跳到主要內容

臺灣博碩士論文加值系統

(98.80.143.34) 您好!臺灣時間:2024/10/10 15:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林映如
研究生(外文):Ying-Ju Lin
論文名稱:臨界圓柱體流場之非定常三維特性探討
論文名稱(外文):Investigations of Unsteady Three-dimensional Flows of a Circular Cylinder in the Critical Regime
指導教授:苗君易苗君易引用關係
指導教授(外文):Jiun-Jih Miau
學位類別:碩士
校院名稱:國立成功大學
系所名稱:航空太空工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:96
中文關鍵詞:小波轉換分離泡臨界區圓柱流場
外文關鍵詞:separation bubblecritical regimecircular cylinderwavelet transformation
相關次數:
  • 被引用被引用:1
  • 點閱點閱:285
  • 評分評分:
  • 下載下載:24
  • 收藏至我的研究室書目清單書目收藏:0
本研究以實驗方法來探討圓柱表面流場於雷諾數為 1.56×105 ~ 5.32×105間之三維非定常特性。實驗主要在臨界雷諾數下,分別對預臨界區、單分離泡區、和雙分離泡區內,以及各區域之交界處選定幾組雷諾數來進行圓柱表面側向壓力之量測。並利用小波轉換搭配模態分離法,輔以相關性分析,得以量化分析圓柱表面流場於臨界雷諾數下之三維特性。
首先實驗所得之側向壓力訊號進行相關性係數分析,對流動分離線以及分離泡發生處,於圓柱表面上位置的結果作一比較,可歸納出圓柱表面流場在不同位置之三維特性。研究結果發現,三維性最強烈之處為紊流再接觸現象發生之位置,其次為紊流分離,最後則為層流分離。實驗在任一雷諾數下,其圓柱上游仍未靠近分離線之流場,均屬於二維流場。
至於圓柱之瞬時頻率分析,首先利用經驗模態分離法,將渦流溢放擾動訊號濾出,再利用小波轉換得其瞬時溢放頻率,可發現於分離泡發生之位置,其瞬時頻率皆呈現一不連續分佈,且擺盪劇烈。只有在預臨界區內,分離線下游處之流場二維特性較強,渦流溢放頻率呈連續分佈且落於溢放主頻附近。
This study is intended to investigate the characteristics of unsteady three-dimensional flows around a circular cylinder at Reynolds numbers between 1.56×105 ~ 5.32×105. The experiment was carried out to measure pressure fluctuations along the spanwise direction on the circular cylinder. The purpose of this study is to quantify the characteristics of the three-dimensionality of the circular cylinder flow in the critical regime by means of correlation analysis and wavelet transformation.
Correlation coefficients of pressure distributions along the spanwise direction on the circular cylinder were obtained in the regions of turbulent reattachment, the laminar and turbulent separations and separation bubble. The results obtained in the turbulent reattachment region show strongest three-dimensionality, compared to the findings obtained around turbulent and laminar separations. Upstream of laminar separation, flow near the circular cylinder behaves most two-dimensional like at any Reynolds number studied.
In order to analyze the instantaneous frequency components contained in pressure fluctuations, the raw signals obtained by pressure transducers were firstly reduced by the empirical mode decomposition method (EMD). Subsequently, the reduced signals were analyzed by the wavelet transformation to obtain the instantaneous behavior of vortex shedding along the spanwise direction of the circular cylinder. Where the separation bubble occurred, the instantaneous vortex shedding frequency varies discontinuously and fluctuates violently. The instantaneous vortex shedding frequency obtained in the region downstream of the separation line shows a continuous distribution.
中文摘要………………………………………………………………...……I
英文摘要……………………………………………………………………..II
誌謝……………………………………………………………….…………IV
目錄………………………………………………………………………..…V
表目錄…………………………………………………………..…………...IX
圖目錄……………………………………………………………….……….X
符號說明………………………………………………………...…...……XIV

第一章 序論……………………………………………………………….…1
1.1 研究動機與目的………………………………………………………1
1.2 文獻回顧………………………………………………………………2
1.2.1 圓柱流場………………………………………………………….2
1.2.2三維圓柱流場……………………………………………………..4

第二章 實驗設備與模型…………………………………………………….6
2.1 內政部建研所環境風洞………………………………………………6
2.2 圓柱模型………………………………………………………………6
2.3 壓力轉換器……………………………………………………………7
2.4 熱線測速儀量測系統…………………………………………………8
2.5 資料擷取系統…………………………………………………………9
2.6 輔助儀器設備…………………………………………………………9
2.6.1 手提式壓力校正器……………………………………………….9
2.6.2 雷射墨線儀……………………………………………………...10
2.6.3 二維移動機構…………………………………………………...10

第三章 實驗方法與步驟…………………………………………………...11
3.1 風洞實驗參數分析…………………………………………………..11
3.1.1 雷諾數…………………………………………………………...11
3.1.2 無因次頻率……………………………………………………...12
3.1.3 壓力係數………………………………………………………...12
3.1.4 阻力係數………………………………………………………...13
3.2 三維圓柱表面壓力量測……………………………………………..13
3.3 溢放頻率量測………………………………………………………..14
3.4 訊號處理……………………………………………………………..14
3.4.1 相關性係數……………………………………………………...15
3.4.2 小波轉換………………………………………………………...15
3.4.3 經驗模態分離法………………………………………………...17

第四章 實驗結果與討論…………………………………………...………18
4.1 圓柱流場之三維特性………………………………………..………18
4.1.1 預臨界區……………………………………………………...…19
4.1.2 單分離泡區…………………………………………………...…20
4.1.3 雙分離泡區…………………………………………………...…20
4.2 預臨界區………………………………………………………..……21
4.2.1 表面壓力擾動與相關性分析………………………...…………21
4.2.2 瞬時溢放頻率…………………………………………...………22
4.3 單分離泡區……………………………………………………..……23
4.3.1 表面壓力擾動與相關性分析……………………...……………23
4.3.2 瞬時溢放頻率……………………………………...……………24
4.4 雙分離泡區……………………………………………………..……24
4.4.1 表面壓力擾動與相關性分析………………………...…………24
4.4.2 瞬時溢放頻率……………………………………………...……25
4.5採用經驗模態分離法與小波分析之幫助.……………………..……26

第五章 結論…………………………………………………………...……28
5.1 圓柱流場三維非定常特性………………………..…………………28
5.2 未來建議………………………………………………….………….30

參考文獻…………………………………………………………………….31
[1]Zdravkovich, M. M., “Conceptual Overview of Laminar and Turbulent Flow past Smooth and Rough Circular Cylinders.”, Journal of Wind Engineering and Industrial Aerodynamics, Vol.33, pp.53-62, 1990.
[2]Roshko, A., “Perspectives on Bluff Body Aerodynamics.”, Journal of Wind Engineering and Industrial Aerodynamics, Vol.49, pp.70-100, 1993.
[3]Humphreys, J. S., “On a Circular Cylinder in a Steady Wind at Transition Reynolds Numbers.”, J. Fluid Mech., Vol.9, pp. 603-612, 1960.
[4]Szepessy, S., “On the Spanwise Correlation of Vortex Shedding from a Circular Cylinder at High Subcritical Reynolds Number.”, Phys. Fluids, Vol.6, pp.2406-2416, 1994.
[5]Miau, J. J., Chou, J. H., Cheng, C. M., Chu, C. R., Woo, K. C., Ren, S. K., Chen, Z. L., Hu, C. C., and Chen, J. L., “Design Aspects of the ABRI Wind Tunnel.”, The International Wind Engineering Symposium, Taipei County, Taiwan, 2003.
[6]高義明,內政部建築研究所環境風洞校驗及二維鈍形體空氣動力流場實驗研究,成大航太所碩士論文,2005。
[7]Sumer, B. M. and Fredsøe, J., Hydrodynamics around Cylindrical Structures, World Scientific, 1997.
[8]Williamson, C. H. K., “Oblique and Parallel Modes of Vortex Shedding in the Wake of a Circular Cylinder at Low Reynolds Number.”, J. Fluid Mech., Vol.206, pp.579-627, 1989.
[9]Williamson, C. H. K., “The Existence of Two Stages in the Transition to Three-Dimensionality of a Cylinder Wake.”, Phys. Fluids, Vol.31, pp.3165-3168, 1988.
[10]Wieselsberger, C., “New Data on the Law of Hydro and Aerodynamics Resistance.”, Physikalsche Zeitschrift, Vol.22, pp.321-328, 1922.
[11]Zdravkovich, M. M., Flow Around Circular Cylinders, Vol. 1, Oxford University Press, 1997.
[12]Bearman, P. W., “On Vortex Shedding form a Circular cylinder in the Critical Reynolds Number.”, J. Fluid Mech., Vol.37, pp.577-585,1969.
[13]Schewe, G., “On the Force Fluctuations Acting on a Circular in Crossflow from Subcritical up to Transcritical Reynolds Numbers.”, J. Fluid Mech., Vol. 133, pp. 265-285, 1983.
[14]Roshko, A., “Experiments on the Flow Past a Circular Cylinder at Very High Reynolds Number.”, J. Fluid Mech., Vol.10, pp.345-356, 1961.
[15]Achenbach E., “Distribution of Local Pressure and Skin Friction around a Circular Cylinder in Cross-Flow Up to Re = 5×106”, J. Fluid Mech., Vol.34, pp.625-639, 1968.
[16]Schewe, G., “Sensitivity of Transition Phenomena to Small Perturbations in Flow Round a Circular Cylinder.”, J. Fluid Mech., Vol.172, pp.33-46, 1986.
[17]Schewe, G., “Reynolds-number Effects in Flow Around More-or-less Bluff Bodies.”, Journal of Wind Engineering and Industrial Aerodynamics, Vol. 89, pp.1267-1289, 2001.
[18]Szepessy, S. and Bearman, P., “Aspect Ratio and End Plate Effects on Vortex Shedding from a Circular Cylinder.”, Journal of Fluid Mechanics, Vol.234, pp.191-217, 1991.
[19]Wilson, P. G., and Pauley, L. L., “Two- and Three-dimensional Large-eddy Simulations of a Transitional Separation Bubble.”, Physics of Fluids, Vol.10, No.11, pp.2932-2940, 1998.
[20]Cantwell, B. and Coles, D., “An Experimental Study of Entrainment and Transport in the Turbulent Near Wake of a Circular Cylinder.”, J. Fluid Mech., Vol.136, pp.321-374, 1983.
[21]Bloor, M. S., “The Transition to Turbulence in the Wake of a Circular Cylinder.”, J. Fluid Mech., Vol.19, pp.290-304, 1964.
[22]Batham, J. P., “Pressure Distributions on Circular Cylinders at Critical Reynolds Numbers.”, J. Fluid Mech., Vol.57, part 2, pp.209-228, 1973.
[23]Niemann, H. J., and Hölscher, N., “A Review of Recent Experiments in the Flow Past Circular Cylinders.”, Journal of Wind Engineering and Industrial Aerodynamics, Vol.33, pp.197-209, 1990.
[24]Ayoub, A and Karamcheti, K., “An Experiment on the Flow Past a Finite Circular Cylinder at High Subcritical and Supercritical Reynolds Numbers.”, Journal of Fluid Mechanics, Vol.118, pp.1-26, 1982.
[25]Norberg, C., “An Experimental Investigation of the Flow Around a Circular Cylinder: Influence of Aspect Ratio.”, J. Fluid Mech., Vol.258, pp.287-316, 1995.
[26]Norberg, C., “Fluctuating Lift on a Circular Cylinder:Review and New Measurements.”, Journal of Fluids and Structures, Vol.17, pp.57-96, 2003.
[27]Blackburn, H. M. and Melbourn, W. H., “The Effect of Free-stream Turbulence on Sectional Lift Forces on a Circular Cylinder.”, J. Fluid Mech., Vol.306, pp.267-292, 1996.
[28]Higuchi, H., Kim, H. J., and Farell, C., “On Flow Separation and Reattachment Around a Circular Cylinder at Critical Reynolds Numbers.”, J. Fluid Mech., Vol.200, pp.149-171, 1989.
[29]Korotkin, A. I., “The Three Dimensionality of the Flow Transverse to a Circular Cylinder.”, Fluid Mechanics-Soviet Research, Vol.5 , pp.96-103, 1976.
[30]蔡星汶,圓柱表面流場在臨界區之空氣動力實驗研究,成大航太所碩士論文,2006。
[31]Jørgensen, F. E., How to Measure Turbulence with Hot-Wire Anemometry-A Practical Guide, Dantec Dynamics, 2002.
[32]Hunt, A., “Wind Tunnel Measurement of Surface Pressure on Cubic Building Models at Several Scales”, Journal of Wind Engineering and Industrial Aerodynamics, Vol. 10, pp. 137-163, 1982.
[33]Barlow, J. B., Rae, W. H., and Pope A., Low Speed Wind Tunnel Testing, third Edition, John Wiley & Sons, New York, 1999.
[34]胡志忠,非定常流中之瞬時溢放行為,成功大學航太所博士論文,2000。
[35]Raghuveer M. R. and Ajit S. B., Wavelet transform – Introduction to Theory and Aapplications, Addison-Wesley, 1998.
[36]White, F. M., Viscous Fluid Flow, 2nd edition, McGraw-Hill, 1991.
[37]Bertin, J. J. and Smith, M. L., “Aerodynamics for Engineers”, third edition, Prentice-Hall International, 1998.
[38]Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., Yen. N. C., Tung, C. C., and Liu, H. H., “The Empirical Mode Decomposition and the Hilbert Spectrum of Nonlinear and Non-Stationary Time Series Analysis.”, Proc. R. Soc. Lond., Vol.A454, pp.903-995, 1998.
[39]Bendat, J. S. and Piersol, A. G., Random Data: Analysis and Measurement Procedures, third edition, John Wiley & Sons, 2000.
[40]Grossmann A. and Morlet J., “Decomposition of Hardy Functions into Square Integrable Wavelets of Constant Shape.”, SIAM J. MATH. ANAL., Vol.15, No.4, pp.723-736, 1984.
[41]伍湘杰,渦流溢放過程低頻調變與三維性之瞬時特性,成功大學航太所博士論文,2003。
[42]Tani, I., “Low-Speed Flows Involving Bubble Separation.”, Prog. Aeronautical Science, Vol.5, pp.70-90, 1964.
[43]Tani, I., “Boundary-layer Transition”, Annual Review of Fluid Mechanics, Vol.1, Issue 1, pp.169-196, 1969.
[44]Prandtl, L., “Motion of Fluid with Very Little Viscosity”, NACA TM No.452, 1928.
[45]Tu, J. K., Miau, J. J., Wang, Y. J., Lee, G. B., and Lin, C., “Studying Three-Dimensionality of Vortex Shedding at Reynolds Numbers of 104 with MEMS Sensors.”, 43rd Aerospace Science Meeting & Exhibit, AIAA paper number 2005-1413, Reno, Nevada, 2006.
[46]Farell, C. and Blessmann, J., “On Critical Flow around Smooth Circular Cylinders.”, J. Fluid Mech., Vol.136, pp.375-391, 1983.
[47]Güven, O., Farell, C., and Patel, V. C., “Influence of Surface Roughness on the Cross-Flow around a Circular Cylinder.”, J. Fluid Mech., Vol.98, pp.673-701, 1980.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top