跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.138) 您好!臺灣時間:2024/09/08 05:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳志鵬
研究生(外文):Chih-Peng Chen
論文名稱:微噴流甲烷擴散火焰結構與穩駐機構之探討
論文名稱(外文):Structure and Stabilization Mechanism of Microjet Methane Diffusion Flames
指導教授:趙怡欽
指導教授(外文):Yei-Chin Chao
學位類別:博士
校院名稱:國立成功大學
系所名稱:航空太空工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:130
中文關鍵詞:數值模擬甲烷擴散火焰微噴流穩駐機構熱釋放率火焰高度火焰結構
外文關鍵詞:heat release ratestabilization mechanismmicrojetmethane diffusion flamenumerical simulationflame heightflame structure
相關次數:
  • 被引用被引用:2
  • 點閱點閱:400
  • 評分評分:
  • 下載下載:30
  • 收藏至我的研究室書目清單書目收藏:0
本文中透過實驗觀察、理論預測以及數值模擬等方法對內徑從186到778微米的不鏽鋼管上所穩駐的微噴流甲烷擴散火燄做探討。由於微噴流火焰可以被應用到許多微裝置上做為動力源,其尺寸大小與能否提供微裝置運轉所需的最小能量,是微火焰能否應用在微裝置上的最主要限制,所以本研究首先著重在對火燄外型、火焰長度以及熄滅極限的探討。實驗量測到的火燄外型、火焰長度以及近熄滅時的燃料流速將與多種理論模式所預測及數值模擬所得結果相互比較,結果顯示僅有Roper提出的噴流火焰模式可以成功的被應用來預測微噴流甲烷擴散火焰的火焰高度及近熄滅時燃料流速。搭配Smooke提出的化學反應機構所得到的數值模擬與實驗量測所得的結果非常吻合,藉由數值模擬結果顯示,微噴流甲烷擴散火焰在接近熄滅極限時的火焰結構仍與擴散火焰相同,而噴嘴的材質對於火焰與噴嘴管壁之間的間距大小有明顯影響。

由於微噴流甲烷擴散火焰的火焰結構與常尺寸下的噴流火焰有許多不同,最明顯可見的就是其近乎圓形的火焰外型及漂浮在噴嘴管口上方的火焰;本研究採用完整的甲烷化學反應機構GRI-Mech3.0來針對微噴流甲烷擴散火焰與噴嘴之間的火焰結構作詳細探討,結果顯示漂浮的微噴流甲烷擴散火焰並非由雙重火焰或三歧火焰的結構所穩駐,而是由於噴嘴管壁的熱損失而在火燄底部與管壁間生成許多的HO2等中間產物,由於該特殊的火焰結構,在火燄底部形成一個高熱釋放率的區域,快速的熱釋放供給噴嘴管壁的熱損失以及維持火焰反應的持續進行,進而形成漂浮在噴嘴管口上的微噴流甲烷擴散火焰。

本研究對微噴流甲烷擴散火焰做詳細探討,所得結論可做為後續應用微火燄於各種微裝置之參考。
Characteristics of microjet methane diffusion flames stabilized on top of the vertically oriented, stainless-steel tubes with an inner diameter ranging from 186 to 778 �慆 are investigated experimentally, theoretically, and numerically. Of particular interest are the flame shape, flame length, and quenching limit, as they may be related to the minimum size and power of the devices in which such flames would be used for future micro power generation. Experimental measurements of the flame shape, flame length, and quenching velocity are compared with theoretical predictions as well as detailed numerical simulations. Comparisons of the theoretical predictions with measured results show that only Roper’s model can satisfactorily predict the flame height and quenching velocity of microjet methane flames. Detailed numerical simulations, using skeletal chemical kinetic mechanism, of the flames stabilized at the tip of d = 186, 324, and 529 �慆 tubes are performed to investigate the flame structures and the effects of burner materials on the standoff distance near extinction limit. The computed flame shape and flame length for the d = 186 �慆 flame are in excellent agreement with experimental results. Numerical predictions of the flame structures strongly suggest that the flame burns in a diffusion mode near the extinction limit. The calculated OH mass fraction isopleths indicate that different tube materials have a minor effect on the standoff distance, but influence the quenching gap between the flame and the tube.

The flame structure and stabilization mechanism of a microjet methane diffusion flame near extinction are numerically investigated using multi-component transport model coupled with GRI-Mech 3.0 chemical kinetic mechanisms. Of particular interest is the flame structure in the standoff region, as it would directly relate to the mixing, diffusion, and chemical kinetic processes as well as flame stabilization. Neither a double flame nor a triple flame is observed in the computed structures, suggesting that the standoff flame is stabilized by the hot zone that connects to the reaction kernel, through the formation of HO2 layer and subsequent key radical reactions.
誌謝 i
摘要 ii
ABSTRACT xi
CONTENTS xiii
LIST OF TABLES xv
LIST OF FIGURES xvi
NOMENCLATURE xx
CHAPTER I INTRODUCTION 1
1-1 Background 1
1-2 Diffusion Flame 2
1-3 Microjet Diffusion Flame 2
1-4 Motivation and Objective 4
1-5 Thesis Outline 5
CHAPTER II METHODOLOGY 6
2-1 Experimental Setup 6
2-1.1 Burner and Fuel System 6
2-1.2 Image Capture System 6
2-1.3 2D LIPF System 7
2-1.4 Raman System 8
2-2 Mathematical Formulation 9
2-2.1 Numerical Simulation 10
2-2.2 Theoretical Models 12
CHAPTER III HYDROGEN JET DIFFUSION FLAMES 16
3-1 Introduction 16
3-2. Experimental Setup for Hydrogen Jet Diffusion Flames 18
3-2.1 UV Raman/LIPF System 19
3-3 Numerical Simulation for Hydrogen Jet Diffusion Flames 21
3-4 Results and Discussion 23
3-4.1 Flame Visualization, OH Imaging, and OH Simulation 23
3-4.2 Structures of the Re = 330 Flame 24
3-4.3. Structures of the Re = 30 Flame 27
3-4.4. Effects of Burner Wall Boundary Conditions on Computed Results 29
3-5. Summary 31
CHAPTER IV GENERAL CHARACTERISTICS OF MICROJET METHANE DIFFUSION FLAMES 33
4-1 Introduction 33
4-2 Flame Visualization 34
4-3 Verification of Theoretical Models 35
4-3.1 Flame Shape 35
4-3.2 Flame Length 36
4-3.3 Quenching Velocity 39
4-4 Numerical Simulations of the d = 186 �慆 Flames 40
4-4.1 Flame Shape and Flame Length 40
4-4.2 Flame Structure near Extinction 41
4-5 Effect of Burner Wall Boundary Condition on the Standoff Distance 46
4-6 Summary 47
CHAPTER V FLAME STRUCTURE AND STABILIZATION MECHANISM 48
5-1 Introduction 48
5-1.1 Flame Image 48
5-1.2 Numerical Simulation 49
5-2 Results and Discussion 50
5-2.1 Flame Height Prediction 50
5-2.2 Validation of Simulation 51
5-2.3 Flame Structure 52
5-3 Stabilization Mechanism 55
CHAPTER VI CLOSURE 60
6-1 Conclusions 60
6-2 Future Work 61
REFERENCE 63
TABLES 69
FIGURES 80
PUBLICATION LIST 127
VITA 129
著作權聲明 130
Baker, J. Calvert, M. E. and Murphy, D. W., 2002, “Structure and dynamics of laminar jet micro-slot diffusion flames,” Transactions of the ASME, Journal of Heat Transfer, vol. 124, pp. 783-790.
Barlow, R. S., Dibble, R. W., Chen, J. –Y., and Lucht, R. P., 1989, “Effect of Damköhler Number on Superequilibrium OH Concentration in Tubulent Nonpremixed Jet Flames,” Sandia Report SAND89-8402.
Ban, H. Venkatesh, S. and Saito, K., 1994, “Convection-diffusion controlled laminar micro flames,” Transactions of the ASME, Journal of Heat Transfer, vol. 116, pp. 954-959.
Bilger, R. W., Stårner, S. H., Kee, R. J., 1990, “On reduced mechanisms for methane – air combustion in nonpremixed flames,”Combustion and Flame, vol. 80, pp. 135-149.
Blevins, L. G., and Gore, J. P., 1999, “Computed structure of low strain rate partially premixed CH4/air counterflow flames: implications for NO formation,” Combustion and Flame, vol. 116, pp. 546-566.
Burke, S. P. and Schumann, T. E. W., 1928, “Diffusion flames,” Ind. Eng. Chem., vol. 20, pp. 998-1004.
Chen, C.-P., Chao, Y.-C., Cheng, T. S., Chen, G.-B. and Wu, C.-Y., 2007, “Structure and Stabilization Mechanism of a Microjet Methane Diffusion Flame Near Extinction,” Proceedings of the Combustion Institute, vol. 31, pp. 3301-3308.
Chen, Y.-C., and Mansour, M. S., 1996, “Measurements of the Detailed Flame Structure in Turbulent H2-Ar Jet Diffusion Flames with Line-Raman/Rayleigh/LIPF-OH Technique,” Proceedings of Combustion Institute, vol. 26, pp. 97-103.
Cheng, T. S. Chao, Y.-C. Wu, C.-Y. Li, Y.-H. Nakamura, Y. Lee, K.-Y. Yuan, T. and Leu, T. S., 2005, “Experimental and numerical investigation of microscale hydrogen diffusion flames,” Proceedings of Combustion Institute, vol. 30, pp. 2489-2497.
Cheng, T. S. Wu, C.-Y. Chen, C.-P. Li, Y.-H. Chao, Y.-C. Yuan, T. and Leu, T. S., 2005, “Detailed measurement and assessment of laminar hydrogen jet diffusion flames,” Combustion and Flame, vol. 146, pp. 268-282.
Cheng, T. S., Chao, Y.-C., Wu, D.-C., Yuan, T., Lu, C.-C., Cheng, C.-K., and Chang, J.-M., 1998, “Effects of Fuel-Air Mixing on Flame Structures and NOx Emission in Swirling Methane Jet Flames,” Proceeding of Combustion Institute, vol. 27, pp. 1229-1237.
Cheng, T. S., Chen, C.-P., Chen, C.-S., Li, Y.-H., Wu, C.-Y. and Chao, Y.-C., 2006, “Characteristics of microjet methane diffusion flames,” Combustion Theory and Modelling, vol. 10(5), pp. 861-881.
Cheng, T. S., Li, Y.-H., Chen, C.-S., Wu, C.-Y., Chen, C.-P., and Chao, Y.-C., 2005, “Structure of Microjet Methane Diffusion Flames,” Proceedings of the 20th International Colloquium on the Dynamics of Explosions and Reactive Systems,.
Cheng, T. S., Wehrmeyer, J. A., and Pitz, R. W., 1992, “Simultaneous temperature and multispecies measurement in a lifted hydrogen diffusion flame,” Combustion and Flame, vol. 91 (3/4), pp. 323-345.
Chou, C.-P., Chen, J.-Y., Yam, C. G., and Marx, K. D., 1998, “Numerical Modeling of NO Formation in Laminar Bunsen Flames – A Flamelet Approach,” Combustion and Flame, vol. 114, pp. 420-435.
Chung, S. H. and Law, C. K., 1984, “Burke-Schumann flame with streamwise and preferential diffusion,” Combustion Science and Technology, vol. 37, pp. 21-46.
Chung, S. H. and Lee, B. J., 1991, “On the Characteristics of Laminar Lifted Flames in a Nonpremixed Jet,” Combustion and Flame, vol. 86, pp. 62-72.
Dunn-Rankin, D., Leal, E. M. and Walther, D. C., 2005, “Personal Power Systems,” Progress in Energy and Combustion Science, vol. 31(5-6), pp. 422-465.
Echekki, T., and Chen, J. H., 1998, “Structure and Propagation of Methanol–Air Triple Flames,” Combustion and Flame, vol. 114, pp. 231-245.
Ern, A., and Givovangigli, V., 1998, “Thermal diffusion effects in hydrogen-air and methane-air flames,” Combustion Theory and Modelling, vol. 2, pp. 349-372.
Fukutani, S., Kunioshi, N., and Jinno, H., 1990, “Flame Structure of an Axisymmetric Hydrogen-Air Diffusion Flame,” Proceedings of Combustion Institute, vol. 23, pp. 567-573.
Gaydon, A. G. and Wolfhard, H. G., 1979, Flames: Their Structure, Radiation and Temperature. 4th Ed., Chapman and Hall, London.
Hancock, R. D., Schauer, F. R., Lucht, R. P., and Farrow, R. L., 1997, “Dual-pump coherent anti-Stokes Raman scattering measurements of nitrogen and oxygen in a laminar jet diffusion flame,” Applied Optics, vol. 36, pp. 3217-3226.
Hancock, R. D., Schauer, F. R., Lucht, R. P., Katta, V. R., and Hsu, K. Y., 1996, “Thermal Diffusion Effects and Vortex-Flame Interactions in Hydrogen Jet Diffusion Flame,” Proceedings of Combustion Institute, vol. 26, pp. 1087-1093.
Ida, T., Fuchihata, M., and Mizutani, Y., 2000, “Microscopic diffusion structures with micro flames,” Proceedings of the Third International Symposium on Scale Modeling, ISSM3-E7, Nagoya, Japan.
Ishizuka, S., 1982, “An Experimental Study on the Opening of Laminar Flame Tips,” Proceedings of Combustion Institute, vol. 19, pp. 319-326.
K. Hencken, Research Technologies, Inc., personal communication, 1992.
Katta, V. R., Goss, L. P., and Roquemore, W. M., 1994, “Effect of nonunity Lewis number and finite-rate chemistry on the dynamics of a hydrogen-air jet diffusion flame,” Combustion and Flame, vol. 96, pp. 60-74.
Kee, R. J., Rupley, F., Miller, J., Coltrin, M., Grcar, J., Meeks, E., Moffat, H., Lutz, A., Dixon-Lewis, G., Smooke, M. D., Warnatz, J., Evans, G., Larson, R., Mitchell, R., Petzold, L., Reynolds, L., Caracotsios, M., Stewart, W. and Glarborg, P., 1999, User Manual, The CHEMKIN Collection Release 3.5, Reaction Design, Inc., San Diego, CA.
Kee, R. J., Grcar J. F., Smooke, M. D., and Miller, J. A., Sandia National Labs., SAND85-8240/UC-4, Albuquerque, NM, 1985.
Kovacs, G. T. A., 1998, Micromachined Transducers-Source Book. McGraw-Hill, New York.
Lee, B. J. and Chung, S. H., 1997, “Stabilization of lifted tribrachial flames in a laminar nonpremixed jet,” Combustion and Flame, vol. 109, pp. 163-172.
Lewis, B. and von Elbe, G., 1961, Combustion, Flame, and Explosions of Gases. Academic Press, New York.
Maas, U., and Warnatz, J., 1988, “Ignition processes in hydrogen---oxygen mixtures,” Combustion and Flame, vol. 74 (1), pp. 53-69.
Matta, L. M. Neumeier, Y. Lemon, B. and Zinn, B. T., 2002, “Characteristics of microscale diffusion flames,” Proceedings of Combustion Institute, vol. 29, pp. 933-939.
McEnally, C. S., Pfefferle, L. D., Schaffer, A. M., Long, M. B., Mohammed, R. K., Smooke, M. D., and Colket, M. B., 2000, “Characterization of a Coflowing Methane/Air Non-premixed Flame with Computer Modeling, Rayleigh-Raman Imaging, and On-line Mass Spectrometry,” Proceedings of Combustion Institute, vol. 28, pp. 2063-2070.
Miller, J. A., and Bowman, C. T., 1989, “Mechanism and modeling of nitrogen chemistry in combustion,” Progress in Energy and Combustion Sciences, vol. 15, pp. 287-338.
Miller, J. A., and Kee, R. J., “Chemical Nonequilibrium Effects in Hydrogen-Air Laminar Jet Diffusion Flames,” 1977, Journal of Physical Chemistry, vol. 81, pp. 2534-2542.
Mitchell, R. E., Sarofim, A. F. and Clomburg, L. A., 1980, “Experimental and numerical investigation of confined laminar diffusion flames,” Combustion and. Flame, vol. 37, pp. 227-244.
Mueller, M. A., Kim, T. J., Yetter, R. A., and Dryer, F., 1999, “Flow Reactor Studies and Kinetic Modeling of the H2/O2 Reaction,” International Journal of Chemical Kinetics, vol. 31, pp. 113-125.
Nakamura, Y. and Saito, K. 2001, “Thermal and fluid dynamic structures of micro-diffusion flames,” Nagare (in Japanese), vol. 20, pp. 74-82.
Nakamura, Y. Ban, H. Saito, K. and Takeno, T., 1997, “Micro diffusion flames in a cold boundary,” Proceeding of the Central State Section Meeting, pp. 160-163.
Nakamura, Y. Kubota, A. Yamashita, H. and Saito, K., 2003, “Near extinction flame structure of micro-diffusion flames,” The International Symposium on Micro-Mechanical Engineering, Paper No. ISMME2003-111.
Nakamura, Y., Ban, H., Saito, K., and Takeno, T., 2000, “Structures of Micro (Millimeter Size) Diffusion Flames,” Proceedings of the Third International Symposium on Scale Modeling, ISSM3-E7.
Nandula, S. P., Brown, T. M., Skaggs, P. A., Pitz, R. W., and DeBarber, P. A., 1994, “Multi-Species Line Raman Measurements in H2-Air Turbulent Flames,” AIAA 32nd Aerospace Science Meeting, AIAA Paper No. 94-0227.
Nguyen, Q. V., Dibble, R. W., Carter, C. D., Fiechtner, G. J., and Barlow, R. S., 1996, “Raman-LIF measurements of temperature, major species, OH, and NO in a methane-air bunsen flame,” Combustion and Flame, vol.105, pp. 499-510.
Norton, T. S., Smyth, K. C., Miller, J. H., and Smooke, M. D., 1993, “Comparison of Experimental and Computed Species Concentration and Temperature Profiles in Laminar, Two-dimensional Methane/Air Diffusion Flames,” Combustion Science and Technology, vol. 90, pp. 1-34.
Plessing, T. Terhoeven, P. Peters, N. and Mansour, M., 1998, “An experimental and numerical study of a laminar triple flame,” Combustion and Flame, vol. 115, pp. 335-353.
Puri, I. K., Aggarwal, S. K., Ratti, S., and Azzoni R., 2001, “On the similitude between lifted and burner-stabilized triple flames: a numerical and experimental investigation,” Combustion and Flame, vol. 124, pp. 311-325.
Reynolds, W. C., 1986, STANJAN program manual, 3rd ed., Stanford University.
Roper, F. G., 1977, “The prediction of laminar jet diffusion flame sizes: Part I. Theoretical model and Part II. Experimental verification,” Combustion and Flame, vol. 29, pp. 219-234.
Smith, G. P., Golden, D. M., Frenklach, M., Moriarty, N. W., Eiteneer, B., Goldenberg, M., Bowman, C. T., Hanson, R. K., Song, S., Gardiner, W. C., Lissianski, V. V., Qin, Z., 1999, GRI-Mech homepage, Gas Research Institute, Chicago, www.me.berkeley.edu/gri_mech/.
Smooke, M. D., 1991, “Reduced kinetic mechanisms and asymptotic approximations for methane-air flames,” Lecture Notes in Physics, Springer-Verlag, Berlin, vol. 384, pp. 1-28
Smooke, M. D., Ern, A., Tanoff, M. A., Valdati, B. A., Mohammed, R. K., Marran, D. F., and Long, M. B., 1996, “Computational and Experimental Study of NO in an Axisymmetric Laminar Diffusion Flame,” Proceedings of Combustion Institute, vol. 26, pp. 2161-2170.
Smooke, M. D., Lin, P., Lam, J., and Long, M. B., 1990, “Computational and Experimental Study of a Laminar Axisymmetric Methane/Air Diffusion Flame,” Proceeding of Combustion Institute, vol. 23, pp.575-582.
Smooke, M. D., Mitchell, R. E., and Grcar, J. F., 1984, in: Elliptic Problem solvers II, edited by Birkhoff, G. and Schoenstadt, A., Academic, New York.
Smooke, M. D., Xu, Y., Zurn, R., Lin, P., Frank, J., and Long, M. B., 1992, “Computaional and Experimental Study of OH and CH Radicals in Axisymmetric Laminar Diffusion Flames,” Proceedings of Combustion Institute, vol. 24, pp.813-821.
Spalding, D. B., 1979, Combustion and Mass Transfer. Pergamon Press, New York.
Takagi, T., and Xu, Z., 1994, “Numerical analysis of laminar diffusion flames—Effects of preferential diffusion of heat and species,” Combustion and Flame, vol.96, pp. 50-59.
Takagi, T., Xu, Z., and Komiyama, M., 1996, “Preferential diffusion effects on the temperature in usual and inverse diffusion flames,” Combustion and Flame, vol. 106, pp. 252-260.
Takahashi, F. and Katta, V. R., 2000, “A reaction kernel hypothesis for the stability limit of methane jet diffusion flames,” Proceedings of Combustion Institute, vol. 28, pp. 2071-2078.
Takahashi, F. and Katta, V. R., 2000, “Chemical kinetic structure of the reaction kernel of methane jet diffusion flames,” Combustion Science and Technology, vol. 155, pp. 243-279.
Takahashi, F. and Katta, V. R., 2002, “Reaction kernel structure and stabilization mechanisms of jet diffusion flames in microgravity,” Proceedings of Combustion Institute, vol. 29, pp. 2509-2518.
Takahashi, F. and Katta, V. R., 2005, “Further studies of the reaction kernel structure and stabilization of jet diffusion flames,” Proceedings of Combustion Institute, vol. 30, pp. 383-390.
Takahashi, F. and Katta, V. R., 2005, “Structure of propagating edge diffusion flames in hydrocarbon fuel jets,” Proceedings of Combustion Institute, vol. 30, pp. 375-382.
Toro, V. V., Mokhov, A. V., Levinsky, H. B., and Smooke, M. D., 2005, “Combined Experimental and Computational Study of Laminar, Axisymmetric Hydrogen-Air Diffusion Flames,” Proceedings of Combustion Institute, vol. 30, pp.485-492.
Turns, S. R., 2000, An Introduction to Combustion: Concepts and Applications, McGraw-Hill, New York, pp. 352.
Walsh, K. T., Long, M. B., Tanoff, M. A., and Smooke, M. D., 1998, “Experimental and Computational Study of CH, CH*, and OH* in an Axisymmetric Laminar Diffusion Flame,” Proceedings of Combustion Institute, vol. 27, pp. 615-623.
Williams, F. A., 1985, Combustion Theory. Addison-Wesley, New York.
Xue, H. S. Aggarwal, S. K. Osborne, R. J. Brown, T. M. and Pitz, R. W., 2002, “Assessment of reaction mechanisms for counterflow methane-air partially premixed flames,” AIAA J., vol. 40(6), pp. 1236-1238.
Yoo, S. W., Law, C. K., and Tse, S. D., 2002, “Chemiluminesent OH* and CH* Flame Structure and Aerodynamic Scaling of Weakly Buoyant, Nearly Spherical Diffusion Flames,” Proceedings of Combustion Institute, vol. 29, pp. 1663-1670.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top