res 1975;54:74.
Campbell DG, Li P. Sterilization of HIV with irradiation: relevance to infected bone allografts. J Surg 1999;69:517-521.
Carey LE, Xu HHK, Simon JR. CG, Takagi S, Chow LC. Premixed rapid-setting calcium phosphate composites for bone repair. Biomaterials 2005;26:5002-5014.
Carrillo F, Colom X, Sunol JJ, Saurina J. Structural FTIR analysis and thermal characterization of lyocell and viscose-type fibres. Eur Polym J 2004;40:2229-2234.
Chen WC, Chern Lin JH, Ju CP. Transmission electron microscopic study on setting mechanism of tetracalcium phosphate/dicalcium phosphate anhydrous-based calcium phosphate cement. J Biomed Mater Res 2003;64A:664-671.
Chen WC, Ju CP, Chern Lin JH. Variation in structure and properties of a non-dispersive TTCP/DCPA-derived calcium phosphate cement immersed in Hanks' solution. J Oral Rahab accepted.
Chern Lin JH, Ju CP, Chen WC, Lin KL, Wang IC. Tetracalcium phosphate (TTCP) having calcium phosphate whisker on surface. US Patent 2005, No. 6960249.
Chow LC, Takagi S. Calcium phosphate hydroxyapatite precursor and methosd for making and using the same. US Patent 1996, No.5542973.
Chow LC. Development of self-setting calcium phosphate cement. The Centennial Memorial Issue 1991;99(10):954-964.
Clemson Advisory Board for Biomaterials “Definition of the word biomaterial”, The 6th annal international biomaterial symposium. April 1974:20-24.
Constantz BR, Barr BM, Ison IC, Fulmer MT, Baker J, McKinney LA, Goodman SB, Gunasekaren S, Delaney DC, Ross J, Poser RD. Histological, chemical, and crystallographic analysis of four calcium phosphate cements in different rabbit osseous sites. J Biomed Mater Res 1998;11:451-461.
Constantz BR, Ison IC, Fulmer MT, Poser RD, Smith ST, VanWagoner M, Ross J, Goldstein SA, Jupiter JB, Rosenthal DI. Skeletal repair by in situ formation of the mineral phase of bone. Science 1995;267:1796-1799.
Daculsi G, Passuti N, Martin S, Deudon C, LeGeros RZ. Macroporous calcium phosphate ceramic for long bone surgery in human and dogs: Clinical and histological study. J Biomed Mater Res 1990;24:379-396.
Daculsi G, Weiss P, Bouler JM, Gauthier O, Aguado E. Biphasic calcium phosphate/hydrosoluble polymer composites: a new concept for bone and dental substitution biomaterials. Bone 1999;25: 59S-61S.
de Groot K. Medical applications of calcium phosphate bioceramics. The centennial memorial issue of the ceramic society of Japan 1991;99:943-953.
Driessens F, Verbeeck R. Relation between physico-chemical solubility and biodegradability of calcium phosphates. In: de Putter C, de Lange GL, de Groot K, Lee AJC. Implant materials in biofunction. Advances in Biomaterials. Amsterdam: Elsevier 1988:105-111.
Driessens FCM, Verbeck RMH. Biominerals. CRC Press, Boca Ration, Boston, 1990;37-59.
Driskell TD, Heller AL, Koenigs J. Dental treatments. US Patent 1975, No. 3913229.
Erben RG. Embedding of bone samples in methylmethacrylate: An improved method suitable for bone histomorphometry, histochemistry, and immunohistochemistry. J Histochem Cytochem 1997;45:307-313.
Frayssinet P, Gineste L, Conte P, Fages J, Rouquet N. Short-term implantation effects of a DCPD-based calcium phosphate cement. Biomaterials 1998;19:971-977.
Frankenburg EP, Goldstein SA, Bauer TW, Harris SA, Poser RD. Biomechanical and histological evaluation of a calcium phosphate cement. J Bone Joint Surg Am 1998;80:1112-1114.
Fridman C, Costantino P, Takagi S, Chow LC. BoneSource hydroxyapatite cement: a novel biomaterial for craniofacial skeletal tissue engineering and reconstruction. J Biomed Mater Res Part B: Appl Biomater 1998;43:428-432.
Gauthier O, Bouler JM, Weiss P, Bosco J, Daculsi G, Aguado E. Kinetic study of bone ingrowth and ceramic resorption associated with the implantation of different injectable calcium-phosphate bone substitutes. J Biomed Mater Res 1999;47(1):28-35.
Getter L, Bhaskar S, Cutright D, Perez B, Brady J, Driskell T, O’Hara M. Three biodegradable calcium phosphate slurry implants in bone. J Oral Surg 1972;30:263-268.
Glimcher MJ, Bonar LC, Grynpas MD, Landis WJ, Roufosse AH. Recent studies of bone mineral: is the amorphous calcium phosphate theory valid? J Cryst Growth 1981;53:100-119.
Goodman S, Bauer T, Carter D. Norian SRS cement augmentation in hip fracture treatment. Clin Orthop Rel Res 1998;348:42-50.
Hamanishi C, Kitamoto K, Ohura K, Tanaka S, Doi Y. Self-setting, bioactive, and biodegradable TTCP-DCPD apatite cement. J Biomed Mater Res 1996;32:383-389.
Hao H, Amizuka N, Oda K, Fujii N, Ohnishi H, Okada A, Nomura S, Maeda T. A histological evaluation on self-setting α-tricalcium phosphate applied in the rat bone cavity Biomaterials 2004;25:431-442.
Harving S, Soballe K, Bunger C. A method for bone cement interface thermometry. Acta Orthop Scand 1991;62:546-548.
Tanahashi M. Fibrous hydroxyapatite grown in the gel system: effects of pH of the solution on the growth rate and morphology. J Mater Sci: Mater M 1992;3:48-53.
Heini PF, Berlemann U, Kaufmann M, Lippuner K, Fankhauser CH, van Landuyt P. Augmentation of mechanical properties in osteoporotic vertebral bones-a biomechanical investigation of vertebroplasty efficacy with different bone cements. Eur Spine J 2001;10(2):164-171
Heini PF, Walchli B, Berlemann U. Percutaneous transpedicular vertebroplasty with PMMA: operative technique and early result. A prospective study for the treatment of osteoporotic compression fractures. Eur Spine J 2000;9(5):445-50.
Hench LL, Ethridge EC. Biomaterials:An interfacial approach. Academic press, New York, 1982.
Hench LL, Bioceramics: from concept to clinic. J Am Ceram Soc 1991;74:1487-1510.
Heughebaert M, Le Geros RZ, Gineste M, Guilhem A, Bonel G. Physicochemical characterization of deposits associated with HA ceramics implanted in non-osseous sites. J Biomed Mater Res 1988;22:257-268.
Heymann D, Pradal G, Benahmed M. Cellular mechanisms of calcium phosphate ceramic degradation. Histol Histopathol 1999;14:871-877.
Holyoak G.R, Wang S, Liu Y. Toxic effects of ethylene oxide residues on in vitro production of bovine embryos. Theriogenology 1995;43:237.
Hulbert SF, Hench LL, Forbers D, Bowman LS. History of bioceramics. Ceram Internat. 1982;8:131-140.
Hyakuna K, Yamamuro T, Kotoura Y, Oka M, Nakamura T, Kitsugi T, Kokubo T, Kushitani H. Surface reactions of calcium phosphate ceramics to various solutions. J Biomed Mater Res 1990;24:471-488.
Imranul Alam M, Asahina I, Ohmamiuda K, Takahashi K, Yokota S, Enomoto S. Evaluation of ceramics composed of different hydroxyapatite to tricalcium phosphate ratios as carriers for rhBMP-2. Biomaterials 2001;22:1643-1651.
Ishikawa K, Takagi S, Chow LC, Ishikawa Y. Properties and mechanisms of fast-setting calcium phosphate cement. J Mater Sci Mater Med 1995;6:528-533.
Ishikawa K, Asaoka K. Estimation of ideal mechanical strength and critical porosity of calcium phosphate cemen. J Mater Sci Mater Med 1995;29:1537-1543.
Jarcho M, Kay J, Gumaer K, Doremus R, Drobeck H. Tissue, cellular and subcellular events at a bone-ceramic hydroxyapatite interface. J Bioengineering 1977;1:79-92.
Kitsugi T, Yamamuro T, Nakamura T, Oka M. Transmission electron microscopy observation at the interface of bone and four types of calcium phosphate ceramics with different calcium/phosphorus molar ratios. Biomaterials 1995;16:1101-1107.
Knaack D, Goad MEP, Aiolova M, Rey C, Tofighi A, Chakravarthy P, Duke Lee D. Resorbable calcium phosphate bone substitute. J Biomed Mater Res Part B: Appl Biomater 1998;11:399-409.
Köster K, Karbe E, Kramer H, Heide H, König R. Experimenteller knochenersatz durch resorbierbare calcium phosphate keramik. Langenbecks Arch Chir 1976;341:77-86.
Kuemmerle JM, Oberle A, Oechslin C, Bohner M, Frei C, Boecken I, von Rechenberg B. Assessment of the suitability of a new brushite calcium phosphate cement for cranioplasty-an experimental study in sheep. J Cranio Maxill Surg 2005;33:37-44.
LeGeros RZ. Biological and synthetic apatites. CRC Press, Florida, 1994;3.
LeGeros RZ. Properties of osteoconductive biomaterials: Calcium phosphates. Clin Orthop Relat R 2002;395: 81-98.
LeGeros RZ, Orly I, Gregoire M, Daculsi G. Substrate surface dissolution and interfacial biological mineralization. University of Toronto Press, Toronto, Canada, 1991;76-88.
Lewis G, Mladsi S. Effect of sterilization method on properties of palacos acrylic bone cement. Biomaterials 1998;19: 117-124,.
Lin KL, Ju CP, Chern Lin JH. Effect of heat treatment on setting behavior and compressive strength of tetracalcium phosphate cement. J Mater Sci 2005;40:2631-2634.
Lu JX, Gallur A, Flautre B, Anselme K, Descamps M, Thierry B, Hardouin P. Comparative study of tissue reactions to calcium phosphate ceramics among cancellous, cortical, and medullar bone sites in rabbits. J Biomed Mater Res 1998; 42:357-367.
Liu DM, Yang Q, Troczynski T, Tseng WJ. Structural evolution of sol-gel-derived hydroxyapatite. Biomaterials 2002;23:1679-1687.
Malard O, Bouler JM, Guicheux J, Heymann D, Pilet P, Coquard C, Daculsi G. Influence of biphasic calcium phosphate granulometry on bone ingrowth, ceramic resorption, and inflammatory reactions: preliminary in vitro and in vivo study. J Biomed Mater Res 1999;46(1):103-111.
Mears DC. Metals in medicine and surgery. Int Mater Rev 1977;22:119-153.
Merkli A, Heller J, Tabatabay C, Gurny R. Gamma sterilization of a semi-solid poly (ortho ester) designed for controlled drug delivery-validation and radiation effects. Pharmaceutical research 1994;11;1485-1491.
Mermelstein L, Chow LC, Friedman C, Crisco J. The reinforcement of cancellous bone screws with calcium phosphate cement. J Orthop Trauma 1996;10:15-20.
Mermelstein L, McLain R, Yerbi S. Reinforcement of thoracolumbar burst fractures with calcium phosphate cement. Spine 1998;23:664-671.
Miller MJ. Osseous tissue engineering in oncologic surgery. Semin Surg Oncol 2000;19:294-301.
Miyamoto Y, Ishikawa K, Fukao H, Sawada M, Nagayama M, Kon M, Asaoka K. In vivo setting behavior of fast-setting calcium phosphate cement. Biomaterials 1995;16:855-860.
Miyamoto Y, Ishikawa K, Takechi M, Toh T, Yuasa T, Nagayama M, Suzuki K. Histological and compositional evaluations of three types of calcium phosphate cements when implanted in subcutaneous tissue immediately after mixing. J Biomed Mater Res 1999;48:36-42.
Neo M, Kotani S, Fujita Y, Nakamura T, Yama T, Bando Y, Ohtsuki C, Kokubo T. Differences in ceramic-bone interface between surface-active ceramics and resorbable ceramics: A study by scanning and transmission electron microscopy. J Biomed Mater Res 1992;26:255-267.
Niedhart C, Maus U, Redmann E, Siebert CH. In vivo testing of a new in situ setting beta-tricalcium phosphate cement for osseous reconstruction. J Biomed Mater Res 2001;55:530-537.
Moore D, Maitra R, Farjo L, Graziano G, Goldstein S. Restoration of pedicle screw fixation with an in situ setting calcium phosphate cement. Spine 1997;22:1696-1705.
Oguchi H, Ishikawa K, Mizoue K, Seto K, Eguchi G. Long-term histological evaluation of hydroxyapatite ceramics in humans. Biomaterials 1995:16:33-38.
Ohura K, Bohner M, Hardouin P, Lemaitre J, Pasquier G, Flautre B. Resorption of, and bone formation from, new β-tricalcium phosphate-monocalcium phosphate cements: an in vivo study. J Biomed Mater Res 1996;30:193-200.
Ooms EM, Egglezos EA, Wolke JGC, Jansen JA. Soft-tissue response to injectable calcium phosphate cements. Biomaterials 2003;24: 749-757.
Park JB. Biomaterials science and engineering. Plenum Press, New York and London, 1985.
Park JB, Bronzino JD. Biomaterials principles and applications. CRC Press, New York, 2003.
Park JB, Lakes RS. Biomaterials: an introduction. Plenum Press, 2nd ed., New York, 1992.
Peelen J, Rejda B, Vermeiden J, de Groot K. Sintered tricalcium phosphate as bioceramic. Science of ceramics 1977;9:226-236.
Rangavittal N, Landa-Ca´novas AR, Gonza´lez-Calbet JM, Vallet-Regı´ M. Structural study and stability of hydroxyapatite and β-tricalcium phosphate: Two important bioceramics. J Biomed Mater Res 2000;51:660-668.
Ratner BD, Hoffman AS, Schoen FJ, Lemons JE. Biomaterials science. Academic Press, California, 1996;222-223.
Ravaglioli A. and Krajewski A. Bioceramics: materials, properties, applications. Chapman & Hall Press, London, 1992;44-45.
Ray R, Degge J, Gloyd P, Mooney G. Bone regeneration. J Bone Joint Surg 1952;34A:638-647.
Roy D, Linnehan S. Hydroxyapatite formed from coral skeletal carbonate by hydrothermal exchange. Nature 1974;247:220-222.
Szivek JA, Battraw AG, Persselin S, Anderson PL. A comparison of in vitro and in vivo degradation of two CPC strain gauge coatings. J Biomed Mater Res Part B: Appl. Biomater 2000;53:211-215.
Silver FH. Biomaterials, medical devices, and tissue engineering: an integrated approach. Chapman & Hall, New York, 1994.
Soballe K. Hydroxyapatite ceramic coating for bone implant fixation. ACTA Orthopaed Scandin Supplem 1993;64:1-58.
Sugawara A, Nishiyama M, Kusama K, Moro I, Nishimura S, Kudo I, Chow LC, Takagi S. Histopathological reaction of calcium phosphate cement. Dent Mater J 1992;11:11-16.
Suwanprateeb J, Tanner KE, Turner S, Bonfield W. Influence of sterilization by gamma irradiation and of thermal annealing on creep of hydroxyapatite-reinforced polyethylene composites. J Biomed Mater Res 1998;39:16-22.
Takechi M, Miyamoto Y, Ishikawa K, Toh T, Yuasa T, Masaru Nagayama, Kazuomi Suzuki. Initial histological evaluation of anti-washout type fast-setting calcium phosphate cement following subcutaneous implantation. Biomaterials 1998;19:2057-2063.
Tanahashi M. Fibrous hydroxyapatite grown in the gel system: effects of pH of the solution on the growth rate and morphology. J Mater Sci: Material in Medicine 1992;3:48-53.
Takezawa Y, Doi Y, Shibata S, Wakamatsu N, Kamemizu H, Goto T, Iijima M, Moriwaki Y, Uno K, Kubo F, Haeuchi Y. Self-setting apatite accelerator, hydroxyapatite as setting accelerator. J Jpn Soc Dent Mat 1988;6:426-431.
TenHuisen KS, Brown PW. Variations in solution chemistry during calcium-deficient and stoichiometric hydroxyapatite formation from CaHPO4.2H2O and Ca4(PO4)2 O. J Biomed Mater Res 1997;36:233-241.
Thordarson D, Hedman T, Yetkinler D, Eskander E, Lawrence T, Poser R. Superior compressive strength of a calcaneal fracture construct augmented with remodelable cancellous bone cement. J Bone Joint Surg 1999;81A(2):239-246.
Vereecke G, Lemaitre J. Calculation of the solubility diagrams in the system Ca(OH)2-H3PO4-KOH-HNO3-CO3-H2O. J Cryst Growth 1990;104:820-832.
Wang IC, Ju CP, Chern Lin JH. Gamma-radiation effect on morphology and properties of TTCP/DCPA-derived calcium phosphate cement. Mater Trans. 2005;46(7):1-5.
Wang IC, Chern Lin JH, Ju CP. Transmission electron microscopy study of surface treated tetracalcium phosphate. Mater Trans 2005;46(4):885-890.
Wang X, Ma J, Wang Y, He B. Bone repair in radii and tibias of rabbits with phosphorylated chitosan reinforced calcium phosphate cements. Biomaterials 2002;23:4167-4176.
Xie L, Monroe EA. Calcium phosphate dental cements. Mat Res Soc Symp Proc 1991;179:25-39.
Yang Q, Troczynski T, Liu DM. Influence of apatite seeds on the synthesis of calcium phosphate cement. Biomaterials 2002;23:2751-2760.
Yang Z, Yuan H, Tong W, Zou P, Chen W, Zhang X. Osteogenesis in extraskeletally implanted porous calcium phosphate ceramics: variability among different kinds of animals. Biomaterials 1996;17:2131-2137.
Yamada S, Heymann D, Bouler JM, Daculsi G. Osteoclastic resorption of calcium phosphate ceramics with different hydroxyapatite/β-tricalcium phosphate ratios. Biomaterials 1997;18:1037-1041.
Yamamoto H, Niwa S, Hori M, Hattori T, Sawai K, Aoki S, Hirano M. Takeuchi H. Mechanical strength of calcium phosphate cement in vivo and in vitro. Biomaterials 1998;19:1587-1591.
Yoshikawa M, Toda T. In vivo estimation of periapical bone reconstruction by chondroitin sulfate in calcium phosphate cement. J Eur Ceram Soc 2004;24: 521-531.
Yuan H, Li Y, de Bruijn JD, de Groot K, Zhang X. Tissue responses of calcium phosphate cement: A study in dogs. Biomaterials 2000;21:1283-1290.
Yuehuei HA, Richard JF. Animal models in orthopaedic research. CRC Press, New York, 1999.
陳成裕、湯大同、林威龍,環氧乙烷氣體消毒滅菌作業改善措施,行政院勞工委員會勞工安全衛生研究所出版,2004;1-3。
王貴譽、張瑞烽,大學微生物學,曉園出版社,1993;85-101。
盧光舜,消毒學,南山堂出版社,1985;4-8。
馬張明霞、陳敏達、陳麗香、陳櫻棟、傅應凱,醫療用品加碼射線照射滅菌劑量的決定和微生物品管的實施,核能研究所,1990;1-2。
王盈錦、林峰輝、胡孝光、黃玲惠、黃義侑、蔡瑞瑩、闕山璋,生物醫學材料,合記圖書出版社,2002;192-196。
張炳龍,ROSS組織學,合記圖書出版社,1991;147-158。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top