跳到主要內容

臺灣博碩士論文加值系統

(98.80.143.34) 您好!臺灣時間:2024/10/07 20:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃正豐
研究生(外文):Jene-Fong Huang
論文名稱:以兩階段燒結法製備SiC/Ti3SiC2/TiC陶瓷複合材料之研究
論文名稱(外文):Investigation of silicon carbide /titanium silicon carbide /titanium carbide ceramic composites fabricated by two step sintering
指導教授:黃肇瑞黃肇瑞引用關係
指導教授(外文):Jow-Lay Huang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:65
中文關鍵詞:SiC / Ti3SiC2 / TiC複合陶瓷兩階段燒結
外文關鍵詞:two step sinteringSiC/Ti3SiC2/TiC ceramic comp
相關次數:
  • 被引用被引用:1
  • 點閱點閱:560
  • 評分評分:
  • 下載下載:110
  • 收藏至我的研究室書目清單書目收藏:0
論文摘要

本研究利用不同莫耳比TiC : Si =3 : 1與TiC : Si =3 : 2原始粉末,以熱壓燒結方式製備SiC / Ti3SiC2 / TiC陶瓷複合材料。於本系統中,由於起始粉末含有Si (熔點=1414℃),為避免Si的熔融,本實驗採用兩階段燒結方式,於第一段燒結選用1350℃持溫,之後再升至較高溫度1500℃持溫以達緻密化。

實驗結果發現,在TiC : Si =3 : 2莫耳比參數下會導致生成TiSi2雜相。為降低TiSi2雜相減少Si含量,而在3 TiC /1 Si莫耳比,於1350℃持溫2小時再升至1500℃持溫1小時之升溫參數下,發現可有效去除TiSi2雜相,而製備SiC / Ti3SiC2 / TiC複合陶瓷。

以3 TiC /1 Si莫耳比,兩階段燒結之燒結體進行機械性質(韌性、四點抗彎)的分析,在韌性方面利用SENB方式量測,結果顯示破壞韌性值可達7.1 ± 0.3 MPa•m1/2,觀察其破斷面可發現,第二相Ti3SiC2以裂縫轉折、晶粒脫層翹曲、糾結帶形成等能量吸收機制達到韌化效果。在強度方面,藉由四點彎曲試驗得知,該陶瓷複合材料之平均強度值為625 ± 27.7 MPa,相較於TiC陶瓷材料(四點抗彎值為420 MPa),強度有明顯提升,在強度方面可能為強化相SiC所致。
Abstract

SiC/Ti3SiC2/TiC ceramic composites were fabricated by hot-pressed sintering method with different TiC/Si molar ratio. Two step sintering was adopted to avoid Si melting and chosen 1350℃to soak then heated to 1500℃ for densification in this experiment.

The XRD analysis of sintered specimen with 3TiC/2Si (molar ratio) mixture by two-step sintering shows the existence of TiC, Ti3SiC2, SiC and TiSi2 phases. The decrease of Si content in raw powder mixture has successfully eliminated the TiSi2 second phase. The XRD analysis of two-step sintered specimen with 3TiC/1Si (molar ratio) mixture reveals that the primary phases are TiC, Ti3SiC2 and SiC phases.

The value of fracture toughness is 7.1 ± 0.3 MPa•m1/2 and the SEM fractographs show TiC matrix is toughened by Ti3SiC2 phase addition due to crack deflection, buckling, delamination within individual grain, and kink band formation mechanism. The four-point bending strength of SiC/Ti3SiC2/TiC composite is 625 ± 27.7 MPa higher than pure TiC ceramics (420MPa) due to the strengthening effect of SiC second phase.
總目錄
中文摘要 ................................................Ⅰ
英文摘要 ................................................Ⅱ
誌謝 ....................................................Ⅲ
總目錄 ..................................................Ⅳ
圖目錄 ..................................................Ⅵ
表目錄 ..................................................Ⅸ
第一章 緒論 ..............................................1
1-1 前言 ...............................................1
1-2 實驗目的及重點 .....................................2
第二章 理論基礎與文獻回顧 ................................4
2-1 碳化鈦簡介 .........................................4
2-2 碳化鈦矽簡介 .......................................8
2-3 碳化矽簡介 ........................................11
2-4 兩階段燒結法 ......................................16
2-5 陶瓷基複合材料 ....................................16
2-5-1 陶瓷基複合材料強化機制 .........................16
2-5-2 複合陶瓷之韌化機制 .............................18
第三章 實驗方法與步驟 ...................................20
3-1 燒結體的合成及微結構分析與觀察 ....................20
3-1-1 原料粉末的規格.................................20
3-1-2 試片製備.......................................20
3-1-3 晶相分析.......................................25
3-1-4 相含量的計算...................................25
3-1-5 SEM的觀察......................................25
3-1-6 穿透式電子顯微鏡(TEM)試樣之製作及觀察........26
3-2 燒結體性質的測定..................................26
3-2-1 密度的量測.....................................26
3-2-2 彎曲強度.......................................27
3-2-3 破壞韌性.......................................28
第四章 結果與討論........................................30
4-1 製備SiC/Ti3SiC2/TiC複合陶瓷材料...................30
4-1-1 第一階段不同加熱持溫時間對相成份、微結構、
孔隙率的影響...................................30
4-1-2 二階段燒結對相成份、微結構、孔隙率的影響.......37
4-1-3 Si含量對TiC/Si系統之影響.......................43
4-2 SiC/Ti3SiC2/TiC複合陶瓷材料之反應機制.............50
4-2-1 Ti3SiC2之反應機制..............................50
4-2-2 SiC之反應機制..................................51
4-3 SiC/Ti3SiC2/TiC複合陶瓷材料之機械性質.............53
4-3-1 破壞韌性.......................................53
4-3-2 四點抗彎.......................................57
第五章 結論..............................................59
參考文獻.................................................60
作者簡歷.................................................65
1.C. J. Gilbert, D. R. Boyer, M. W. Barsoum, T. El-Raghy, A. P. Tomsia and R. O. Ritchie, “Fatigue-crack growth and fracture properties of coarse and fine-grained Ti3SiC2”‚ Scripta Mater, 42, p.761 (2000)
2.K. Shirato, D. Chen, M. W. Barsoum, T. El-Raghy and R. O. Ritchie, “Cyclic Fatigue-Crack Growth and Fracture Properties in Ti3SiC2 Ceramic at Elevated Temperatures”‚J. Am. Ceram. Soc. 84, p.2914 (2001)
3.M. W. Barsoum, T. El-Raghy, C. Rawn, W. D. Porter “Thermal properties of Ti3SiC2”, J. Phys. Chem. 60, p.429(1999)
4.M. Naka, H. Sakai, M. Maeda, H. Mori “Formation and therma stability of amorphous Ti-Si-C alloys”, Mater. Sci. Eng. A , 774, p.226(1997)
5.M. W. Barsoum, D. Brodkin, T. El-Raghy “Layered machinable ceramics for high temperature applications”, Scripta Mater. 36, p.535(1997)
6.S. B. Li, J. X. Xie, L. T. Zhang “Mechanical properties and oxidation resistance of Ti3SiC2/SiC composite synthesized by in situ displacement reaction of Si and TiC”, Materials Letters , 57, p.3048(2003)
7.S. B. Li, J. X. Xie, L. T. Zhang, “In situ synthesis of Ti3SiC2/SiC composite by displacement reaction of Si and TiC”, Mater. Sci. Eng. A , 381, p.51(2004)
8.J. F. Li, Toshiro Matsuki, and Ryuzo Watanabe, “Mechanical-Alloying -Assisted Synthesis of Ti3SiC2 Powder”, J. Am. Ceram. Soc. 85 ,p.1004(2002).
9.Krakow and Poland, “The role of liquid phase in solid combustion synthesis of Ti3SiC2”, Int. J. Mate. and Prod. Tech. 10, p.316(1995)
10.R. Radhakrishnan, C. H. Henager, J. L. Brimhall,“Synthesis of Ti3SiC2/SiC and TiSi2/SiC composites using displacement reactions in the Ti-Si-C system”, Scripta Mater. 34, p.1809(1996)
11.E. K. Storms, ”The Refractory Carbide“, Academic Press ,New York and London(1967)
12.L. E. Toth ”Transition Metal Carbides and Nitrides”, Academic Press, New York and London(1971)
13.M. W. Barsoum, “The MN+1AXN Phases : A New Class of Solids ;Thermodynamically Stable Nanolaminates ”, Prog. Solid St. Chem. 28, p.201(2000)
14.L. Farber, I. Levin, M. W. Barsoum, T. El-Raghy and T. Tzenov, “High-resolution transmission electron microscopy of some Tin+1AXn compounds ( n=1,2; A=Al or Si; X=C or N )”, J. App. Phy. 86, p.2540(1999)
15.R. Yu, Q. Zhan, L. L. He, C. Zhou and H. Q. Ye, “Polymorphism of Ti3SiC2”, J. Mater. Res. 17, p.948(2002)
16.W. Jeischko and H. Nowotny, “Die Kristallstuctur von Ti3SiC2-Ein Neuer Komplexcarbid- Typ”, Monatsch Chem. 98, p329(1967)
17.M. Amer, M. W. Barsoum, T. El-Raghy, I. Wiess, S. LeClair and D. Liptak, “The Raman spectrum of Ti3SiC2”, J. App. Phy. 84, p.5817(1998)
18.陶瓷技術手冊(下),第22章,經濟部技術處,(1994)
19.C. J. Gilbert, D. R. Boyer, M. W. Barsoum, T. El-Raghy, A. P. Tomsia and R. O. Ritchie, “Fatigue-crack growth and fracture properties of coarse and fine-grained Ti3SiC2”, Scripta Mater.42, p.761(2000)
20.M. W. Barsoum and T. El-Raghy, “Synthesis and Characterization of a Remarkable Ceramic:Ti3SiC2”, J. Am. Ceram. Soc. 79, p.1953(1996)
21.H. Endo, M. Ueki, H. Kubo ,”Microstructure and mechanical properties of hot-pressed SiC-TiC composites”, J. Mater. Sci. 26, p.3769(1991)
22.丁儷美,二階段燒結對於氮化矽微結構與機械性質影響之研究﹐國立成功大學材料科學及工程學系碩士論文(1994)
23.C. H. Henager, J. L. Brmhall, J. P. Hirth, “Synthesis of a MoSi2-SiC composite in situ using a solid state displacement reaction”, Mater. Sci. Eng. A, 155, p.109 (1992)
24.C. H. Henager, J. L. Brmhall, L. N. Brush,“Tailoring structure and properties of composites synthesized in situ using displacement reactions”, Mater. Sci. Eng. A, 195, p.65(1995)
25.J. Pan, M. K. Surappa, R. A. Saravanan., “ Fabrication and characterization of SiC/MoSi2 composites”, Mater. Sci. Eng.A, 244, p.191(1998)
26.W. Chen﹐X. H. Wang, “Sintering dense nanocrystalline ceramics without final-stage grain growth”, Nature, 404, p.168(2000)
27.H. D. Kim, Y. J. Park, B. D. Han, “Fabrication of dense bulk nano-Si3N4 ceramics without secondary crystalline phase”, Scripta Mater. 54, p.615(2006)
28.N. J. Petch, “Cleavage Strength of Polycrystals”, J. Iron and Steel Inst.(London), 174, p.25(1953)
29.C. Zener, “Grains, Phases, and Interfaces: An Interpretation of Microstructure”, Trans. Am. Inst. Min. Metall. Eng. 175, p.15(1948)
30.Martin Sternitzke, “Review:Structural Ceramic Nanocmoposites”, J.Euro.Ceram. Soc. 17, p.1061(1997)
31.R. W. Rice, “ Toughening in Ceramics Particulate and Whisker Composites”, Ceram. Eng. Sci. Proc. 11, p.667(1990)
32.K. T. Faber and A. G. Evans, “Crack Deflection Process-I. Theory”, Acta Metall. 31, p.565(1983)
33.J. M. Cordoba, M. J. Sayagues, M. D. Alcala, “Synthesis of Ti3SiC2 powders: Reaction mechanism”, J. Am. Ceram. Soc. 90, p.825(2007)
34.C. Racault, F. Langlais, R. Naslain, “Solid-State synthesis and characterization of the ternary phase Ti3SiC2”, J. Mater. Sci. 29, p.3384. (1994)
35.S. Arunajatesan and A. H. Carim, “Synthesis of Titanium Silicon Carbide”, J. Am. Ceram. Soc. 78, p.667(1995)
36.T. Okano, T. Yano and T. Iseki, “Synthesis and Mechanical Properties of Ti3SiC2 Ceramic”, Trans. Met. Soc. Jpn. 14, p.597(1993)
37.T. El-Raghy and M. W. Barsoum ,“Processing and Mechanical Properties of Ti3SiC2:I , Reaction Path and Microstructure Evolution”, J. Am. Ceram. Soc. 82, p.2849(1999)
38.倪沅錩,熱壓燒結碳化鈦矽之微結構及機械性質之研究,國立成功大學材料與工程學系碩士論文
39.Y. Du and J. C. Schuster, “Experimental Investigation and Thermodynamic Calculation of the Titanium-Silicon-Carbon System”, J. Am. Ceram. Soc. 83, p.197(2000)
40.K. Tang, C. A. Wang, Y. Huang ,“A study on the reaction mechanism and growth of Ti3SiC2 synthesized by hot-pressing”, Mater. Sci. Eng. A, 328 , p.206(2002)
41.Z. M. Sun, S. L. Yang, H. Hashimoto ,“Ti3SiC2 powder synthesis”, Ceramics International, 30, p.1873(2004)
42.Y. Zou, Z. M. Sun, Shuji Tada and Hitoshi Hashimoto ,“Synthesis of single-phase Ti3SiC2 with the assistance of liquid phase formation”, Journal of Alloys and Compounds, In Press(2006)
43.G. Y. Gan, X. H. Chen, J. C. Chen “Reaction path research of TiC/Si diffusion couple experiment”, J. Mater. Sci. Tech. 17, p.189(2001)
44.T. W. Lin, W. B. Cao, J. T. Li “Synthesis and properties of Ti3SiC2/SiC ceramic comoposites”, Materials Science Forum, 475, p.1243(2005)
45.Hideo Awaji , S. M. Choi, Eisuke Yagi “Mechanisms of toughening and strengthening in ceramic-based nanocomposites”, Mechanics of Materials, 34, p.411(2002)
46.S. B. Li, J. X. Xie, J. Q. Zhao, “Mechanical properties and mechanism of damage tolerance for Ti3SiC2”, Materials Letters, 57, p.119(2002)
47.Y. C. Zhou , Z. M. Sun ,“Micro-scale plastic deformation of polycrystalline Ti3SiC2 under room-temperature compression ”, J. Euro. Ceram. Soc, 21, p.1007(2001)
48.M. W. Barsoum, T. El-Raghy, Advanced Materials & Processes, 08827958, Vol. 152, Issue 1. (1997)
49.K. Kesiderio, M. D. Thouless, W. H. John, J. Am. Ceram. Soc. 81, p.1004 (1998)
50.M. Oechsner, C. Hillman, F. F. Lange, J. Am. Ceram. Soc. 79, p.1834 (1996)
51.L. Vandeperre, V. D. Biest, Key. Eng. Mater. 2013, p.132(1997)
52.E. Orowan, Nature, 149, p.463(1942)
53.Y. O. Dong, C. K. Hwan, K. Y. Jin, J. S. In, “One step synthesis of dense MoSi2–SiC composite by high-frequency induction heated combustion and its mechanical properties”, Journal of Alloys and Compounds, 395, p.174(2005)
54.X. Tong, T. Okano, “Synthesis and high temperature mechanical properties of Ti3SiC2/SiC composite”, J. Mater. Sci, 30, p.3087(1995)
55.G. Das, J. S. Mazdiuasni, and H. A. Lipsitt, ”Mechanical Properties of Polycrystalline TiC “, J. Am. Cerm. Soc. 65, p.104(1982)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top