跳到主要內容

臺灣博碩士論文加值系統

(98.84.18.52) 您好!臺灣時間:2024/10/14 03:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蕭育仁
研究生(外文):Yu-Jen Hsiao
論文名稱:價數補償型鈣鈦礦(1-x)NaNbO3-xACrO3(A=La、Bi)之介電性質研究
論文名稱(外文):The Dielectric Properties of Valence Compensated Perovskite Oxide of (1-x)NaNbO3-xACrO3 (A=La、Bi) at Low Frequencies
指導教授:張炎輝張炎輝引用關係
指導教授(外文):Yen-Hwei Chang
學位類別:博士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:141
中文關鍵詞:價數補償型鈣鈦礦介電陶瓷
外文關鍵詞:dielectric ceramicperovskitevalence compensated
相關次數:
  • 被引用被引用:1
  • 點閱點閱:331
  • 評分評分:
  • 下載下載:53
  • 收藏至我的研究室書目清單書目收藏:0
本研究是以鈣鈦礦結構之NaNbO3材料為主探討對象,並以雙異價數LaCrO3及BiCrO3離子來取代NaNbO3基材,製備成(1-x)NaNbO3-xACrO3 (A=La、Bi)之價數補償型鈣鈦礦陶瓷體。本研究主要由三個部份所構成:(1)以反應燒結法製備NaNbO3介電陶瓷,(2)以固態反應法合成Na1-xLaxNb1-xCrxO3及其介電性質研究,(3)以固態反應法合成(1-x)NaNbO3-xBiCrO3雙相陶瓷及其介電性質研究。
本研究成功的以反應燒結法合成NaNbO3之緻密鈣鈦礦陶瓷。塊體在混合NaNbO3劑量比的原料直接壓胚且無煆燒步驟進行燒結,得單一NaNbO3鈣鈦礦相陶瓷在溫度1100-1200 ℃間。在1200 ℃燒結6小時後約22.9 %的高線收縮率及1.6 %的低開孔率,且約有95.4 %的理論密度。NaNbO3陶瓷不同燒結條件的電性質,在1170 ℃燒結可得最高介電常數約27,在高溫度下燒結漸漸變成高電阻的絕緣體。NaNbO3陶瓷分別在3和6小時的持溫,得到微米尺度的晶粒成長活化能約在87~90 kJ/mol (或5.4~5.7×1021 eV/mol)。當在1200 ℃燒結3小時下,可得之斜方形外觀(rhomb-shaped)晶粒具有清析可辨的邊線和平面,此結果接近於理想晶粒成長模型。
以固態反應法合成(1-x)NaNbO3-xACrO3 (A=La、Bi)之價數補償型鈣鈦礦電子陶瓷。Na1-xLaxNb1-xCrxO3 (0.01≦x≦0.4)的鈣鈦礦固溶體,當x�d0.05時由原來的斜方晶結構(orthorhombic)往立方晶結構(cubic)轉變,以離子半徑較大的La+3(1.32 Å)取代離子半徑較小的Na+1 (1.18 Å),因離子半徑效應之故,造成晶格常數上升。根據Arrhenius方程式所得之NLNC弛緩體陶瓷相對於組成x=0.2, 0.3和0.4時在介電弛緩過程所需的活化能分別為0.22, 0.21和0.19 eV,而偶極弛緩時間約10-11秒。根據阻抗分析量測,NLNC之介電陶瓷是由半導體的晶粒與高電阻晶界所組成的晶界層電容。據XRD分析此(1-x)NaNbO3-xBiCrO3之結構陶瓷在1250 ℃持溫3小時,顯示具有立方鈣鈦礦與焦綠石相混合結構,焦綠石含量則隨著x的增加而呈線性增加。1-x)NaNbO3-xBiCrO3之介電特性(在x=0.3具有似模糊相轉換(diffuse-like phase transition)的陶瓷,當量測頻率由0.5 kHz上升到100 kHz,發生最高介電常數(�掭ax)之溫度值隨著頻率變化約固定在63 ℃,從Cole-Cole阻抗分析結果顯示為晶界型電容。介電特性在x=0.4具有明顯遲緩體(relaxor-like)的現象,介電常數最高值(�掭ax)在頻率0.5, 1, 5, 10,和100 kHz時的溫度位置分別為55, 59, 67, 80和84 ℃,具有環保無鉛遲緩體的陶瓷潛在應用。
The present investigation focused on the NaNbO3, which has an perovskite structure. The perovskite ceramic NaNbO3 powders doped with double valence compensated LaCrO3 and BiCrO3 ions were synthesized. The experimentation consists three parts as: NaNbO3 oxides prepared using reaction-sintering method, Na1-xLaxNb1-xCrxO3 and (1-x)NaNbO3-xBiCrO3 characterized by solid state reaction.
The NaNbO3 perovskite dense ceramic has been successful synthesized by reaction-sintering method. The raw materials for stoichiometric NaNbO3 were weighted and pressed into disks. Without any calcining involved, the pellets were sintered directly and pure perovskite NaNbO3 was obtained between 1100 ℃ and 1200 ℃. The maximum linear shrinkage and minimum porosity of the NaNbO3 was 22.9 % and 1.6 % at 1200 ℃, respectively, and thus had high density about 95.4 % of the theoretical value. The dielectric properties of NaNbO3 ceramics sintered at 1170 ℃has a maximum about 27. In this study, the NaNbO3 ceramics became more insulating at higher sintering temperature. The activation energy of grain growth for 3 and 6 h were between 87~90 kJ/mol (or 5.4~5.7×1021 eV/mol) , respectively. The realistic rhomb-shaped grains in pellets were found with well-defined edges and face, which are similar to the ideal grain growth models at the temperature of 1200 ℃ for 3 h.
The valence compensated perovskite ceramics (1-x)NaNbO3-xACrO3 (A=La、Bi) was synthesized by solid-state reaction. The solid solution perovskite Na1-xLaxNb1-xCrxO3 (0.01 ≦ x≦ 0.4) system has the orthorhombic phase, and slowly transform to the cubic phase when x�d 0.05. These results can be arise to come from the substitution of La3+ (1.32 Å) ions for Na+(1.18 Å), which increased lattice constants. According to the Arrhenius relationship, NLNC relaxor ceramic with activation energy for relaxation process for x= 0.2, 0.3, and 0.4 were 0.22, 0.21, and 0.19 eV, respectively. The values of relaxation time constants were of the order 10-11 s. The impedance of the NLNC dielectric ceramics showed grain boundary capacitors effect with semiconducting grain and high resistivities in the grain boundary layers.
The crystal structures of the samples (1-x)NaNbO3-xBiCrO3 sintered at 1250 ℃ for 3 h were characterized as cubic perovskite-pyrochlore mixed phase from XRD patterns. The relative amounts of pyrochlore increased linearly with x content. The dielectric relaxation behavior for sample x= 0.3 involves a diffuse-like phase transition. The peak of �掭ax is fixed approximately at 63 ℃ as the frequency increased from 0.5 to 100 kHz. The complex impedance was used to verify the presence of grain boundary capacitors. The sample with x= 0.4 exhibited the relaxor-like phenomenon. The temperatures corresponding the �掭ax at frequencies 0.5, 1, 5, 10 and 100 kHz are 55, 59, 67, 80 and 84 ℃, respectively.
摘要……………………………………………………………………….I
Abstract……………………………………………………………………...III
目錄……………………………………………………………………………V
表目錄………………………………………………………………………VIII
圖目錄………………………………………………………………………IX
第一章 諸論.......................................................................................................1
1-1. 前言…………………………………………………….......…………..1
1-2. A+1B+5O3鈣鈦礦材料………………………………………………….2
1-3. 研究動機……………………………………………………………….3
1-4. 研究目的……………………………………………………………….4
第二章 基礎理論………………………………………….…………………..8
2-1 介電理論……………….……………………………………………….8
2-1-1. 介電特性…………………………………………………………..8
2-1-2. 極化機構………………………………………………………..…8
2-1-3. 介電損失……………………………………………………....…10
2-2 複合型鈣鈦礦之結構與特性………………………………………..11
2-2-1. 結構置換作用…………………………………..…………..……11
2-2-2. 異價取代與缺陷化學式…………………………………..…......12
2-2-3. 拉曼光譜鑑定…………………………..………………………..13
2-2-4. 弛緩性質……………………....…………………………………15
2-2-5. 擴散性相變………………………………………………………16
2-3 能障型電容…………...…………………………….………………...17
2-4 阻抗分析原理…………………………………………………………19
2-5 反應燒結法…….………….…………………………………………..23
2-5-1 反應燒機構………………………..…...………………………..23
2-6 固態反應法….………...…………………..………………………...24
2-6-1 固態反應機構…………………..……………………………….24
2-6-2 固態反應法之優缺點…..……..………………………………...25
2-7 固態燒結過程及理論…………..…………………………………...26
2-7-1 燒結的基本原理及機構…………..…………………………….26
2-7-2 幾何形狀的考量…………………..…………………………….26
2-7-3 粉末顆粒大小分布對燒結行為及顯微結構的影響……..…….27
2-8 晶粒成長…………..………………………………………………...28
2-8-1 晶粒成長的發生及驅動力……………..……………………….28
2-8-2 晶粒成長的類型…………………..…………………………….28
2-8-3 在緻密固體中正常晶粒成長之模式…………………..……….29

第三章 實驗方法……………………………………………….……………45
3-1 實驗藥品……………………………………………………….………45
3-2 反應燒結法……………………………………………………….……45
3-3 固態反應法……………………………………………………………46
3-4 晶粒大小………………………………………..……………………46
3-5. 收縮率、孔隙率、密度量測………………….………..……………..46
3-6. 結構與成份分析……………………………………….…….………..47
3-6-1. X光繞射分析……..………………………………………………47
3-6-2. 掃瞄式電子顯微鏡分析……………..……………………..………49
3-6-3. ..X-光光電子能譜儀(XPS)分析……...…..…………………………50
3-6-4. 拉曼光譜(Raman)分析…..……..………..…………………………50
3-7. 性質量測………………………..……………………………………..50
3-7-1. 介電性質量測……………………………………………………..50
3-7-2. 阻抗分析量測……………………………………………………..51
3-7-3. 電阻率量測………………………………………………………..51
第四章 結果與討論………………………….………………………………55
4-1. 以反應燒結法製備NaNbO3介電陶瓷….…………………………..55
4-1-1. NaNbO3燒結體之微結構分析…………..……………………55
4-1-2. 燒結密度和電性分析…………………..…………………...57
4-1-3. 晶粒成長活化能與成長機構分析…….………..………....58
4-1-4. 結語……………………………………………………………59
4-2. 固態反應法合成Na1-xLaxNb1-xCrxO3及其介電性質研究……….…...70
4-2-1. Na1-xLaxNb1-xCrxO3之晶體結構………………………...………….70
4-2-2. SEM表面微結構分析………………..……….…………………….72
4-2-3. 介電性質分析……………………………………………………….73
4-2-4. 阻抗分析量測……………………………………………………….78
4-2-5. 結語………………………………………………………………….79
4-3. (1-x)NaNbO3-xBiCrO3雙相陶瓷及其介電性質研究…….......………94
4-3-1. 在x=0.5時(NaBi)(NbCr)O6焦綠石相之結構及介電性質分..94
4-3-1-1 (NaBi)(NbCr)O6之結晶與微結構.....................94
4-3-1-2 介電性質…………………………………………………..96
4-3-1-3 電導行為..............................................................................96
4-3-1-4 結語………………………………………………………..97
4-3-2 固態反應法製備(1-x)NaNbO3-xBiCrO3雙相陶瓷…..…….105
4-3-2-1 結晶與微結構行為………………………………...…..…105
4-3-2-2 介電性質分析…………...………………………………..107
4-3-2-3 拉曼光譜分析.....................................................................109
4-3-2-4結語…………………………………………...……………111
4-4. 綜合討論…………………………………………………….……...123
第五章 結論………………………………………………………………..125
第六章 研究展望與建議…………………………………………………..127
參考文獻.…………………………………………………………………...128
附錄A 以 GSAS-Rietveld 法擬合 XRD 粉末繞數圖譜之結果………136
[1]M. T. Buscaglia, V. Buscaglia, M. Viniain, J.Petzelt, M. Savinov, L. Mitoseriu, A. Testino, P. Nanni and M. Nygren, Nanotechnology, 15 (2004) 1113.
[2]M. M. Silvan, L. F. Cobas, R. J. Mattin-Palma, M. H. Velez and J. M. Martinez, Surface and Coatings Technology, 151-152 (2002) 118.
[3]H. D. Megaw, Ferroelectrics 7 (1974) 87.
[4]L. E. Cross and B. J. Nicholson, Phil. Mag. 46 [7] (1955) 453.
[5]R. H. Dungan and R. D. Golding, J. Am. Ceram. Soc. 47 (1964) 74.
[6]M. W. Shafer and R. Roy, J. Amer. Ceram. Soc. 42 (1959) 482.
[7]V. A. Bokov and I. E. Mly, Sov. Phys. Solid State, 3 [3] (1961) 613.
[8]G. A. Smolenskii and A. I. Agranovskaya, Sov. Phys, Solid state,1 [10] (1960) 1429.
[9]S. L. Swartz, T. R. Shrout , W. A. Schulze and L. E. Cross, J. Am. Ceram. Soc, 67 (1984) 311.
[10]S. Zhang, P. W. Rehring, C. Randall and Thomas R. Shrout, J. Crystal Growth, 234 (2002) 415.
[11]R. Zuo, L. Li, X. Hu and Z. Gui, Mater. Lett., 54 (2002) 185.
[12]T. T. Fang and H. K. Shiau, J. Am. Ceram. Soc., 87 (2004) 2072.
[13]S. Saha and T. P. Sinha, J. Phys. Condens Matter, 14 (2002)249.
[14]M. Yokosuka, Jpn. J. Appl. Phys., 34 (1995) 5338
[15]C. Y. Chung , Y. H. Chang and G. J. Chen, J. Appl. Phys., 96 (2004) 6624.
[16]H. S. Tewari, O. Parkash, V.B. Tare and D. Kumar, J. Mater. Sci., 25 (1990) 2181.
[17]V. Vashooka, L. Vasylechko, J. Zosel and U. Guth, Solid States Ionics, 159 (2003) 279.
[18]A. Aydi, H. Khemakhem, C. Boudaya, R. Von der Mühll and A. Simon, Solid State Sci. 6 (2004) 333.
[19]I. P. Raevski and S. A. Prosandeev, J. Phys. Chem. Solids 63 (2002) 1939.
[20]O. Parkash, R. Kumar, D. Kumar and D. Bahadur, J. Mater. Sci. Lett. 7 (1988) 383.
[21]E. Ksepko, E, Talik, A, Ratuszna, A, Molak, Z. Ujma and I. Gruszka, J. Alloys Compd. 386 (2005) 35.
[22]A. Chelkowski, “Dielectric Physics”, Silesian University Katowice, Poland (1979) 5.
[23]吳朗,”電子陶瓷(介電陶瓷)”,全欣出版社 (1994) p.69
[24]W. D. Kingery, H. K. Bowen and D. R. Uhlmann, “Introduction to ceramics”, John Wiley and Sons, New York, (1976), p.210.
[25]O. Muller and R. Roy, The Major Ternary Structural Families, Springer-Verlag, New York, (1974).
[26]W. H. Lee, W. A. Groen and D. Hennings, J. Electronceram., 5 (2000) 31.
[27]L.E. Cross,”Relaxor Ferroelectric“, Ferroelectric, 76 (1987) 241.
[28]Y. C. Liou , Mater. Lett. 58 (2004) 944.
[29]W. Z. Zhu, A. Kholkin, P.Q. Mantas and J. L. Baptista, J. Mater. Sci., 36 (2001) 4089.
[30]D. Hennings, A. Schnell and G. Simon, J. Am. Ceram. Soc. 65 (1982) 539.
[31]Stephen M. Neirman, J. Mater. Sci. 23 (1988) 3973.
[32]T. Martirena and J. C. Burfoot, J. Phys. C: Solid State Phys. 7 (1974) 3182.
[33]R. M. Glaister,”Barrier-Layer Dielectric”, Proc. Int. Conf. Components and Mats. Elec. Eng. IEE. Paper 3634 (1961) 1.
[34]F. Greuter and G. Blatter, Semicond. Sci. Technol., 5 (1990) 37.
[35]R. Waser and R. Hagenbeck, Acta Mater. 48 (2000) 797.
[36]M. N. Rahaman and L. C. De Jonghe, J. Am. Ceram. Soc. 76 [7] (1993) 1739.
[37]S. Yangyun and R. J. Brook, Sci. Sintering, 17 [1] (1985) 35.
[38]W. Jander,”Reaktionen im Festen Zustande bie Hobheren Temperature”, Z. Anorg. Allg.Chem. (in Ger) 163 (1927) 1.
[39]A. M. Ginstling and B. I. Brounshtein, J. Appl. Chem. USSR, 23 (1950) 1327.
[40]G. Valensi,”Cinetique de IOxydation de Spherules et de poudres Matallics”, C. R. Hebd. Seancs Acad. Sci. (in Fr.) 203 (1936) 309.
[41]R. E. Carter , J. Chem. Phys. 34 (1961) 2010.
[42]蕭富山,"修正型統計燒結理論評估位添加、氧化鎂及氧化鋯添加氧化鋁燒結行為及顯微結構演進",國立成功大學材料科學及工程博士論文,2000
[43]R. L. Coble, J. Appl. Phys. 32 (1961) 787.
[44]C. Greskovich and J. H. Rosolowski, J. Am. Ceram. Soc. 59 (1976) 336.
[45]C. Herring, J. Appl. Phys. 21 (1950) 301.
[46]F. F. Lang, J. Am. Ceram. Soc. 67 (1984) 83.
[47]J. E. Burke and D. Turnbull, Prog. Metal Phys. 3 (1952) 220.
[48]W. D. Kingery, H .K. Bowen and D. R. Uhlmann, "Introduction to Ceramics" 2nd edition, John Wiley and Sons, New York, (1976), p.220.
[49]Y.C. Liou, Mater. Lett. 58 (2004) 944.
[50]B. D. Cullity, Elements of X-Ray Diffraction, 2nd Ed., Wiley, New York, (1978).
[51]H. M. Rietveld, “Line profiles of neutron powder-diffraction peaks for structure refinement,” Acta Crystallogr., 22 (1967) 151.
[52]A. C. Larson and R. B. Von Dreele, “General Structure Analysis System,” Los Alamos National Laboratory, Los Alamos, (1988).
[53]T. Hungría, L. Pardo, A. Moure, and A. Castro, J. Alloys Compd., 395 (2005) 166.
[54]S. Lanfredi, L. Dessemond, and A. C. M. Rodrigue, J. Euro. Ceram. Soc., 20 (2000) 983.
[55]李文景,〞鍶鋇鈮陶瓷固態反應及燒結行為之研究〞,國立成功大學材料科學及工程學系,博士論文,1997.
[56]Y. C. Liou, C. T. Wu, K. H. Tseng and T. C. Chung, Mater. Res. Bull. 40 (2005) 1483
[57]A. Castro, B. Jiménez, T. Hungría, A. Moure and L. Pardo, J. Euro. Ceram. Soc., 24 (2004) 941.
[58]S. G. Chen, Y. S. Yin, D. P. Wang and J. Lia, J. Crystal Growth 267 (2004) 100
[59]I. C. M. S. Santos, L. H. Loureiro, M. F. P. Silva and A. Cavaleiro, Polyhedron 21 (2002) 2009.
[60]Y. Matsuzukia, T. Kubotab, X. Y. Liua, M. Atakac and K. J. Takano, J. Crystal Growth 242 (2002) 199.
[61]M. Plomp, A. McPherson, A. J. Malkin, J. Crystal Growth, 237-239 (2002) 306.
[62]W. Jo, D. Y. Kim and N. M. Hwang, J. Am. Ceram. Soc., 89[8] (2006) 2369.
[63]O. Parkash, R. Kumar, D. Kumar and D. Bahadur, J. Mater. Sci. Lett. 7 (1988) 383.
[64]K. Lichtenecker,”Dielectric Constant of Natural and Synthetic Mixtures”, Phys. Z., 27 (1926) 115
[65]I. Santos, L. H. Loureiro, M. F. P. Silva and A. Cavaleiro, Polyhedron 21 (2002) 2009.
[66]M. Mohsen, R. K. Rehberg, A. M. Massoud and H. T. Langhammer,”Donor- doping effect in BaTiO3 ceramic using positron annihilation spectroscopy”, Radiation Phys.Chem. 68 (2003) 549
[67]D. F. K. Hennings, R. Janssen and P. J. L. Reynen,“Control of Liquid-Phase- Enhanced Discontinuous Grain Growth in Barium Titanate”, J. Am. Ceram. Soc. 70 (1987) 23
[68]L.A. Xue, Y. Chen and R. J. Brook,” The Influence of IonicRadii on the Incorporation of Trivalent Dopants into BaTiO3”, Mater. Sci. Eng. B1 (1988)193
[69]C. Y. Chung, Y. H. Chang and G. J. Chen, J. Appl. Phys. 96 (2004) 6624.
[70]L. Groupp and H. U. Anderson, J. Am. Ceram. Soc. 59 (1976) 449.
[71]S. Neirman and I. Burn, J. Mater. Sci. 123 (1982) 1584.
[72]Y. Li, X. Yao and L. Zhang, Ceram. Int. 30 (2004) 1283.
[73]C. Ang and Zhi Yu, J. Appl. Phys. 96 (2002) 1487.
[74]R. K. Dwivedi, D. Kumar and O. Parlash, J. Mater. Sci. 36 (2001) 3649.
[75]R. Moos and K. H. Härdtl, J. Am. Ceram. Soc. 80 (1997) 2549.
[76]R. K. Dwivedi, D. Kumar and O. Parlash, J. Mater. Sci. 36 (2001) 3641.
[77]T. T. Fang and F. Y. Chen, J. Appl. Phys. 100 (2006) 014110.
[78]A. S. Nowick,S. Q. Fu, W. K. Lee, B. S. Lin and T. Scherban, Mater. Sci. Eng. B23 (1994) 19.
[79]S. Saha and T. P. Sinha, Phys. Rev. B 65 (2002) 134103.
[80]M. A. L. Nobre and S. Lanfredi, J. Appl. Phys. 93 (2003) 5557.
[81]R. K. Dwivedi, D. Kumar and O. Parkash, Br. Ceram. Trans. 100 (2001) 115.
[82]S. P. Singh, A. K. Singh, D. Pandey, H. Sharma, and O. Parkash, J. Mater. Res. 18 (2003) 2677.
[83]M. A. Subramanian, D. Li, N. Duan, B. A. Reisner and A. W. Sleight, J. Solid State Chem., 151 (2000) 323.
[84]I. P. Raevski, S. A. Prosandeev, A. S. Bogatin, M. A. Malitskaya and L. Jastrabik, J. Appl. Phys., 93 (2003) 4130.
[85]A. P. Ramirez, M. A. Subramanian, M. Gardel, G. Blumberg, D. Li, T. Vogt and S. M. Shapiro, Solid State Communications, 155 (2000) 217.
[86]P. Q. Mantas, J. Euro. Ceram. Soc. 19 (1999) 2079.
[87]A. K. Jonscher, “ Dielectric relaxation in Solids”, Chelsea Dielectrics Press Limited, London (1983) p.76
[88]A. R. West, T. B. Adams, F. D. Morrison and D. C. Sinclair, J. Euro. Ceram. Soc., 24 (2004) 1439.
[89]N. Yamaoka, Am. Ceram. Soc. Bull. 65 (1986) 1149.
[90]J. Fleig and J. Maier, J. Am. Ceram. Soc. 82 (1999) 3485.
[91]J. M. Sohn, M. R. Kim, S. I. Woo, Catalysis Today 83 (2003) 289.
[92]H. Du, X. Yao and L. Zang, Ceram. Int. 28 (2002) 231.
[93]F.J. Rotella, J.D. Jorgensen, B. Morosin and R.M. Biefeld, Solid State Ionics, 5 (1981) 455.
[94]M. Valant and P.K. Davis, J. Mater. Sci. 34 (1999) 5437.
[95]M.A.L. Nobre and S. Lanfredi, Appl. Phys. Lett. 82 (2003) 2284.
[96]A. Jaiswal and E. D. Wachsman, J. Electrochem. Soc. 152 (2005) 787.
[97]X. Liu , W. Su, Z. Lu , J. Liu , L. Pei , W. Liu, L. He, J. Alloys Comp. 305 (2000) 21.
[98]X. Liu, W. Su, Z. Lu, Mater. Chem. Phys. 82 (2003) 327.
[99]W.D. Kingery, H.K. Bowen, D.R. Uhlmann, Introduction to Ceramics, (J. Wiley, New York, 1976)
[100]A. Aydi, H. Khemakhem, C. Boudaya, A. Simon and R. Von der Mühll, Solid State Sci. 7 (2005) 249.
[101]L.E. Cross, Ferroelectrics 151 (1994) 305.
[102]D. Viehland, M. Wuttig and L.E. Cross, Ferroelectrics 120 (1991) 71.
[103]P. Singh, D. Kumar and O. Parkash, J. Appl. Phys. 97 (2005) 074103.
[104]C. Ang, Z. Yu, H.J. Youn, C.A. Randall, A.S. Bhalla and L.E. Cross, J. Nino, M. Lanagan, Appl. Phys. Lett. 80 (2002) 4807.
[105]G. H. Jonker, Solid State Electron. 7 (1964) 895.
[106]P.P. Rao, S.J. Liji, K.R. Nair and P. Koshy, Physica B 349 (2004) 115.
[107]R. Rai, S. Sharma and R.N.P. Choudhary, Mater. Lett. 57 (2003) 3574.
[108]S. Ananta and N. W. Thomas, J. Euro. Ceram. Soc. 19 (1999) 155.
[109]J. S. Kim, N. K. Kim and J. H. Kim, Mater. Lett. 58 (2004) 1358.
[110]C.C. Chiu, C.C. Li and S.B. Desu, J. Am. Ceram. Soc. 74 (1991) 38.
[111]A. Aydi, H. Khemakhem, C. Boudaya, R. Von der Mühll and A. Simon, Solid State Sci. 6 (2004) 333.
[112]J. Chen and M. P. Harmer, J. Am. Ceram. Soc. 73(1) (1990) 86.
[113]H. Wang and X. Yao, J. Mater. Res. 16 (2001) 83.
[114]B. E. Vugmeister and M.D. Glinichuk, Rev. Modern Phys. 62, (1990) 993.
[115]S. P. Singh, A. K. Singh, D. Pandey, H. Sharma and O. Parkash, J. Mater. Res. 18 (2003) 2677.
[116]D. C. Sinclair, T. B. Adams, F. D. Morrison and A. R. West, Appl. Phys. Lett. 80 (2002) 2153.
[117]X. Y. Wei, Y. J. Feng and X. Yao, Appl. Phys. Lett. 83, 2031 (2003).
[118]X. B. Wang, Z. X. Shen, Z. P. Hu, L. Qin, S. H. Tang and M. H. Kuok, J. Molecular Structure 385 (1996) 1.
[119]J. Kreisel, A. M. Glazer, G. Jones, P. A. Thomas, L. Abello and G. Lucazeau, J. Phys.: Condens. Matter. 12, (2000) 3267.
[120]鍾朝宇,"複合型鈣鈦礦Ba1-xAx(Fe0.5Nb0.5)1-x/4O3 (A=La、Bi)之介電性質研究",國立成功大學材料科學及工程學系,博士論文,2005
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 王麗容(1998)。校園內性騷擾暨性侵害防治-談學校政策規劃與機制發展。學生輔導,59,126-139。
2. 王正嘉(2004)。刑事司法上被害人保護及其與犯罪人關係-一個批判的省思。月旦法學雜誌,110,125-143。
3. 方英祖(2002)。從正當法律程序觀點論行政程序法。考銓季刊,30,62-83。
4. 呂寶靜(1995)。工作場所性騷擾之研究:台灣地區案例探討,國立政治大學學報,第70期,131-158。
5. 何慧卿(2005)。性騷擾申訴人心路歷程之個案研究。玄奘社會科學學報,3,115-141。
6. 林俊益(2001)。論刑事行為人/被申訴人訴訟基本權之保障。憲政時代,27,1,39-58。
7. 林芳玫(1998)。談強姦公訴罪-程序正義、實質正義、性別正義的結合。政策月刊,36,23-26。
8. 林佳範(2006)。論「寓教於禁」的法制教育與處罰之教育性意涵。全國律師,10:6,24-32。
9. 徐宗國(1994)。紮根理論研究法:淵源、原則、技術與涵義。香港社會科學學報,4,194-221。
10. 高鳳仙(2001)。性騷擾之法律概念探究。法令月刊,52:4,252-272。
11. 陳惠馨(2005)。認真對待性別平等教育法-性別平等教育法之立法與展望。國家政策季刊,4,1,21-32。
12. 麥麗蓉、蔡秀玲(2004)。諮商員在大學校園中危機處理經驗之初探研究。中華輔導學報,15,97-122。
13. 許禎元(2005)。教師解聘之正當程序-兼評高等行政法院(92)年度訴更一字第104號。師大政治論叢,4,127-178。
14. 黃富源(2005)。女性主義對犯罪學與被害者學的影響。哲學與文化,32,3,21-49
15. 湯德宗(2000)。論憲法上的正當程序保障。憲政時代,25,4,3-33。