跳到主要內容

臺灣博碩士論文加值系統

(44.200.94.150) 您好!臺灣時間:2024/10/05 19:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李孟澤
研究生(外文):Meng-Tse Lee
論文名稱:以系統工程架構開發具自主飛行能力與地面監控功能的空中無人載具系統
論文名稱(外文):A System Engineering Approach for Unmanned Aerial Vehicle System Development with Autonomous and Ground Tracking Capability
指導教授:蕭飛賓
指導教授(外文):Fei-Bin Hsiao
學位類別:博士
校院名稱:國立成功大學
系所名稱:航空太空工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:165
中文關鍵詞:無人載具系統工程
外文關鍵詞:Unmanned VehiclesSystem Engineering
相關次數:
  • 被引用被引用:8
  • 點閱點閱:720
  • 評分評分:
  • 下載下載:204
  • 收藏至我的研究室書目清單書目收藏:0
鑒於無人載具系統應用日益受到全球之矚目,讓越來越多的先進大學與研究單位相繼投入此一深具實用性之研究工作。國立成功大學RMRL實驗室,經過多年在無人飛行載具系統上的基礎上,近年研究目標已漸鎖定在自主性載具之自動化系統開發。本研究的目的在於設計開發一套名為SWAN之具備自動飛行、導航、與目標監視鎖定功能的全自動化無人空中載具系統。透過系統工程構念,將此一研究分為五個次系統開發案。其中以機載航電系統為開發核心首步,架構其上逐步設計開發出即時地面站監控系統、姿態感測系與目標鎖定光學遙測系統、自動飛行控制系統以及高性能無人載具設計。本論文中詳述了全套系統研發過程。從實驗室任務需求所導引出來的全系統基本概念成形、規格定義、次系統分工架構、次系統構想與開發、次系統個別功能調校實驗。在完成所有次系統開發後,執行次系統整合與飛測,一直到最後的實際全系統任務驗證。在此研究中進行的次系統等級/全系統等級之機電系統整合開發研究,不但達成將無人載具功能自主化的研究目標,同時更完成了國內學術界首例之無人載具長距離海上飛行。本系統開發過程中無論軟/硬體均採用開放式系統架構設計,如此不但保持了系統彈性以利現有功能之修改或新功能/新元件之增加,全系統更可以順利轉換至它種類之無人載具系統以符合新研究之所需。
This dissertation presents the system engineering approach for the development of an Unmanned Aerial Vehicle (UAV) system with Surveillance, Watch, Autonomous Flight and Navigation (SWAN) capability for beyond-visual-range (BVR) flight. The SWAN UAV is a newly developed, inherently stable, small air vehicle, which is used as a testbed for flight testing of new controller designs. The SWAN development research can be divided into five streams: first is the establishment of onboard computing system to act as a basis of the entire avionic system. Next is the design and fabrication of a real-time ground monitor/control station, dynamic measuring system, gimbals payload system and autopilot system. The last is the design and manufacture of a high performance vehicle. The detailed process of each individual system development described in this dissertation covers from mission requirements, concept and algorithm, and to the prototype function tests. A series of integrated system tests were conducted after all subsystems functions have been built and validated, including an over-sea flight demonstration beyond the visual range of longer than 8 km. Although the mechatronics system developed in this research is for unmanned aerial vehicle, but the functions (subsystems) featuring an open architecture which can be able to transfer rapidly from one unmanned vehicle system to another kind, such as from fixed-wing UAV to helicopter, or even to autonomous land vehicle and autonomous marine vehicle.
ABSTRACT…………………………………………………… VI
ACKNOWLEDGMENTS…………………………………………… VII
EXTENDED CHINESE ABSTRACT……………………………… IX
CONTENTS…………………………………………………… XVII
LIST OF TABLES…………………………………………… XX
LIST OF FIGURES…………………………………………… XXI
NOMENCLATURE……………………………………………… XXVIII
1. INTRODUCTION…………………………………………… 1
1.1. Overview of UAV………………………………… 2
1.2. Developments of UAV in Universities……… 5
1.3. Motivation and Objectives…………………… 8
2. SYSTEM ENGINEERING for UAV DESIGN……………… 11
2.1. System Approach in Aerospace Design……… 12
2.2. Mission Requirements of SWAN UAV…………… 15
2.3. Development Master Plan……………………… 17
3. SWAN UAV SYSTEM DEVELOPMENT……………………… 23
3.1. System Hardware Architecture………………… 25
3.2. Onboard Computing System……………………… 25
3.2.1. Onboard computer…………………………… 25
3.2.2. Sensors and peripheral…………………… 28
3.2.3. Onboard software…………………………… 40
3.3. Automatic Flight Controller ……………… 55
3.3.1. Autopilot conceptual design……………… 55
3.3.2. Flight controller design………………… 61
3.3.3. Design result simulation………………… 65
3.4. AHRS and Gimbals CCD Payload………………… 70
3.4.1. Attitude measurement ………………… 70
3.4.2. Complementary filter for AHRS…………… 75
3.4.3. Remote sensing gimbal payload…………… 79
3.5. Ground Station…………………………………… 85
3.5.1. Hardware architecture……………………… 86
3.5.2. Developing tools…………………………… 89
3.5.3. Virtual cockpit interface………………… 90
3.6. Air Vehicle Design……………………………… 92
3.6.1. Sizing from conceptual sketch…………… 93
3.6.2. Performance analysis……………………… 99
3.6.3. Fabrication and maiden flight…………… 101
4. TEST, RESULTS, AND DISCUSSION…………………… 106
4.1. Subsystem Ground Tests………………………… 106
4.1.1. Power endurance test……………………… 107
4.1.2. Wireless datalink test…………………… 110
4.1.3. EMI test……………………………………… 112
4.1.4. AHRS test……………………………………… 113
4.1.5. Gimbals function test……………………… 115
4.2. Subsystem Flight Test………………………… 116
4.2.1. Onboard avionics test……………………… 116
4.2.2. Remote sensing payload test……………… 118
4.2.3. Automatic flight controller test……… 124
4.3. System Integration Test……………………… 129
5. WIND GUST EFFECT ESTIMATION……………………… 134
5.1. Dynamic Model with Wind Gust………………… 134
5.2. Kalman Filter Algorithm……………………… 136
5.3. Wind Gust Estimation Result………………… 139
6. CONCLUSION……………………………………………… 146
6.1. Conclusions on System Value Created……… 146
6.2. Prospective Application……………………… 149
6.2.1 Autonomous unmanned underwater vehicle… 150
6.2.2. Autonomous unmanned ground vehicle…… 151
REFERENCES………………………………………………… 152
APPENDIX…………………………………………………… 157
1. B. Bucks, “Unmanned Vehicles Handbook 2004,” The Shephard Press, 2004, ISSN 1365-6546

2. P. V. Blyenburg and P. Butterworth, “UAV Systems: A Global Perspective,” UVS International, 2005.

3. K. Munson, “Unmanned Aerial Vehicles and Targets,” Jane's Information Group, 2005, ISBN 0710612575

4. S. Kosiak and E. Heeter, “Unmanned Aerial Vehicles – Current Plans and Prospects for the Future,” Washington, DC: Center for Strategic and Budgetary Assessments, 1997.

5. K. Herrick, “2000 And Beyond – A UAV Forecast,” The Shephard Press, Vol 4, 2000.

6. P. V. Blyenburg, “UAVs: a Vision of the Future,” Newsdesk Communication Ltd, 2003.

7. T. McGeer, S. Sliwa and D. Sliwa, “Commercial Applications for UAVs within the Fishing Industries,” AIAA's 1st Technical Conference and Workshop on Unmanned Aerospace Vehicles, Systems, Technologies, and Operations, Portsmouth, Virginia USA, May 2002.

8. Office of the Secretary of Defense (USA), “Unmanned Aerial Vehicles Roadmap 2002 – 2027,” Aug. 2002.

9. J. Smith, K. Black, F. Kamanger and J. Fitzer, “The University of Texas at Arlington Autonomous Aerial Vehicle An Overview,” Journal of Applied Intelligence, Vol. 2, 1992, pp. 299-320.

10. Z. Goraj, A. Frydrychewicz, R. Switkiewicz, B. Hernik, J. Gadomski, T. G. Grabowski, M. Figat, St. Suchodolski and W. Chajec, “High Altitude Long Endurance Unmanned Aerial Vehicle of A New Generation – A design Challenge for A Low Cost, Reliable And High Performance Aircraft,” Bulletin of the Polish Academy of Sciences, Vol. 52, No. 3, 2004. pp 173-194.

11. U. L. Ly and S. I. Higashino, “Development of A UAV Flight-Test Vehicle at The University of Washington,” 2nd AIAA "Unmanned Unlimited" Systems, Technologies, and Operations—Aerospace, San Diego, California USA. Sep. 2003.

12. K. C. Wong, “UAV Design Activities in a University Environment,” 9th Australian International Aerospace Congress, Canberra Australia, Mar. 2001.

13. W. Schick and I. Meyer, “Luftwaffe Secret Projects: Fighters, 1939-1945, Vol. 1,” Midland, Aug. 1997, ISBN 1857800524.

14. UAV forum: http://www.uavforum.com/index.shtml

15. General Atomics Aeronautical Systems, Inc.: http://www.ga.com/asi/home.html

16. The Boeing Company: http://www.boeing.com/

17. J. Levine, “The X-Press, Volume 44, Issue 2,” NASA Dryden Flight Research Center, California USA, May 2002.

18. Aerosnode: http://www.aa.washington.edu/research/aerosonde/laima.htm

19. C. Hennessey, “Autonomous Control of a Scale Airplane,” Master thesis, School of Engineering Science, Simon Fraser University, Canada, Apr. 2000.

20. Association for Unmanned Vehicle Systems International: http://www.auvsi.org/

21. E. N. Johnson, M. G. Hart and H. B. Christophersen, “Development of an Autonomous Aerial Reconnaissance System at Georgia Tech,” AIAA's 1st Technical Conference and Workshop on Unmanned Aerospace Vehicles, Systems, Technologies, and Operations, Portsmouth, Virginia USA. May 2002.

22. J. S. Jang and C. J. Tomlin, “Autopilot Design for the Stanford DragonFly UAV: Validation through Hardware-in-the-Loop Simulation,” GNC Conference Montreal Canada, Aug. 2001.

23. F. B. Hsiao and M. T. Lee, “System Engineering and Practice in Aircraft Design for Aerospace Education,” UNESCO 4th Annual Conference on Engineering Education, Bangkok Thailand, Feb. 2001.

24. F. B. Hsiao and M. T. Lee, “The Development of Unmanned Aerial Vehicle in RMRL/NCKU,” 4th Pacific International Conference on Aerospace Science and Technology, Kaohsiung Taiwan ROC. May 2001.

25. B. S. Blanchard and W. J. Fabrycky, “Systems Engineering and Analysis,” Prentice Hall, New Jersey, 3rd edition, 1998, ISBN 0131350471.

26. L. M. Nicolai, “Fundamentals of Aircraft Design,” University of Dayton, Ohio, 1984. ISBN 9991295291.

27. Advantech: http://www.advantech.com.tw/

28. Garmin: http://www.garmin.com/

29. Freewave Technologies: http://www.freewave.com/

30. Scott Edwards Electronic, Inc.: http://www.seetron.ocm/

31. QNX Software System: http://www.qnx.com/

32. J. Evans, G. Inalhan, J. S. Jang, R. Teo, and C. J. Tomlin, “Dragonfly: A Versatile UAV Platform for the Advancement of Aircraft Navigation and Control,” the Proceedings of the 20th IEEE Digital Avionics Systems Conference, Daytona Beach, Florida USA, Oct. 2001.

33. Y. R. Lin, “The Development of an Onboard Computer System for Unmanned Aerial Vehicle,” Master thesis, Institute of Aeronautics and Astronautics, National Cheng Kung University, Taiwan, July 2000.

34. W. W. Huang, “A Study of Geodetic Datum Transformation between TWD97 and TWD67 Using Transverse Mercator Coordinates,” Master thesis, Department of Surveying Engineering, National Cheng Kung University, Taiwan, July 2001.

35. C. H. Chen, “The System Design and Flight Test of A GPS-Guided UAV,” Master thesis, Institute of Aeronautics and Astronautics, National Cheng Kung University, Taiwan, June 2001.

36. J. Roskam, “Airplane Design: Part Ⅵ, Preliminary Calculation of Aerodynamic, Thrust and Power Characteristics,” Roskam Aviation and Engineering Corporation, Kansas, 1990, ISBN 1-884885-52-7.

37. Murata Electronics North America, Inc., http://www.murata.com/

38. R. C. Nelson, “Flight Stability and Automatic Control,” 2nd Ed., McGraw-Hill International Editions, 1998, ISBN 0071158383.

39. PNI Corporation, http://www.pnicorp.com/

40. T. L. Liu, M. T. Lee, Y. H. Chien and F. B. Hsiao, “The Development of a Target-Lockup Optical Remote Sensing System for Unmanned Aerial Vehicle,” 2004 AASRC/CCAS Joint Conference, Taichung Taiwan ROC, Dec. 2004.

41. J. R. Wertz and W. J. Larson, “Space Mission Analysis and Design,” 3rd Edition, Microcosm Press, 1999, ISBN 1881883108.

42. J. D. Anderson, “Aircraft Performance and Design,” 1st Edition, McGraw-Hill International Edition, 1999, ISBN 0070019711.

43. F. B. Hsiao, In-class Notes for Workshop on Aircraft Design – Hand Glider and RPV. Institute of Aeronautics and Astronautics, National Cheng Kung University, 2002.

44. Homepage of NASG (Nihon University Aero Student Group), http://www.nasg.com/index-e.html

45. R. V. Jategaonkar and E. Plaetschke, “Algorithm for Aircraft Parameter Estimation Accounting for Process and Measurement Noise,” Journal of Aircraft, Vol.26, No.4, 1989, pp.360-372.

46. M. L. Steinberg, “Comparison of Intelligent, Adaptive, and Nonlinear Flight Control Laws,” Journal of Guidance, Control, and Dynamics, Vol. 24, No. 4, 2001, pp. 693-699.

47. R. F. Stengel, “Stochastic Optimal Control: Theory and Application,” Wiley-Interscience, New York, 1986, ISBN 0471864625.

48. S. S. Mulgund and R. F. Stengel, “Aircraft Flight Control in Wind Shear Using Sequential Dynamic Inversion,” Journal of Guidance, Control, and Dynamics, Vol. 18, No. 5, 1995, pp. 1084-1091.

49. S. S. Mulgund and R. F. Stengel, “Optimal Nonlinear Estimation for Aircraft Flight Control in Wind Shear,” Automatica, Vol. 32, No. 1, 1996, pp. 3-13.

50. W. Frost and R. L. Bowles, “Wind Shear Terms in the Equations of Aircraft Motion,” Journal of Aircraft, Vol. 21, No. 11, 1984, pp. 866-872.

51. J. A. Bossi and A. E. Bryson, “Disturbance Estimation for a STOL Transport During Landing,” Journal of Guidance, Control, and Dynamics, Vol. 5, No. 3, 1982, pp. 258-262.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊