跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/01/14 04:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳益堅
研究生(外文):Yih-Jian Chen
論文名稱:低雷諾數下機翼過渡流場之氣動力機制與影響因子探討
論文名稱(外文):Investigations on the Transition Mechanism and Its Influence Parameters of Low Reynolds Number Wings
指導教授:蕭飛賓
指導教授(外文):Fei-Bin Hsiao
學位類別:碩士
校院名稱:國立成功大學
系所名稱:航空太空工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:84
中文關鍵詞:微飛行器分離泡遲滯現象低雷諾數
外文關鍵詞:separation bubblelow ReHesteresis
相關次數:
  • 被引用被引用:1
  • 點閱點閱:335
  • 評分評分:
  • 下載下載:45
  • 收藏至我的研究室書目清單書目收藏:0
本文以風洞測量及油流視察技術,探討不同厚度、曲率之翼剖面於低雷諾樹下三維機翼遲滯現象的參數影響,由實驗的結果可以發現到,當厚度和曲率增加時,所產生的遲滯現象也越大;在雷諾數方面,從實驗結果我們發現到,隨著雷諾數的增加(40000~100000),遲滯現象的大小並不線性的變化,再雷諾數較低的時候,遲滯現象的大小會先隨著雷諾數的增加而變大,在經過一個特定雷諾數後,遲滯現象的大小怎會開始隨著雷諾數的增加而縮小。
在油流視察探討上,藉由遲滯現象發生攻角範圍內與範圍外流態之對比,發現遲滯現象發生之時同一攻角存在兩個不同流態,以何種流態出現流場,取決於機翼進入新攻角時,一開始所感受之邊界層擾動型態。
另外於翼面加裝干擾片,探討翼面幾何擾動對遲滯現象之影響,發現當干擾片黏貼在翼弦部分時,當干擾片厚度為邊界層厚度一半時,如干擾片安置在距離翼前緣5mm處,會造成一個層流失速的現象,也因此造成遲滯現象的消失。根據視流的結果可以看到,在未裝置干擾片的狀況下,分離泡在低攻角下就會產生,並隨著攻角的增加而變小並往翼前緣方向移動,在遲滯現象產生後,增加攻角(未失速)和減少攻角(失速)的流場,會有很大的不同,未失速時可以發現到流場已經開始趨向不穩定,而在失速後也可看到失速的範圍組要集中在翼根處,翼尖處因受到翼尖渦流的影響,還是有部分分離泡產生;在干擾片安裝後,發現干擾片會固定住分離泡的大小和位置,等到失速攻角後,會在翼前緣造成流場的層流分離,以至於失速的產生,並使遲滯現象消失。
The transition mechanism for the hysteresis phenomenon of 3-D wings at low Reynolds number range is experimentally studies in a low speed wind tunnel. The aerodynamic force measurements and oil flow visualization of the 3-D wings are carefully conducted at various Reynolds number between 4x104< Re <10x104 with the influence parameters of thickness and camber ratios of the wings. Results indicate that the hysteresis loop of the aerodynamic lift curve with AOA will be apparently arised and gradually enlarged as the thickness and camber ratio of the wings increase. In addition, this hysteresis loop also keeps increasing with the increase of the Reynolds number operated. However, until reaching a specific Reynolds number of shrinking, the loop will be shrunk, in stead, as the Reynolds number increases.
The result from the oil flow visualized has approved the existence of the hysteresis loop in the operatig Reynolds numbers. It further confirms that, during increasing and decreasing AOA of the wings, the hysteresis loop of the aerodynamic loop will be determined by the boundary layer status of the floe where the flow is either separated in the leading edge or already developed to surface vortex separation which is strongly affected by the trailing vortices
In order to realize the effects of boundary layer perturbation on hysteresis phenomenon, the mechanical trips are placed at different span and chordwise locations to measure the aerodynamics. If the trip is attached on the spanwise direction, the hysteresis loop will disappear. If the trip is on chordwise direction while the location is 5mm from leading edge, the laminar stall still exists, and the hysteresis phenomenon will disappear though.
ABSTRACT IN CHINESE......................................................... I
ABSTRACT IN ENGLISH......................................................... II
ACKNOWLEDGEMENT............................................................. III
CONTENTS.....................................................................IV
LIST OF TABLE................................................................VI
LIST OF FIGURE...............................................................VII
APPENDIX.....................................................................IX
NOMENCLATURE.................................................................X

Chapter               page

I. INTRODUCTION............................................................1
1-1 Aerodynamic Characteristics at Low Re..................................2
1-1-1 General Concept....................................................................2
1-1-2 Laminar Separation Bubbles...........................................3
1-1-3 Hysteresis Phenomena.................................................4
1-2 Motivation and Objectives..............................................9

II. EXPERIMENT APPARATUS..................................................10
2-1 Wing Tunnel ..........................................................10
2-2 Experiment Apparatus .................................................10
2-3 Wing Model and Supporting Device......................................11
2-4 Components of Flow Visualization......................................12
2-5 Uncertainty Analysis................................................. 12

III. EXPERIMENT RESULTS AND DISCUSSION................................... 14
3-1 Studies on Low Reynolds Number Aerodynamic Properties.................14
3-1-1 Thickness and Camber Effect.........................................14
3-1-2 Reynolds Number effect..............................................15
3-2 Characteristics of NACA0015...........................................16
3-3 Trip Effect on the Transition Behaviors of Airfoils...................17
3-3-1Changing Trip Locations in Spanwise Direction....................... 17
3-3-2Changing Trip Locations in chordwise Direction...................... 18
3-4 Qualitative Models for Hysteresis Phenomenon......................... 18

IV. CONCLUSION........................................................... 25

REFERENCE................................................................ 27

APPENFIX..................................................................64
A-1: Experiment Results: pure wing........................................64
A-2: Experiment Results: Changing Trip Locations in
Chordwise Direction..................................................71
A-3: Experiment Results: Changing Trip Locations in
Spanwise Direction...................................................75
VITA......................................................................83
PUBLICATION LISTS.........................................................84
1.McMasters, J.H. and Henderson, M.L., “Low Speed Single Element Airfoil Synthesis”, Tech. Soaring, Vol. 2, No. 2, 1980, pp. 1-21.

2.Carmichael, B.H., “Low Reynolds Number Airfoil Survey”, Vol. I, NASAContractor Report 165803, November 1981.

3.Mueller, T. J., “The Influence of Laminar Separation and Transition on Low Reynolds Number Airfoil Hysteresis”, Journal of Aircraft, Vol. 22, Sept. 1985, pp. 763-770.

4.Hsiao, F.B., Chang, C.Y., Hsu, C.C. and Wang, D.B., “Experimental Study of Aerodynamic Performance for Finite Wing at Low Reynolds Numbers “, J. Chinese Society of Mechanical Engineers, Vol. 23, No. 6, 2002, pp. 517~524.

5.O’Meara, M.M. and Mueller, T.J., “Laminar Separation Bubble Characteristics on an Airfoil at Low Reynolds Numbers”, AIAA Journal, Vol. 25, No. 8, Aug. 1987.

6.Lin, J.C.M. and Pauley, L. L., “Low-Reynolds-number Separation on an Airfoil,”AIAA Journal, Vol. 34, No. 8, Aug. 1996, pp. 1570-1577.

7.McGhee, R.J., Walker, B.S. and Millard, B.F., "Experimental Results for the Eppler387 Airfoil at Low Reynolds Numbers in the Langley Low-Turbulence Pressure Tunnel," NASA TM 4062, Oct. 1988.

8.Ripley, M. D. and Pauley, L.L., "The Unsteady Structure of Two Dimensional Steady Laminar Separation", Physics of Fluids A, Vol. 5, No. 12, 1993, pp. 3099-3106.

9.Hsiao, F.B., Liu, C.F. and Tang, Z., “Aerodynamic Performance and Flow Structure Studies of a low Reynolds Number Airfoil”, AIAA Journal, Vol. 27, Feb. 1989, pp. 129-137.

10.Grundy, T .M., Keefe, G .P. and Lowson, M. V., “Effects of Acoustic Disturbanceson low Re Aerofoil Flows”, Fixed and Flapping Wing Aerodynamics for Micro Air Vehicle Applications, Reston, VA, AIAA, Inc., 2001, pp. 91-113.

11.Mueller, T. J., Pohlen, L. J., Conigliaro, P.E. and Jansen, B.J., Jr., “The Influence of Free-stream Disturbances on Low Reynolds Number Airfoil Experiments”, Experiments in Fluids, Vol. 1, No. 1, 1983, pp. 3-14.

12.Hisao, F. B., Liu, L.F. and Tang, Z., “Aerodynamic Performance and Flow Structure Studies of a Low Reynolds Number Airfoil,” AIAA, Vol.27, 1989 No.2, pp. 129~137

13.Hisao, F. B., and Hsu, C. C., “Numerical Predication of Aerodynamic Performance for Low Reynolds Number Airfoils”, J. of Aircraft, Vol. 26, No. 7, PP. 689~692

14.Muller, T. J. and Batill, S.M. , “Experimental Studies of Separation on a Two-Dimensional Airfoil at Low Reyno;ds Number,” AIAA, Vol.20, No.4, pp. 451~456

15.Bai, P., Lui, E., Li, F. and Zhou W., “Study airfoil at Low Reynolds Number Near the 0° Angle of Attack”, Chinese Journal of Theoretical and Applied Mechanics, Vol. 38, No.1, 2006, pp.1~8

16.Hoffmann, J.A, “Effects of Freestream Turbulence on the Performance Characteristics of an Airfoil,” AIAA, Vol.22, No.9, 1991, pp.1353~1354

17.Bastedo, W. G. and Mueller. T. J., “Spanwise Variation of Laminar Separation Bubbles on Wings at Low Reynolds Numbers,” J. of Aircraft, Vol.23, NO. 9, 1986, pp.687~694

18.Torres, G. E. and Mueller, T. J., “Low-Aspect-Ratio Wing Aerodynamics at Low Reynolds Numbers,” AIAA Journal, Vol.42, No.5, 2004, pp.865~873

19.Di-Bao Wang “Experimental Study and Mathematical Modeling of Aerodynamic Transition for 2-D Airfoil at Low Re” the thesis of Master degree in NCKU, 2003.

20.Huang, R.F. and Lin. C. L., “Vortex Shedding and Shear-Layer Instability of Wing at Low Reynolds Number,” AIAA Journal, Vol.33, No.8, 1995, pp.1398~1403

21.A. V. Arena and T. J. Mueller, “Laminar Separation, Transition, and
Turbulent Reattachment near the Leading Edge of Airfoils,” Vol.18 NO.7 July 1980.

22.Chang C. Y,” Aerodynamic Performance Investigation for Finite wing at Low Reynolds numbers” the thesis of Master degree in NCKU, 2002.

23.D. Greenblatt and I. Wygnanski, “Dynamic Stall Control by Preiodic Excitation, part 1: NACA0015 Parametric Study,” Vol.38 No. 3 May-June 2001

24.Grundy, T .M., Keefe, G .P. and Lowson, M. V., “Effects of Acoustic Disturbances on low Re Aerofoil Flows”, Fixed and Flapping Wing Aerodynamics for Micro Air Vehicle Applications, Reston, VA, AIAA, Inc., 2001, pp. 91-113.

25.J. F. Marchman, “Aerodynamic Testing at Low Reynolds Numbers,” Vol.24, No.2, Feb. 1987

26.K. Rinoie and N. Takemura, “Oscillating behaviour of laminar separation bubble formed on an aerofoil near stall,” THE AERONAUTICAL JOURNAL, PAPER NO. 2816, March, 2004

27.Laitone, E.V., ”Aerodynamic Life at Reynolds numbers Below 7×104,” AIAA Journal, Vol.34, No.9, September 1996.

28.M. Baragona, L. M. M. Boermans, M.J.L. Van Tooren, H. Bijl, and A. Beukers, “Bubble Bursting and Stall Hysteresis on Single-Slotted Flop High-Lift Configuration” Vol. 41, No.7, July 2003

29.Michasel S. Seling, Christopher A. Lyon, Philippe Giguere Cameron P. Ninham, James J. Guglielmo, “summary of Low-speed Airfoil Data Volume 2,” Dep. Of Aeronautical and Astronautical Engineering University of Illinois at Urbana-Champaign

30.Mohamed Gad-el-Hak, “Control of Low-Speed Airfoil Aerodynamics,” Vol.28, No.9, Sep. 1990.

31.Rong F. Huang, Wen W. Shy, Song W. Lin, Fei-Bin Hsiao, “Influence of Surface Flow on Aerodynamic Loads of a Cantilever wing”, AIAA Journal, Vol. 34, No.3, March 1996.

32.Traub, L. W., Moeller, B. and Radiniotis, O., “Low-Reynolds-Number Effects on Delta-Wing Aerodynamics,” J. of Aircraft, Vol.35, No.4, 1998, pp.653~656

33.Yi-Chung Liu, “Investigation of Low –Aspect-Ratio Effect on Thin-Plate Wing at Low Reynolds Numbers,” the thesis of Master degree in NCKU, 2003.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top