跳到主要內容

臺灣博碩士論文加值系統

(44.200.122.214) 您好!臺灣時間:2024/10/06 02:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳念祖
研究生(外文):Nien-tsu Chen
論文名稱:建築開口部裝設導風板對自然通風之效益
論文名稱(外文):A Study on Natural Ventilation Efficacy of Wind Deflector
指導教授:江哲銘江哲銘引用關係
指導教授(外文):Che-ming Chiang
學位類別:博士
校院名稱:國立成功大學
系所名稱:建築學系碩博士班
學門:建築及都市規劃學門
學類:建築學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:126
中文關鍵詞:換氣率自然通風導風板計算流體力學風擊不滿意度
外文關鍵詞:DRwind deflectornatural ventilationCFDACH
相關次數:
  • 被引用被引用:53
  • 點閱點閱:2260
  • 評分評分:
  • 下載下載:450
  • 收藏至我的研究室書目清單書目收藏:5
地球能源匱乏問題乃當前地球環境面臨的最大危機之一,因此加強自然通風利用以降低空調造成的能源負荷格外重要,然而都市裡高密度的建築配置,或建築開口部設計的因素…等,大大降低了自然通風之利用效益;再者,台灣室內空氣品質問題日益嚴重,普遍存在換氣不足或效率不佳等問題有待解決。
本研究以單室居室之單側及相對側開口模式為探討對象,針對其自然通風利用不易的問題,分別探究裝設水平及垂直導風板對自然通風效益之影響。研究方法乃運用計算流體力學(CFD)數值解析方式進行室內穩態氣流場、溫度場模擬,配合足尺實驗方法檢證模擬之可信度,亦作為數值模擬邊界條件設定之依據,設定不同的外部環境條件(風速或風向),計算並分析不同水平導風板深度及垂直導風板角度對室內換氣率(ACH)、二氧化碳濃度、溫度垂直分佈及風擊不滿意度(DR)等影響,並基於上述綜合評估以建議最佳的構造尺寸及使用方式。
研究結果顯示:
1. 單側開口裝設水平導風板模式
9cm以上水平導風板有助於提升單側通風時之換氣率,並隨導風板深度而遞增,尤其當外部風速小(0.3m/s)的時候較為明顯,導風板深度為144cm時,其換氣增加率(Qnormalize)最大,可達166∼230%,但風擊也相對較高,當外部風速為2m/s以下、導風板深度需為36cm以下,才能完全符合ASHRAE之DR標準(DR≦20%),而導風板深度為4cm時,不僅無法提升室內換氣,在高風速下(1∼2m/s),還會減少5∼13%的換氣率;若綜合考量各評估項目,導風板深度以18∼48cm為較佳的選擇。
2. 相對側開口裝設垂直導風板模式
在外部風速(0.5∼2m/s)條件下,當風向平行建築物窗面時,裝設垂直導風板之平均換氣次數約可較無導風板者增加260%,其中以導風板角度45°較佳(平均增加289%),67.5°較差(平均增加235%)。而當風向與建築立面成45度時,導風板角度(P=0°∼22.5°)有利於室內流場均勻,導風板角度(P=67.5°)則能降低DR值。綜合評估後,依照不同風向提出最佳化的垂直導風板角度調變模式。
The energy shortage is a major crisis we face today, thus, improving natural ventilation to reduce the energy load caused by the use of air conditioning system is very important. However, the high-density distribution of buildings in urban areas, or the poor design for openings of buildings both have greatly reduced the efficacy of natural ventilation. Also, the indoor air quality in Taiwan has significantly worsened, and the problems of poor ventilation and efficiency are yet to be solved.
This study focused on the individual problems for natural ventilation of two modes of a single residential space, which one is with a single-sided opening and the other is with corresponding-sided openings, to probe into the effect of installing horizontal and vertical wind deflectors. The experimental method used CFD numerical method to compute the indoor steady-state air flow, temperature field simulation, and accompanies full-scale experiments results to verify the validity of the simulation, which results were also used as references for simulating boundary conditions. Different external environmental conditions (wind speed or direction) were set in this study, and the Air Change per Hour (ACH), concentration of carbon dioxide, vertical distribution of temperature, and DR (draft rating) for different horizontal wind deflector depths and vertical wind deflector angles were computed. Based on the results, optimal structural scale ranges and usage of wind deflectors were recommended.
The results showed that:
1. Installing horizontal deflector at single-sided opening mode
For horizontal wind deflector over 9cm can effectively improve the ACH on single-sided ventilation, and the efficiency increases as the wind deflector depth increases. The result is significant when the external wind speed is low (0.3m/s). When the wind deflector depth is 144cm, the ACH (Qnormalize) is the largest, achieving 166~230%, however, DR is very high as well. When the external wind speed is below 2m/s, the wind deflector depth needs to be below 36cm, to meet the DR standard of ASHRAE (DR≦20%) completely. When the wind deflector depth is 4cm, it not only is unable to improve the ACH, but under high wind speed (1~2m/s), ACH would be decreased by 5~13%. Based on the all variables, the optimal wind deflector depth is 18~48cm.
2. Installing vertical wind deflector at corresponding-sided opening mode
Under external wind speed of (0.5~2m/s), when the wind direction is parallel to the window, installing vertical wind deflector can averagely improve ACH by 260%. The more efficient wind deflector angle is at 45° (with average increase of 289%), while angle of 67.5° has poorer result (with average increase of 235%). When the wind direction 45° from the building wall, the wind deflector angle of (P=0°~22.5°) is conducive to an even indoor air flow speed, and wind deflector angle of (P=67.5°) can reduce DR. Based on the all variables, a table of the optimal wind deflector angle was recommended according to the wind direction.
目錄

中英文摘要 i
誌謝 iv
圖表目錄 vii
用語及符號說明 xi
第一章 緒論 1
1-1 研究動機與目的 1
1-2 文獻回顧 5
1-2-1 自然通風之研究與設計 5
1-2-2 開口部與導風板之研究 6
1-2-3 數值模擬之研究與應用 6
1-2-4 室內空氣環境相關評估指標 7
1-3 研究範圍 10
1-4 研究流程 11
第二章 研究方法 13
2-1 國內室內空氣環境問題與分析 13
2-2 自然通風理論與導風板之應用條件 15
2-2-1 外部風環境 15
2-2-2 室內外的空氣流動 17
2-2-3 導風板應用條件 18
2-3 居室單元與變因設定 20
2-3-1 單側開口裝設水平導風板模式 21
2-3-2 相對側開口裝設垂直導風板模式 23
2-4 數值模擬與實驗方法 25
2-5 自然通風效益評估 27
2-5-1 換氣率評估 27
2-5-2 二氧化碳評估 28
2-5-3 舒適性評估 31
第三章 開口部裝設導風板之自然通風數值模擬 33
3-1 數值模擬之基本假設 33
3-2 紊流模型 34
3-2-1 不可壓縮牛頓流體之微分方程式 34
3-2-2 k-ε紊流模型之比較 36
3-2-3 k-ε紊流模型之統御方程式 37
3-3 數值模型之邊界設定與網格系統 39
3-3-1 模型及物件邊界設定 39
3-3-2 網格系統 41
3-4 鬆弛係數、疊代次數與收斂標準 44
3-4-1 鬆弛係數與疊代次數 44
3-4-2 收斂標準 45
3-5 數值模擬與實驗比對 46
3-6 室內環境數值模擬結果 50
3-6-1 單側開口裝設水平導風板模式 50
3-6-2 相對側開口裝設垂直導風板模式 55
第四章 自然通風效益評估 59
4-1 單側開口裝設水平導風板模式 59
4-1-1 換氣率之評估 59
4-1-2 二氧化碳濃度之評估 60
4-1-3 外部風速及導風板深度與換氣率之關係 61
4-1-4 風擊不滿意度之評估 62
4-1-5 外部風速及導風板深度與風擊不滿意度之關係 64
4-1-6 最佳化水平導風板深度之綜合判定 65
4-2 相對側開口裝設垂直導風板模式 66
4-2-1 換氣率之評估 66
4-2-2 二氧化碳濃度之評估 67
4-2-3 外部風速、風向及導風板角度與換氣率之關係 67
4-2-4 風擊不滿意度之評估 70
4-2-5 外部風速、風向及導風板角度與風擊不滿意度之關係 72
4-2-6 最佳化垂直導風板深度之綜合判定 73
4-3 整合水平與垂直導風板之開口部立面設計 75
第五章 結論與建議 81
5-1 結論 81
5-2 後續研究建議 83
參考文獻 85
附錄一 數值模擬Q1設定檔範例 93
附錄二 數值模擬結果 109
附錄三 風擊不滿意度分佈圖 115
簡歷RESUME 125
著作權聲明 126
中文文獻
1.94年度能源統計手冊,經濟部能源局,2005。
2.王錦堂,建築應用物理學,臺隆書店,1968。
3.江永哲、梁大慶,導風板防風柵防風效果之風洞試驗,中華水土保持學報,Vol.27(2),pp.85-96,1996。
4.江哲銘、周伯丞,獨立性效應在室內物理環境品質定量化之應用—以高齡者安養中心為例,中華民國建築學會建築學報,31,pp.33-49,1999。
5.江哲銘、蘇慧貞,室內環境品質診斷及改善補助計畫,內政部建築研究所委託計畫,2003。
6.江哲銘,永續建築導論,建築情報季刊雜誌社,台北,pp.94-99,2004。
7.江哲銘、蘇慧貞,室內環境品質改善補助計畫,內政部建築研究所委託計畫,2005。
8.江哲銘、蘇慧貞,室內環境品質改善補助計畫,內政部建築研究所委託計畫,2006。
9.田中俊六、武田 仁、足立哲夫、土屋喬雄,最新建築環境工學,六合出版社,2004。
10.李建成等編,泛亞熱帶地區建築設計與技術,華南理工大學出版社,1998。
11.李彥頤,以中央橫軸旋轉窗探討自然通風狀態下通風效率之研究,成功大學建築所碩士論文(江哲銘教授指導),1998。
12.林沂品,網狀構材開口部對室內自然通風效果之影響,成功大學建築所碩士論文(江哲銘教授指導),2001。
13.林憲德,現代人類的居住環境,胡氏圖書,pp.49-52,1994。
14.林憲德,建築節約能源設計規範與實例,營建雜誌社,2003。
15.林憲德、郭柏巖,住宅類建築耗能監測與解析,建築物能源管理技術研討會,經濟部能源會,2003。
16.周伯丞,以生活行為模式為變因探討住宅室內空氣之研究,成功大學建築所碩士論文(江哲銘教授指導),1994。
17.周伯丞,建築軀殼開口部自然通風效果之研究,成功大學建築所博士論文,2000(江哲銘教授指導)。
18.邱英浩、周鼎金、秦子傑,計算流體力學可信度驗證程序之初步研究,中華民國建築學會第十八屆第二次建築研究成果發表會論文集光碟,高雄,台灣,G:101-106,2006。
19.祐生研究基金會年報,祐生研究基金會,2002。
20.翁國揚,開口部設計對室內流場之影響—以國民小學教室單元為例,台科大建築碩士論文(江維華教授指導),2001。
21.梁大慶,傾角式防風柵之防風效果研究,中興水土保持系博士論文(江永哲教授指導),2000。
22.徐偉森,住宅臥室空間自然通風效果之研究,成功大學建築所碩士論文(江哲銘教授指導),1997。
23.陳念祖,高架地板置換式自然通風對室內通風效率之影響,成功大學建築所碩士論文(江哲銘教授指導),2001。
24.陳建宏,(原著Frank M. White),流體力學,曉園出版社,台北,1986。
25.張桂鳳,高齡者住居室內物理環境用後評估檢討,中原大學建築碩士論文(江哲銘教授指導),1994。
26.喻肇青,國民住宅建築計畫準則研究,內政部建築研究所籌備處,1992。
27.趙福雲、湯廣發、劉娣、劉志強、王漢青,CFD數值模擬的系統誤差反饋及其實現,暖通空調,第6期,2004。
28.賴榮平,台灣地區建築通風換氣問題探討,建築師雜誌,1980.4。
29.魏嘉言,計算流力程式在無塵室空氣流場分析之應用,清華大學工科所碩論,2001。
30.鍾朝嵩,相關與回歸分析,先鋒企業管理發展中心,1981。
31.鍾基強、陳友剛、葉文裕、林守香,室內空調進排氣口配置熱舒適性探討,勞工安全衛生研究季刊,第6卷第2期,pp.87-102,1998。
32.簡永和,住宅單元空間模擬自然通風換氣對室內空氣環境影響之研究,成功大學建築所碩士論文(江哲銘教授指導),1995。
33.羅積玉,多元統計分析方法與應用,科技圖書股份有限公司,1990.05。
34.蘇慧貞、江哲銘,室內空氣品質及其污染源管制之法規策略分析,行政院環保署環檢所委託計畫,2001。
日文文獻
35.石原正雄,建築換氣設計,朝倉書店,1969。
36.村上周三, CFDによる建築•都市の環境設計工學,東京大學出版會,2000。
37.瀨沼 勳,1990,室內環境學,三共出版株式會社,pp.70。
38.リチヤ—トA.ワツテソ、ビ—タ—A.シェフ,室內空氣污染解析•予測•對策と人体影響デ—タ,井上書院,pp.114,1990。
英文文獻
39.Afonso, C. and Oliveira A., Solar chimneys: simulation and experiment, Energy and Buildings 32, pp. 71-79, 2000.
40.ASHRAE, Ventilation for Acceptable Indoor Air Quality, ANSI/ASHRAE Standard 62.1, 2004.
41.ASHRAE, Thermal Environmental Conditions for Human Occupancy, ANSI/ASHRAE Standard 55, 2004.
42.ASTM, Standard test method for determining air leakage rate by tracer dilution, American Society for Testing and Material, E7:41-83, 1990.
43.Awbi, H. B., Energy Efficient Room Air Distribution, Renewable Energy 15, pp.293-299, 1998.
44.Argiriou, A.A., Balaras, C.A., Lykoudis, S.P., Single-sided ventilation of building through shaded large openings, Energy, Vol.27:93-115, 2002.
45.Bornehag, C.G., Sundell, J., Hägerhed-Engman, L., Sigsgaard, T., Association between ventilation rates in 390 Swedish homes and allergic symptoms in children, Indoor Air, Vol.15, 275-280, 2005.
46.Chen, Q. and Jiang, Z., Significant questions in predicting room air motion, ASHRAE Trans. 98(1):929-939, 1992.
47.Chen, Q., Comparison of Different k-e Models for Indoor Air Flow, Numerical Heat Transfer, Part B, 28:353-369, 1995.
48.Chen, N.T., Li, Y.Y., Chou, P.C., Chiang, C.M., The influence on ventilation efficiency in typical dwelling with floor-based displacement ventilation, Healthy Building 2003 7th International Conference, PS5-Ⅲ-01:416-421, Singapore, 2003.
49.Chiang, C.M., Li, Y.Y., Chou, P.C., Lai, C.M., CFD simulation to predict natural ventilation efficiency in a dwelling bedroom with the central horizontal pivot window, The 8th International Conference on Indoor Air Quality and Climate, Edinburgh, UK, 1999.
50.Chou, P.C.; Chiang, C.M., Chuah, Y.K., Effects of Window Positions on the Air Flow Distribution in a Cross-ventilated Residential Bedroom, Indoor + Built Environment, The Journal of the International Society of the Built Environment, vol. 7, No. 5-6, 1998.
51.Christiani D.C., Velazquez A., Wilcox M., Olenchock S.A., Airborne endotoxin concentrations in various work areas within a cotton mill in Central America. Environ Res 60:187-192, 1993.
52.CIBSE Technical Publications Committee, Natural Ventilation in Non-Domestic Buildings, CIBSE Applications Manual AM10, 1997.
53.Chiang, C.M.; Chou, P.C. et al., A Study of the Impacts of Outdoor Air and Living Behavior Patterns on Indoor Air Quality – Case Studies of Apartments in Taiwan, “INDOOR AIR ‘96”, The 7th International Conference on Indoor Air Quality and Climate, Vol. 3, pp. 735-740, Nagoya, JAPAN, 1996.
54.Dascalaki, E., Santamouris, M., Asimakopoulos, D.N., On the use of deterministic and intelligent techniques to predict the air velocity distribution on external openings in single-sided natural ventilation configurations, Solar Energy, Vol.66:223-243, 1999.
55.Etheridge, D. and Sandberg, M., Building Ventilation: Theory and Measurement, John Wiley & Sons, pp. 5-6, 1996.
56.Fanger, P.O., A New Chart Identifies the Percentage of Subjects Cissatisfied due to Craft as a Function of the Mean Air and the Air Temperature, ASHRAE JOURNAL January, 1987.
57.Fanger, P.O. and Christensen, N.K., Prediction of draft. ASHRAE Journal, Vol. 29, No. 1, pp.30-31, 1987.
58.Fanger, P.O., Ventilation for buildings-Design criteria for the indoor environment, CEN, 1998.
59.Favarolo, P.A. and Manz, H., Temperature-driven single-sided ventilation through a large rectangular opening, Building and Environment, Vol.40:689-699, 2005.
60.Feustel, H.E.; Dieris, J., A Survey of Airflow Models for Multizone Structures, “Energy and Buildings”, 18(2): 79-100, 1992.
61.Fordham, M., Natural ventilation, Renewable Energy 19:17-37, 2000.
62.Gagge, A. P., Stolwijk, J. A. J. and Hishi, Y.; An Effective Temperature Scale Based on a Simple Model of Human Physiological Regulatory Response, ASHRAE Transactions, 77(1):247, 1971.
63.Gagge, A.P., Fobelets, A.P., Berglund, P.E., A standard predictive index of human response to the thermal environment. ASHRAE Trans., 92, 709-731, 1986.
64.Gan, G., Effective depth of fresh air distribution in rooms with single-sided natural ventilation, Energy and Buildings, Vol.31:65-73, 2000.
65.Givoni B., Passive and Low Energy Cooling of Building, Van Nostrand Reinhold, 1994.
66.Gonzalez, R.R., Nishi, Y., Gagge, A.P., Experimental evaluation of standard effective temperature: a new biometeorological index of man's thermal discomfort, Int. J Biometeorol. Mar;18(1):1-15, 1974.
67.Grignaffini, S., Vallati, A., Experimental and Numerical Studies on Air Diffusion in a Single Office, The 9th International Conference on Indoor Air Quality and Climate, :311, 2002.
68.Health Canada, Exposure Guidelines for Residential Indoor Air Quality-A Report of the Federal-Provincial Advisory Committee on Environmental and Occupational Health, pp.8-9, 1989.
69.Houghten, F. C. and Yaglou, C. P., Determination of the Comfort Zone, ASHRAE Research Report No.673, ASHRAE Transations, 44:361, 1923.
70.Hu, C.H., Wang F., Using a CFD approach for the study of street-level winds in a built-up area, Building and Environment, Vol.40, pp.617-631, 2005.
71.Indoor Air Quality Management Group (Hongkong), A Guide on Indoor Air Quality Certification Scheme for Offices and Public Places, 2003.
72.ISO, Moderate Thermal Environments - Determination of the PMV and PPD Indices and specification of the Conditions for Thermal Comfort, ISO 7730, International Organization for Standardization, Geneva, Switzerland, 1994.
73.Jiang, Y., Alexander D. et al., Natural ventilation in buildings: measurement in a wind tunnel and numerical simulation with large-eddy simulation, Journal of Wind Engineering and Industrial Aerodynamics, 91:331-353, 2003.
74.Jia, Q.X., Zhao, R.Y. et al., Features of Natural and Artificial Air Movement Roomvent, 2000.
75.Lechner N., Heating, Cooling, Lighting-Design Methed for Architects, John Wiley & Sons, Inc, 1991.
76.Liddament, M. W., A Guide to Energy Efficient Ventilation, AIVC Guide, 1996.
77.Lin, Y.P., Chiang, C.M., Chen, N.T., Li, Y.Y., Chou, P.C., The influence of porous screens on natural ventilation in a dwelling unit, Proceedings of Indoor Air 2005, pp.3137-3141, 2005.
78.Linden, P.F., Fluid Mechanics of Natural Ventilation, Annual Review of Fluid Mechanics, 31:201-238, 1999.
79.Mills, L.R. et al., The Benefit of Using Window Shades, ASHARE JOURNAL, 1993.
80.Mistriotis, A., Arcidiacono, C., Picuno, P., Bot, G. P. A., Scarascia Mugnozza, G., Computational Analysis of Ventilation in Greenhouses at Zero- and Low-Wind-Speeds, Agricultural and Forest Meteorology, 88:121-135, 1997.
81.Murakami, S., Kato, S., Ooka, R., Comparison of numerical predictions of horizontal non-isothermal jet in a room with turbulence models-k-ε EVM, ASM, and DSM, ASHRAE Trans. 100(2), 1994.
82.Murakami, S., Overview of Turbulence Models Applied in CWE-1997, Journal of Wind Engineering and Industrial Aerodynamics, 74-76: 1-24, 1998.
83.Nelson, R.M. and Pletcher, R.H., An Explicit Scheme for the Calculation of Confined Turbulent Flow with Heat Transfer, Proc. 1974 Heat Transfer and Fluid Mechanics Institute, Standford University Press, Standford, California, pp. 154-170, 1974.
84.Nielsen P.V., CFD Models of Persons Evaluated by Full-Scale wind Channel Experiments, ROOMVENT ’96, Nagoya Japan, 1996.
85.Olesen, B.W., Guildelines for Comfort, ASHRAE Journal, August, 2000.
86.Olgyay, V., Design with Climate, Van Nostrand Reinhold, 1993.
87.Peter, W. and Grieve, M., Measuring Ventilation Using Tracer-Gases, Brüel & Kjær, 1991.
88.Phillips, J. et al., Numerical Study of Convective and Radiative Heat Transfer from Window Glazing with a Venetian Blind, ASHARE Transaction: Symposia, 2001.
89.Posner, J.D., Measurement and prediction of indoor air flow in a model room, Energy and Building, 35:515-526, 2003.
90.Prianto, E. and Depecker, P., Characteristic of airflow as the effect of balcony, opening design and inter division on indoor velocity – A case study of traditional dwelling in urban living quarter in tropical humid region, Energy and Buildings, Vol.34:401-409, 2002.
91.Prianto, E. and Depecker, P., Optimization of architectural design elements in tropical humid region with thermal comfort approach, Energy and Buildings, Vol.35:273-280, 2003.
92.Queiroz Gaudin, T. C. F. and Bastos, L. E. G., The Impact of the Warmth Thermal Sensation into Non-Air-Conditioned and Naturally Ventilated Office Environments of Tertiary Refurbished Buildings in Tropical Climate, Proceedings of 7th International Healthy Buildings Conference, Singapore, pp.7-12, 2003.
93.Rennie, D. and Parand F., Environmental design guide for naturally ventilated and daylit office, Construction Research Communication Ltd, p.34, 1998.
94.Restivo, A., Turbulent flow in ventilated rooms, Ph.D. thesis, University of London, UK, 1979.
95.Seifert, J., Li, Y., Axley, J., Rösler, M., Calculation of wind-driven cross ventilation in buildings with large openings, Journal of Wind Engineering and Industrial Aerodynamics 94:925-947, 2006.
96.Shaughnessy, R.J., Haverinen-Shaughnessy, U., Nevalainen, A., Moschandreas, D., A preliminary study on the association between ventilation rates in classrooms and student performance, Indoor Air, Vol.16: 465-468, 2006.
97.Shaw, C.Y.; Zhang, J.S. et al., 1993, Effect on Air Diffuser Layout on the Ventilation Conditions of a Workstation -- Part I: Air Distribution Patterns, “ASHRAE Transactions”, 99: 125-132.
98.Shaw, C.Y.; Zhang, J.S. et al., 1993, Effect on Air Diffuser Layout on the Ventilation Conditions of a Workstation -- Part II: Air-Exchange Efficiency and Ventilation Efficiency, “ASHRAE Transactions”, 99: 133-143.
99.Smedje, G. and Norbäck, D., New ventilation systems at select schools in Sweden-effects on asthma and exposure, Arch. Environ. Health, Vol.55, 18-25, 2000.
100.Spalding, D. B., The PHOENICS Encyclopedia, CHAM Ltd., London, UK, 1994.
101.Speziale, C.G., Gatski, T.B., Fitzmaurice, N., An analysis of RNG-based turbulence models for homogeneous shear flow, Physics of Fluids 3(9):2278-2281, 1991.
102.Straw, M.P., Baker, C.J., Robertson, A.P., Experimental measurements and computations of the wind-induced ventilation of a cubic structure, Journal of Wind Engineering and Industrial Aerodynamics 88, pp. 213-230, 2000.
103.Tham, K.W., Willem, H.C., Sekhar, S.C., Wyon, D.P., Wargocki, P., Fanger, P.O., Temperature and ventilation effects on the work performance of office workers (study of a call center in the tropics). Proceedings of Healthy Buildings 2003, Vol. 3, Singapore, Stallion Press, 280-286, 2003.
104.USNRC, Emergency and Continuous Exposure Guidance Levels for Selected Submarine Contaminants, National Research Council of the National Academies, pp.37-53, 2004.
105.Wargocki, P., Wyon, D.P., Fanger, P.O., The performance and subjective responses of call-centre operators with new and used supply air filters at two outdoor air supply rates, Indoor Air, Vol.14(Suppl. 8), 7-16, 2004.
106.Wu, P.C., Li, Y.Y., Lee, C.C., Chiang, C.M., Su, H.J., Risk assessment of formaldehyde at typical office buildings in Taiwan, International Journal of Indoor Air Quality and Climate, Vol. 13 Issue 4, pp.359-363, 2003.
107.Yakhot, V. and Orzag, S.A., Renormalization group analysis of turbulence: I. Basic theory, Journal of Scientific Computing 13, 1986.
108.Yilmaz, M., The effect of inlet flow baffles on heat transfer, Int. Comm. Heat Mass Transfer, Vol.30:1169-1178, 2003.
參考網站
109.http://atftp.epa.gov.tw/announce/094/F0/18789/室內空氣品質建議值草案-(公告版).doc
110.http://en.wikipedia.org/wiki/Boussinesq_approximation
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top