資料載入處理中...
跳到主要內容
臺灣博碩士論文加值系統
:::
網站導覽
|
首頁
|
關於本站
|
聯絡我們
|
國圖首頁
|
常見問題
|
操作說明
English
|
FB 專頁
|
Mobile
免費會員
登入
|
註冊
切換版面粉紅色
切換版面綠色
切換版面橘色
切換版面淡藍色
切換版面黃色
切換版面藍色
功能切換導覽列
(44.200.122.214) 您好!臺灣時間:2024/10/07 14:02
字體大小:
字級大小SCRIPT,如您的瀏覽器不支援,IE6請利用鍵盤按住ALT鍵 + V → X → (G)最大(L)較大(M)中(S)較小(A)小,來選擇適合您的文字大小,如為IE7或Firefoxy瀏覽器則可利用鍵盤 Ctrl + (+)放大 (-)縮小來改變字型大小。
字體大小變更功能,需開啟瀏覽器的JAVASCRIPT功能
:::
詳目顯示
recordfocus
第 1 筆 / 共 1 筆
/1
頁
論文基本資料
摘要
外文摘要
目次
參考文獻
電子全文
紙本論文
論文連結
QR Code
本論文永久網址
:
複製永久網址
Twitter
研究生:
林育如
研究生(外文):
Yu-Ju Lin
論文名稱:
利用階梯函數變換以穩定微陣列資料之變異數轉換
論文名稱(外文):
A step function approach in stabilizing variance for microarray data
指導教授:
詹世煌
指導教授(外文):
Shin-Huang Chan
學位類別:
碩士
校院名稱:
國立成功大學
系所名稱:
統計學系碩博士班
學門:
數學及統計學門
學類:
統計學類
論文種類:
學術論文
論文出版年:
2007
畢業學年度:
95
語文別:
英文
論文頁數:
44
中文關鍵詞:
微陣列
、
無母數變異數穩定
、
階梯函數
外文關鍵詞:
microarray
、
nonparametric variance stabilization
、
step function
相關次數:
被引用:0
點閱:241
評分:
下載:8
書目收藏:0
微陣列資料中基因的變異數通常會不一致,而與基因的平均數呈現某種函數關係。此種變異數的不穩定使得許多假設變異數為一致的統計方法不適於應用。針對微陣列資料,Durbin et al. (2002) 和 Inoue et al. (2004) 對單一顏色的基因表現值資料提出基因表現模型並推導出變異數與平均數的函數關係,進而求得使變異數穩定的變數變換。Rocke 和 Durbin (2001, 2004) 則針對兩種顏色的微陣列資料提出基因表現值的模型並發展出有母數變異數穩定轉換法。鑒於有母數變換不具穩健性,Chung (2006) 不透過任何基因表現值的模型,而從實際資料的變異數對平均數的散佈圖中以lowess法找出兩者的關係,再以指數函數在小區間上從事變數轉換,惟Chung 的方法在資料轉換後出現不合理的群聚現象。
在本研究中,我們探討對兩種顏色微陣列表現比之對數值的變異數穩定問題。首先以無母數lowess法得到估計之變異數函數,之後利用階梯函數的概念,估計區域性之變異數與平均數之間的函數關係,再以變異數穩定轉換的方式來轉換微陣列資料。結果發現本方法不僅改善了Chung 的無母數變異數穩定轉換法上的不連續現象,且在統計模擬或實例分析上,本方法明顯的比 Chung 的無母數法或有母數變異數穩定轉換有更好的成效。
For microarray data, the variances of genes are not constant, but function of mean expression level. As a result, it can not be analyzed by traditional statistical methods, which assume that the variance of noise is constant. Durbin et al. (2002) and Inoue et al. (2004) separately established the one-color gene expression models and derived the variance-stabilizing transformation functions based on the model they assumed. Rocke and Durbin (2001, 2004) considered two-color gene expression model and developed parametric variance-stabilizing transformation method. All of them took the parametric approach to stabilize the variance. Chung (2006), concerned about the robustness of parametric transformation approach, recommended a nonparametric variance-stabilizing transformation method. Chung (2006) investigated the scatter plot of variance versus mean and applied lowess method to estimate the variance function. He used exponential function to approximate the variance function in a small region, but the results are weird and unreasonable.
In this thesis, we transform the microarray data with a nonparametric approach. We estimate the relationship between variance and mean of gene expression by lowess regression, then locally take step function to approximate the lowess curve. We find that the nonparametric step function transformation method is able to solve the problem of intermittent pattern from Chung’s approach. Simulation study and real data analysis show that the performance of the suggested method is better than the parametric variance-stabilizing transformation method and Chung’s nonparametric approach in stabilizing variance.
Contents
CHAPTER 1 INTRODUCTION 1
CHAPTER 2 LITERATURE REVIEW 3
2.1 VARIANCE-STABILIZING TRANSFORMATION FOR ONE COLOR ARRAY 3
2.2 VARIANCE-STABILIZING TRANSFORMATION FOR TWO-COLOR ARRAY 6
2.3 THE SHORTCOMING OF MODEL APPROACH 8
CHAPTER 3 VARIANCE-STABILIZING TRANSFORMATION 9
3.1 NONPARAMETRIC TRANSFORMATION 9
3.2 NEW NONPARAMETRIC TRANSFORMATION - STEP FUNCTION 10
3.3 SIMPLE FUNCTION APPROACH 11
3.4 PERFORMANCE COMPARISONS 13
CHAPTER 4 SIMULATION STUDY 16
4.1 SIMULATION SETTING 16
4.2 SIMULATION RESULTS 17
CHAPTER 5 REAL EXAMPLES 22
5.1 SELF-HYBRIDIZATION 22
5.1.1 NCKU data 22
5.1.2 Data analysis 23
5.2 HYBRIDIZATION WITH CELL LINE TSGH 28
5.2.1 Asia data 28
5.2.2 Data analysis 28
CHAPTER 6 CONCLUSIONS 34
REFERENCE 35
APPENDIX 36
Table
TABLE 4 - 1 CV COMPARISONS FOR DIFFERENT TRANSFORMATION METHODS: N = 1, 19
TABLE 4 - 2 THE CV COMPARISONS FOR DIFFERENT TRANSFORMATION METHODS: N = 500, REPLICATES = 3, 20
TABLE 4 – 3 THE CV COMPARISONS FOR DIFFERENT TRANSFORMATION METHODS: N = 500, REPLICATES = 10, 21
TABLE 5 - 1 CV VALUES FOR DIFFERENT TRANSFORMATION METHODS 27
TABLE 5 - 2 CV VALUES FOR DIFFERENT TRANSFORMATION METHODS 33
Figure
FIGURE 3 - 1 SCATTER PLOT OF MEAN AND VARIANCE WITH SUPERIMPOSED LOWESS CURVE FOR ORIGINAL DATA. THE CV IS 2.6591. 14
FIGURE 3 - 2 SCATTER PLOT OF MEAN AND VARIANCE WITH SUPERIMPOSED LOWESS CURVE FOR TRANSFORMED DATA (USING STEP FUNCTION). THE CV IS 1.9361. 15
FIGURE 4 - 1 SCATTER PLOTS OF MEAN VS. VARIANCE WITH LOWESS CURVES SUPERIMPOSED. ORIGINAL SIMULATED DATA HAVING A VARIANCE FUNCTION AND VARIANCE-STABILIZING TRANSFORMED DATA. 18
FIGURE 5 - 1 SCATTER PLOT OF VARIANCE VS. MEAN WITH LOWESS CURVE SUPERIMPOSED: WITHOUT TRANSFORMATION, F = 1/3 24
FIGURE 5 - 2 SCATTER PLOT OF VARIANCE VS. MEAN WITH LOWESS CURVE SUPERIMPOSED: PARAMETRIC (EXPONENTIAL) TRANSFORMATION METHOD, F = 1/3 24
FIGURE 5 - 3 SCATTER PLOT OF VARIANCE VS. MEAN WITH LOWESS CURVE SUPERIMPOSED: PARAMETRIC (QUADRATIC) TRANSFORMATION METHOD, F = 1/3 25
FIGURE 5 - 4 SCATTER PLOT OF VARIANCE VS. MEAN WITH LOWESS CURVE SUPERIMPOSED: NONPARAMETRIC TRANSFORMATION METHOD, F = 1/3 25
FIGURE 5 - 5 SCATTER PLOT OF VARIANCE VS. MEAN WITH LOWESS CURVE SUPERIMPOSED: NONPARAMETRIC STEP FUNCTION WITH MOVING AVERAGE, F = 1/3 26
FIGURE 5 - 6 SCATTER PLOT OF VARIANCE VS. MEAN WITH LOWESS CURVE SUPERIMPOSED: NONPARAMETRIC STEP FUNCTION WITH SIMPLE FUNCTION, F = 1/3 26
FIGURE 5 - 7 SCATTER PLOT OF VARIANCE VS. MEAN WITH LOWESS CURVE SUPERIMPOSED: THE GENERALIZED-LOG TRANSFORMATION, F = 1/3 27
FIGURE 5 - 8 SCATTER PLOT OF VARIANCE VS. MEAN WITH LOWESS CURVE SUPERIMPOSED: WITHOUT TRANSFORMATION, F = 1/11. 29
FIGURE 5 - 9 SCATTER PLOT OF VARIANCE VS. MEAN WITH LOWESS CURVE SUPERIMPOSED: PARAMETRIC (EXPONENTIAL) TRANSFORMATION METHOD, F = 1/11. 30
FIGURE 5 – 10 SCATTER PLOT OF VARIANCE VS. MEAN WITH LOWESS CURVE SUPERIMPOSED: PARAMETRIC (QUADRATIC) TRANSFORMATION METHOD, F = 1/11. 30
FIGURE 5 – 11 SCATTER PLOT OF VARIANCE VS. MEAN WITH LOWESS CURVE SUPERIMPOSED: NONPARAMETRIC TRANSFORMATION METHOD, F = 1/11. 31
FIGURE 5 – 12 SCATTER PLOT OF VARIANCE VS. MEAN WITH LOWESS CURVE SUPERIMPOSED: NONPARAMETRIC STEP FUNCTION WITH MOVING AVERAGE, F = 1/11. 31
FIGURE 5 – 13 SATTER PLOT OF VARIANCE VS. MEAN WITH LOWESS CURVE SUPERIMPOSED: NONPARAMETRIC STEP FUNCTION WITH SIMPLE FUNCTION, F = 1/11. 32
FIGURE 5 - 14 SATTER PLOT OF VARIANCE VS. MEAN WITH LOWESS CURVE SUPERIMPOSED: THE GENERALIZED-LOG TRANSFORMATION, F = 1/11. 32
Reference
Durbin, B. P., Hardin, J. S. Hawkins, D. M. and Rocke, D. M. (2002). A variance-stabilizing transformation for gene-expression microarray data. Bioinformatics, 18, 105-110.
Durbin, B. P. and Rocke, D. M. (2004). Variance-stabilizing transformations for two-color microarrays. Bioinformatics, 20, 660-667.
Inoue, M., Nishimura, S. I., Hori, G., Nakahara, H., Saito, M., Yoshihara, Y. and Amar, S. I. (2004). Improved parameter estimation for variance-stabilizing transformation of gene-expression microarray data. Journal of Bioinformatics and Computational Biology, 2, 669-679.
Rocke, D. M. and Durbin B. P. (2001). A model for measurement error for gene expression arrays. Journal of Computational Biology, 8, 557-569.
Chung, Xiang-Yu (2006). A nonparametric variance-stabilizing transformation method in cDNA microarray. National Cheng Kung University.
電子全文
國圖紙本論文
連結至畢業學校之論文網頁
點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
推文
當script無法執行時可按︰
推文
網路書籤
當script無法執行時可按︰
網路書籤
推薦
當script無法執行時可按︰
推薦
評分
當script無法執行時可按︰
評分
引用網址
當script無法執行時可按︰
引用網址
轉寄
當script無法執行時可按︰
轉寄
top
相關論文
相關期刊
熱門點閱論文
1.
cDNA微陣列上的無母數變異數穩定轉換
無相關期刊
1.
逐次抽樣計畫最佳停止法則之研究
2.
評估cDNA微陣列資料的normalization方法
3.
生物晶片之事前品質診斷
4.
整合型微流體晶片系統應用於樣品前處理及快速核酸增幅
5.
以離散事件模擬為基結合統計產出控制圖解決IC封裝廠之派工問題─以望目交貨時間為導向
6.
近場光學顯微鏡應用於奈米金屬結構之光學特性之量測與分析
7.
先天性腎上腺增生症患童父母之家庭經驗敘事
8.
由細胞黏著力探討川芎嗪對氧糖剝奪損傷的PC12細胞之保護作用
9.
快速成型中彩色切層演算法的發展與應用
10.
偏振光調變近場光學掃描術應用基因演算法量測光學參數之研究
11.
光纖光柵式表面電漿共振感測器之理論與基本實作
12.
雙槽螺旋鑽頭鑽刃修磨
13.
含裂縫條板接合半平面功能梯度壓電材料之破壞問題
14.
以甲苯為主要基質現地好氧共代謝三氯乙烯之實驗室及現地研究
15.
運用行為序列偵測法之家庭網路動態服務整合技術
簡易查詢
|
進階查詢
|
熱門排行
|
我的研究室