跳到主要內容

臺灣博碩士論文加值系統

(44.220.251.236) 您好!臺灣時間:2024/10/04 09:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許庭瑞
研究生(外文):Ting-Jui Hsu
論文名稱:水蒸氣及金膜對Ge-GeOx核殼奈米線及Si1-xGexOy奈米線生長之影響
論文名稱(外文):Effects of water vapor and gold films on the growth of Ge-GeOx nanowires and Si1-xGexOy nanowires
指導教授:林文台
指導教授(外文):Wen-Tai Lin
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:94
中文關鍵詞:水氣奈米線
外文關鍵詞:nanowireswater vaporAu
相關次數:
  • 被引用被引用:0
  • 點閱點閱:77
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討在氬氣中引入水氣,溫度1100℃於Si基板上以熱碳還原GeO2粉末生成Ge-GeOx奈米線的影響。無水氣時,會有少量的奈米線長成,但引入少許水氣便有顯著催化奈米線生長的現象。在此生成的奈米線為VS機制。目前結果顯示水氣除了扮演擔任氧化劑也同時有還原作用。其還原作用在於以熱碳還原GeO2粉末生長Ge-GeOx奈米線的方面扮演一重要角色,而使得Ge-GeOx奈米線能大量生長。在此探討水在幫助奈米線生長方面的驅勢及現象。而在基板邊緣會有另一型態的生成物,SiGeO奈米線,其為VLS機制。對於VS生成的Ge-GeO2奈米線,GeO2顆粒上僅有單一奈米線長出。然而對於VLS生成的SiGeO奈米線,卻有數十根奈米線同時從SiGeO液滴下層表面長出,而奈米線生長的同時亦將液滴推離Si基板。動力學效應使得藉由氫原子產生的還原反應偏好發生於VS生成的Ge-GeOx奈米線而非VLS生成的SiGeO奈米線,所以並不會有Ge-SiGeO核殼奈米線在SiGeO奈米線中形成。
另外,在鍍金膜Si基板上,溫度1100℃以熱碳還原GeO2粉末生成Ge-Si1-xGexOy奈米線的影響。在鍍金之後水氣影響趨勢與在純Si基板上所生長的Ge-GeOx奈米線奈米線相同,不同的地方在於同條件下,在有金膜催化後其奈米線變細且在同樣單為面積內的奈米線各數變多,而在外殼組成亦含有少量Si;在此生成的核殼奈米線為VS與VLS機制共存。在此探討鍍金膜對Ge-Si1-xGexOy奈米線之影響。而鍍金膜之後,其會較易於出現AuSi液態合金造成AuSiGeO液滴,故鍍金有利於SiGeO奈米線的生成。對於VLS生成的Ge-Si1-xGexOy奈米線,GeO2顆粒上僅有單一奈米線長出。和同樣為VLS生成的SiGeO奈米線,卻有數十根奈米線同時從SiGeO液滴下層表面長出。其差異在於液態合金中Au/Ge的組成比例及其顆粒尺寸。
In the present study, the effects of moist Ar on the growth of Ge-GeOx core-shell nanowires (Ge-GeOx NWs) and Si1-xGexOy nanowires (SiGeONWs) on bare Si and Au-coated Si substrates via the carbothermal reduction of GeO2 powders at 1100˚C were studied, respectively. The studies concerned with the bare Si and Au-coated Si substrates are reported successively.
No significant nanowires were grown on the bare Si substrates in dry Ar at a flow rate of 100-300 sccm until a bit of water in the range of 0.5-2 ml was loaded in the furnace. More water suppressed the growth of nanowires because of the exhaustion of graphite powders. Higher Ar flow rate decreased the length and diameter of Ge-GeOx NWs because of the dilution of GeO vapor, while it promoted the growth of SiGeONWs. The growth of Ge-GeOx NWs and SiGeONWs follows the vapor-solid and vapor-liquid-solid processes, respectively. The present study showed that the water vapor can serve as an oxidizing agent as well as a reducing agent at 1100˚C in enhancing the growth of SiGeONWs and Ge-GeOx NWs, respectively. The inhibition of the reduction of SiGeONWs by atomic hydrogen to form Ge-SiGeO core-shell nanowires may be due to the kinetic effect.
Significant Ge-Si1-xGexOy core-shell NWs (Ge-Si1-xGexOy NWs) and SiGeONWs were not grown on the Au-coated Si substrates in dry Ar at a flow rate of 100-300 sccm until a bit of water was loaded in the furnace. The amount of Ge-SiGeO NWs and SiGeO NWs increased with the volume of water. More water suppressed the growth of Ge-SiGeO NWs and SiGeONWs because of the exhaustion of more graphite powders. With increasing the thickness of Au films, the amount of SiGeONWs and the nuclei of Ge-SiGeO NWs increased. Higher Ar flow rate decreased the length and diameter of Ge-SiGeO NWs and the amount of SiGeONWs because of the dilution of GeO vapor. The growth of SiGeONWs follows the vapor-liquid-solid (VLS) process, while that of Ge-SiGeO NWs follows both the vapor-solid and VLS processes. The mechanisms for the effects of water vapor and Au catalyst in enhancing the growth of SiGeONWs and Ge-SiGeO NWs are discussed, respectively.
中文摘要 I
英文摘要 III
誌謝感言 Ⅴ
本文目錄 Ⅵ
圖目錄 Ⅸ
第一章 奈米材料簡介 1
1.1 前言 1
1.2 奈米效應 2
1.2.1 表面效應 2
1.2.2 量子尺寸效應 3
1.3 一維奈米材料 3
第二章 基本理論 6
2.1 文獻回顧 6
2.1.1奈米線生長方向性 6
2.1.2奈米線合成技術 7
熱碳還原(carbothermal reduction) 7
化學氣相沉積(chemical vapor deposition) 8
Solvothermal法 9
熱蒸鍍(thermal evaporation) 10
雷射蒸鍍(laser ablation) 10
熱蒸鍍(thermal evaporation) 11
模板輔助(template-assisted) 11
溶膠-凝膠法(sol-gel) 12
2.1.3 奈米線生長機制 13
Vapor-Solid(VS) 14
Vapor-Liquid-Solid(VLS) 15
Oxide-Assisted Growth(OAG) 18
2.2 儀器原理 19
2.2.1 掃瞄式電子顯微鏡(SEM) 19
2.2.2 低掠角X光繞射儀(GID) 20
2.2.3 穿透式電子顯微鏡(TEM) 22
2.2.4 X光能量散佈分析儀(EDS) 23
2.2.5 陰極激發光譜儀分析(CL) 24
2.3 研究動機 25
第三章 實驗方法 27
3.1 實驗設備及流程 27
3.2 基板清洗與TEM試片製備 28
3.2.1基板清洗 28
3.2.2 TEM試片製備 29
3.3 實驗分析 29
3.3.1 掃瞄式電子顯微鏡分析 29
3.3.2 低掠角X光繞射分析 30
3.3.3穿透式電子顯微鏡分析 30
3.3.4陰極激發光譜儀分析 30
第四章 結果與討論 31
4.1引進水氣於Si基板生成之奈米線 31
4.1.1水量對奈米線生長的影響 32
4.1.2奈米線生長機制探討 33
4.1.3 Ar/O2混合氣體與過量水氣對Ge-GeOx奈米線生長之影響 34
4.1.4 Ar流量對奈米線生長的影響及SiGeO奈米線的出現 34
4.1.5 SiGeO奈米線生長及生長機制 35
4.2金膜及水氣對Si基板上奈米線生長之影響 36
4.2.1 Ge-SiGeO奈米線的生長及生長機制 37
4.2.2金膜厚度對Ge-SiGeO奈米線影響 39
4.2.3水量對Ge-SiGeO奈米線影響 39
4.2.4氬氣流量對Ge-SiGeO奈米線影響 40
4.2.5 SiGeO奈米線 41
4.2.6金膜厚度對SiGeO奈米線影響 41
4.2.7水量和氬氣流量對SiGeO奈米線影響 42
4.2.8生長於試片上位置對SiGeO奈米線影響 42
4.2.9 SiGeO奈米線生成探討 43
4.2.10 SiGeO奈米線CL分析 44
第五章 結論 45
參考文獻 47
























圖目錄
圖1- 1 能障示意圖 52

圖2- 1 陽極氧化鋁薄膜(AAM)的TEM影像 53
圖2- 2 VLS機制示意圖 53
圖2- 3 用Au作為催化劑成長Ge奈米線 (a)示意圖及Au-Ge相圖 (b)以TEM即時觀察奈米線生長情形 54
圖2- 4 以OAG合成Si奈米線的成核與成長示意圖 55

圖3- 1管型爐及氣體管線示意圖 56
圖3- 2 實驗流程 57
圖3-3 粉末擺設示意圖 58

圖4- 1 無水氣時,不同氬氣流量下,奈米線生長趨勢 59
圖4- 2 奈米線的 (a)典型奈米線(b)XRD成份分析 60
圖4- 3 奈米線的 (a)(b)TEM影像與繞射圖 (c)EDS成份分析 61
圖4- 4 (a)(c)不同基板平面的磊晶生長情形 (b)奈米線生成橫截面 62
圖4- 5氬氣流量100sccm,不同水氣下,奈米線生長趨勢 63
圖4- 6氬氣流量200sccm,不同水氣下,奈米線生長趨勢 64
圖4- 7氬氣流量300sccm,不同水氣下,奈米線生長趨勢 66
圖4- 8氬氣流量100sccm,2ml水氣下,短時間生長之奈米線 67
圖4- 9奈米線底端顆粒EDS分析 67
圖4- 10 無水氣時,不同Ar/O2流量下,奈米線生長趨勢 68
圖4- 11 有水氣時,不同Ar/O2流量下,奈米線生長趨勢 69
圖4- 12 有水氣2ml時,不同氬氣流量下,奈米線生長趨勢 70
圖4- 13 有水氣1ml時,不同氬氣流量下,奈米線生長趨勢 71
圖4- 14 有水氣0.5ml時,不同氬氣流量下,奈米線生長趨勢 72
圖4- 15 不同水氣、氬氣流量下,SiGeO奈米線生長趨勢 73
圖4- 16 SiGeO奈米線的(a)(b)TEM影像與繞射圖 (c)(d)EDS成份分析 74
圖4- 17 鍍金Si基板,無水氣時,不同氬氣流量下,生長趨勢 75
圖4- 18鍍金Si基板,水量2ml,1100℃,60min,氬氣流量200sccm 76
圖4- 19鍍金Si基板VLS核殼奈米線(a) TEM影像及繞射圖(b)(c) EDS分析 77
圖4- 20鍍金Si基板VS核殼奈米線(a) TEM影像及繞射圖(b) EDS分析 77
圖4- 21鍍金Si基板奈米線(a)SEM俯視(b)橫截面 78
圖4- 22鍍金Si基板,核殼奈米線為VS及VLS 78
圖4- 23鍍金Si基板,2ml水氣時,氬氣流量200sccm,不同金膜厚度,核殼奈米線生長趨勢 79
圖4- 24鍍金(膜厚20nm)Si基板,氬氣流量100sccm,不同水量,核殼奈米線生長趨勢 80
圖4- 25鍍金(膜厚20nm)Si基板,氬氣流量200sccm,不同水量,核殼奈米線生長趨勢 81
圖4- 26鍍金(膜厚20nm)Si基板,氬氣流量300sccm,不同水量,核殼奈米線生長趨勢 83
圖4- 27鍍金(膜厚20nm)Si基板,水量2ml,不同Ar/O2流量,核殼奈米線生長趨勢 84
圖4- 28鍍金(膜厚20nm)Si基板,水量2ml,不同氬氣流量,核殼奈米線生長趨勢 85
圖4- 29鍍金(膜厚20nm)Si基板,SiGeO奈米線(a) TEM影像與繞射圖 (b)(c)EDS成份分析 86
圖4- 30鍍金Si基板,2ml水氣時,氬氣流量200sccm,不同金膜厚度,SiGeO奈米線生長趨勢 87
圖4- 31鍍金(膜厚20nm)Si基板,氬氣流量100sccm,不同水量,SiGeO奈米線生長趨勢 88
圖4- 32鍍金(膜厚20nm)Si基板,氬氣流量200sccm,不同水量,SiGeO奈米線生長趨勢 89
圖4- 33鍍金(膜厚20nm)Si基板,氬氣流量300sccm,不同水量,SiGeO奈米線生長趨勢 91
圖4- 34鍍金(膜厚20nm)Si基板,氬氣流量200sccm,2ml水量,60min,SiGeO奈米線由試片中心到試片邊緣生長趨勢 92
圖4- 35鍍金(膜厚20nm)Si基板,氬氣流量200sccm,2ml水量,60min,SiGeO奈米線的(a)SEM影像(b)CL影像(c)CL分析 94
1.閻子峰, “奈米催化技術”,五南圖書出版股份有限公司(2004)
2.R. Feynman, “Plenty of Room at the Bottom”, APS Annual Meeting (1959)
3.Drexler, K Eric. Engines of Creation.London:Fourth Eastate(1990)
4.馬振基, “奈米材料科技原理與應用”,全華科技(2003)
5.盧永坤, “奈米科技概論”,滄海書局(2005)
6.M.F. Crommie, C.P. Lutz, D.M. Eigler, Science,262,218 (1993)
7.陳貴賢, 吳季珍, “物理雙月刊”, 23, 609 (2001)
8.K. Hiruma, M. Yazawa, T. Katsuyama, K. Ogawa, K. Haraguchi, M. Koguchi, and H. Kakibayashi, J. Appl. Phys. 77, 447 (1995)
9.Frederick C. K. Au, K. W. Wong, Y. H. Tang, Y. F. Zhang, I. Bello, and S. T. Lee, Appl. Phys. Lett. 75, 1700 (1999)
10.Y. Li, G. W. Meng, and L. D. Zhang, and F. Phillipp, Appl. Phys. Lett. 76, 2011 (2000)
11.Y. Saito, S. Uemura, Carbon 38, 169 (2000)
12.M. Hirakawa, S. Sonoda, C. Tanaka, H. Murakami, H. Yamakawa, Appl. Surf. Sci. 169-170, 662 (2001)
13.S. M. Lee, K. S. Park, Y. C. Chai, Y. S. Park, J.M. Bok, D. J. Bae, K. S. Nahm, Y. G. Choi, S. C. Yu, N. Kim, T. Frauenheim, Y. H. Lee, Synth. Met. 113, 209 (2000)
14.R. T. Yang, Carbon 38, 623 (2000)
15.J. Hu, T. W. Odom, and C. M. Lieber, Acc. Chem. Res. 32, 435 (1999)
16.C. L. Cheung, J. H. Hafner, T. W. Odom, K. Kim, and C. M. Lieber, Appl. Phys. Lett. 76, 3136 (2000)
17.H. Dai, J.H. Hafner, A. G. Rinzler, D. T. Colbert, R. E. Smalley, Nature 384, 147 (1996)
18.D.P. Yu, Z.G. Bai, J.J. Wang, Y.H. Zou, W. Qian, J.S. Fu, H.Z. Zhang, Y. Ding, G.C. Xiong, L.P. You, J. Xu, and S.Q. Feng, Phys. Rev. B 59, R2498 (1999)
19.Y. Q. Zhu, W. B. Hu, W. K. Hsu, M. Terrones, N. Grobert, T. Karali, H. Terrones, J.P. Hare, P.D. Townsend, H.W. Kroto, and D.R.M. Waltson, Adv. Mater. 11, 844 (1999)
20.A. P. Alivisatos, Science 271, 933 (1996)
21.F. Marlow, M. D. McGehee, D. Zhao, B. F. Chmelka, and G. D. Stucky, Adv. Mater. 11, 632 (1999)
22.D. P. Yu, Q. L. Hang, Y. Ding, H. Z. Zhang, Z.G. Bai, J. J. Wang, Y. H. Zou, W. Qian, G. C. Xiong, and S. Q. Feng, Appl. Phys. Lett. 73, 3076 (1998)
23.J. R. Heath, F. K. LeGoues, Chem. Phys. Lett. 208, 263 (1993)
24.D. Wang and H. Dai, Angew. Chem. Int. Ed. 41, 4783 (2002)
25.S. Kodambaka, J. Tersoff, M.C. Reuter, F.M. Ross, Science,316,729(2007)
26.T. Hanrath and B. A. Korgel , J. Am. Chem. Soc. 124, 1424 (2002)
27.D. Wang, Y. L. Chang, Q. Wang, J. Cao, D. B. Farmer, R. G. Gordan, and H. Dai, J. Am. Chem. Soc. 126, 11602 (2004)
28.Y. Wu and P. Yang, Appl. Phys. Lett. 77, 43 (2000)
29.Y. Huang, J. Lin, J. Zhang, X.X. Ding, S. R. Qi, and C. C. Tang, Nanotechnology 16, 1369 (2005)
30.J. Q. Hu, X. M. Meng, Y. Jiang, C. S. Lee, and S. T. Lee, Adv. Mater. 15, 70 (2003)
31.C. Y. Ko,and W. T. Lin, Nanotechnology 17,4464(2006)
32.Y. F. Zhang, Y. H. Tang, N. Wang, C.S. Lee, I. Bello, and S. T. Lee, Phys. Rev. B 61, 4518 (2000)
33.M. Zacharias and P. M. Fauchet, J. Non-Cryst. Solids 227-230, 1058 (1998)
34.A. Margaryan, M.A. Piliavin, Germanate Glasses, Structure, Spectroscopy, and Properties, Artech House, Boston, MA, p. 135 (1993)
35.Y. H. Tang, Y. F. Zhang, N. Wang, I. Bello, C. S. Lee, and S. T. Lee, Appl. Phys. Lett. 74, 3824 (1999)
36.J. Q. Hu, Q. Li, X. M. Meng, C. S. Lee, and S. T. Lee, Adv. Mater. 14, 1396 (2002)
37.Y. J. Zhang, J. Zhu, Q. Zhang, Y. J. Yan, N. L. Wang, X. Z. Zhang, Chem. Phys. Lett. 317, 504 (2000)
38.Z. Jiang, T. Xie, G. Z. Wang, X. Y. Yuan, C. H. Ye, W. P. Cai, G. W. Meng, G. H. Li, and L. D. Zhang, Mater. Lett. 59, 416 (2005)
39.P. Viswanathamurthi, N. Bhattarai, H. Y. Kim, M. S. Khil, D. R. Lee, and E. K. Suh, J. Chem. Phys. 121, 441 (2004)
40.X. C. Wu, W. H. Song, B. Zhao, Y. P. Sun, and J. J. Du, Chem. Phys. Lett. 349, 210 (2001)
41.P. Hidalgo, B. Mendez, and J. Piqueras, Nanotechnology 16, 2521 (2005)
42.Y.K. Tseng, I.N. Lin, K.S. Liu, T.S. Lin and I.C. Chen, J. Mater. Res. 18, 714 (2003)
43.Y. Liu and Y. Liu, J. Phys. Chem. B 109, 20746(2005)
44.Y. Huang, S. Yue, Z. Wang, Q. Wang, C. Shi, Z. Xu, X.D. Bai, C. Tang and C. Gu, J. Phys. Chem. B 110, 796(2006)
45.C.H. Xu, C.H. Woo, S.Q. Shi, Superlattices and Microstructures 36,31(2004)
46.K. Hong, W. Yiu, H. Wu, J. Gao and M. Xie, Nanotechnology 16,1608(2005)
47.F. Xu and S.D. Tse, Appl. Phys. Lett. 88, 243115 (2006)
48.S.P. Ge, K.L. Jiang, X.X. Lu, Y.F. Chen, R.M. Wang, S.S. Fan, Adv. Mater. 17,56 (2005)
49.B.V. Kamenev, V. Sharma, L. Tsybeskov, T.I. Kamins, Phys. stat. sol. 202, 2753 (2005)
50.H. Jagannathan, M. Deal, Y.Nishi, J. Woodruff, C. Chidsey, P.C. McIntyre, J.Appl. Phys.,100, 024318 (2006)
51.H. Adhikari, A.F. Marshall, E.D. Chidsey, and P.C. McIntyre,Nano Letters 6,318 (2006)
52.X. C. Wu, J. M. Hong, Z. J. Han, and Y. R. Tao, Chem. Phys. Lett. 373, 28 (2003)
53.C. Y. Chen, C. I. Lin, and S. H. Chen, Br. Ceram. Trans. 99, 57 (2000)
54.J. P. Murray, A. Steinfeld, and E. A. Fletcher, Energy 20, 695 (1995)
55.M. Johnsson, Solid State Ionics 172, 365 (2004)
56.C. N. R. Rao, G. Gundiah, F. L. Deepak, A. Govindaraj, and A. K. Cheetham, J. Mater. Chem. 14, 440 (2004)
57.A. Alizadeh, E. T. Nassaj, and N. Ehsani, J. Eur. Ceram. Soc. 24, 3227 (2004)
58.K. P. Kalyanikutty, G. Gundiah, A. Govindaraj, and C.N. R. Rao, J. Nanosci. Nanotech. 5, 421 (2005)
59.P. Nguyen, H. T. Ng, and M. Meyyappan, Adv. Mater. 17, 549 (2005)
60.S. H. Li, X. F. Zhu, Y. P. Zhao, J. Phys. Chem. B 108, 17032 (2004)
61.S. Kar and S. Chaudhuri, Solid State Commun. 133, 151 (2005)
62.Y. C. Lin and W. T. Lin, Nanotechnology 16, 1648 (2005)
63.B. T. Park and K. Yong, Nanotechnology 15, S365 (2004)
64.Y. Ryu, T. Tak, and K. Yong, Nanotechnology 16, S370 (2005)
65.H. Adhikari , P. C. Mclntyre, S. Sun, P. Pianetta, C. E. D. Chidsey, Appl. Phys. Lett. 87, 263109 (2005)
66.H. Adhikari , A. F. Marshall, C. E. D. Chidsey, and P. C. Mclntyre, Nano Lett. 6, 318 (2006)
67.T. Guo﹐P. Nikolaev﹐A. Thess﹐D. T. Colbert﹐R. E. Smalley﹐Chem. Phys. Lett. 243, 49 (1995)
68.Y. F. Zhang, Y. H. Tang, N. Wang, C.S. Lee, I. Bello, and S. T. Lee, Phys. Rev. B 61, 4518 (2000)
69.Y. H. Tang, Y. F. Zhang, N. Wang, I. Bello, C. S. Lee, and S. T. Lee, Appl. Phys. Lett. 74, 3824 (1999)
70.Z. W. Pan, Z. R. Dai, and Z. L. Wang, Science 291, 1947 (2001)
71.B. D. Yao, Y. F. Chan, and N. Wang, Appl. Phys. Lett. 81, 757 (2002)
72.Y. B. Li, T. Bando, D. Golberg, and K. Kurashima, Appl. Phys. Lett. 81, 5048 (2002)
73.J. P. Murray, A. Steinfeld, and E. A. Fletcher, Energy 20, 695 (1995)
74.N. R. B. Coleman, K. M. Ryan, T. R. Spalding, J. D. Holmes, and M. A. Morris, Chem. Phys. Lett. 343, 1 (2001)
75.Y. Yin, Y. Lu, Y. Sun, and Y. Xia, Nano Lett. 2, 427 (2002)
76.B. Gates, Y. Wu, Y. Yin, P. Yang, and Y. Xia, J. Am. Chem. Soc. 123, 11500 (2001)
77.傅耀賢, “新穎奈米線棒低溫合成技術”, 化工資訊與商情, 第2期 (2003)
78.C. N. R. Rao, A. Govindaraj, F.L. Deepak, N. A. Gunari, and M. Nath, Appl. Phys. Lett. 78, 1853 (2001)
79.A. Govindaraj, F.L. Deepak, N.A. Gunari, C. N. R. Rao, Israel J. Chem. 41, 23 (2001)
80.C. N. R. Rao, F. L. Deepak, G. Gundiah, and A. Govindaraj, Prog. Solid State Chem. 31, 5 (2003)
81.R. S. Wagner, and W. C. Ellis, Appl. Physl. Lett. 4, 89 (1964)
82.R. S. Wagner, and W. C. Ellis, Trans. Met. Soc. AIME 233, 1053 (1965)
83.R. S. Wagner, “Whisker Technology”, Ed. A.P. Levitt, Wiley New York, pp.47-119 (1970)
84.Y. Wu and P. Yang, J. Am. Chem. Soc. 123, 3165 (2001)
85.J. Q. Hu, Q. Li, X. M. Meng, C. S. Lee, and S. T. Lee, Adv. Mater. 14, 1396 (2002)
86.L. Dai, X. L. Chen, T. Zhou, and B. Q. Hu, J. Phys.: Condens. Matter 14, L473 (2002)
87.L. Dai, X. L. Chen, J. K. Jian, W. J. Wang, T. Zhou, and B. Q. Hu, Appl. Phys. A 76, 625 (2003)
88.R. S. Wagner, and W. C. Ellis, Appl. Physl. Lett. 4, 89 (1964)
89.R. S. Wagner, and W. C. Ellis, Trans. Met. Soc. AIME 233, 1053 (1965)
90.R. S. Wagner, “Whisker Technology”, Ed. A.P. Levitt, Wiley New York, pp.47-119 (1970)
91.Y. Wu and P. Yang, J. Am. Chem. Soc. 123, 3165 (2001)
92.M. Sanjay, S. Hao, S. Vladimir, and W. Ulf, Chem. Mater. 16, 2449 (2004)
93.C.B. Jin, J.E. Yang, and M.H. Jo, Appl. Phys. Lett. 88,193105 (2006)
94.Z. W. Pan, Z. R. Dai, C. Ma, and Z. L. Wang, J. Am. Chem. Soc. 124, 1817 (2002)
95.Z. Pan, S. Dai, D. D. Beach, and D. H. Lowndes, Nano Lett. 3, 1279 (2003)
96.Z. W. Pan, S. Dai, D. B. Beach, D. H. Lowndes, Appl. Phys. Lett. 83, 3159 (2003)
97.S. Sun, G. Meng, M. Zhang, Y. Hao, X. Zhang, and L. Zhang, J. Phys. Chem. B 107,13029 (2003)
98.S. T. Lee, N. Wang, Y. F. Zhang, and Y. H. Tang, MRS Bull. 24, 36 (1999)
99.S. T. Lee, Y. F. Zhang, N. Wang, Y. H. Tang, I. Bello, C. S. Lee, and Y. W. Chung, J. Mater. Res. 14, 4503 (1999)
100.N. Wang, Y. H. Tang, Y. F. Zhang, C. S .Lee, and S. T. Lee, Phys. Rev. B 58, R16024 (1998)
101.Y. F. Zhang, Y. H. Tang, N. Wang, C.S. Lee, I. Bello, and S. T. Lee, Phys. Rev. B 61, 4518 (2000)
102.J. Q. Hu, X. M. Meng, Y. Jiang, C. S. Lee, and S. T. Lee, Adv. Mater. 15, 70 (2003)
103.T. S. Chu, R. Q. Zhang, and H. F. Cheung, J. Phys. Chem. B 105, 1705 (2001)
104.R. Q. Zhang, Y. Lifshitz, and S. T. Lee, Adv. Mater. 15, 635 (2003)
105.X. M. Meng, J. Q. Hu, Y. Jiang, C. S. Lee, and S. T. Lee, Appl. Phys. Lett. 83, 2241 (2003)
106.W. S. Shi, Y. F. Zheng, N. Wang, C. S. Lee, and S. T. Lee, Chem. Phys. Lett. 345, 377 (2001)
107.H. Y. Peng, X. T. Zhou, N. Wang, Y. F. Zheng, L. S. Liao, W. S. Shi, C. S. Lee, and S. T. Lee, Chem. Phys. Lett. 27, 263 (2000)
108.W. S. Shi, Y. F. Zheng, N. Wang, C. S. Lee, and S. T. Lee, Adv. Mater. 13, 591 (2001)
109.W. S. Shi, Y. F. Zheng, N. Wang, C. S. Lee, and S. T. Lee, Appl. Phys. Lett. 78, 3304 (2001)
110.W. S. Shi, Y. F. Zheng, N. Wang, C. S. Lee, and S. T. Lee, J. Vac. Sci. Technol. B 19, 1115 (2001)
111.J. Q. Hu, X. L. Ma, Z. Y. Xie, N. B. Wong, C. S. Lee, and S. T. Lee, Chem. Phys. Lett. 344, 97 (2001)
112.Y. H. Tang, N. Wang, Y. F. Zhang, C. S. Lee, I. Bello, and S. T. Lee, Appl. Phys. Lett. 75, 2921 (1999)
113.汪建民等人, “材料分析”, 中國材料科學學會 (1998)
114.D. C. Paine, C. Caragianis, and Y. Shigesato, Appl. Phys. Lett. 60, 2886 (1992)
115.D. C. Paine, C. Caragianis, T. Y. Kim, and Y. Shigesato, Appl. Phys. Lett. 62, 2842 (1993)
116.W. S. Liu, J. S. Chen, M. A. Nicolet, V. Arbet-Engels, and K. L. Wang, Appl. Phys. Lett. 62, 3321 (1993)
117.X.H. Sun, C.Didychuk, T.K. Sham and N.B. Wong, Nanotechnology 17, 2925 (2006)
118.J.Y. Zhang and X.M. Bao, Appl. Phys. Lett., 73,1790 (1998)
119.J.H. He, T.H. Wu, C.L. Hsin, L.J. Chen, Z.L. Wang, Electrochemical and Solid-State Letters, 8,G254 (2005)
120.J.H. He, W.W. Wu, S.W. Lee, L.J. Chen, Y.L. Chueh, and L.J. Chou, Appl. Phys. Lett., 86,263109 (2005)
121. C.Y. Ko, W.Y. Hsieh, T.J. Hsieh, T.J. Hsu, and W.T. Lin, J. Mater. Res., 22,1618 (2007)
122.郭正次.朝春光編著, “奈米結構材料科學”, 全華科技, 93年4月, Chap.5.
123.K. Suenaga, C. Colliex, N. Demoncy, A. Loiseau, H. Pascard, and F. Willaime, Science 278, 653 (1997)
124.Y. Wu and P. Yang, J. Am. Chem. Soc. 123, 3165 (2001)
125.S.T. Lee, Y.F. Zhang, N. Wang, Y.H. Tang, I. Bello, C.S. Lee, and Y.W. Chung, J. Mater. Res. 14, 4503 (1999)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊