跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/13 20:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張書瑋
研究生(外文):Sui-Wei Chang
論文名稱:建構於多功能數位車用控制台上行車事件記錄器之實現與應用
論文名稱(外文):The Implementation and Application of MVEDR on a Multi-function Digital Automobile Console
指導教授:楊中平楊中平引用關係
指導教授(外文):Chung-Ping Young
學位類別:碩士
校院名稱:國立成功大學
系所名稱:資訊工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:95
語文別:英文
論文頁數:98
中文關鍵詞:碰撞預警系統行車事件記錄器多功能數位車用控制台嵌入式系統適應性神經模糊推論系統
外文關鍵詞:collision warning systemmotor vehicle event data recorder (MVEDR)multi-function digital automobile consoleadaptive network-based fuzzy inference systemembedded system
相關次數:
  • 被引用被引用:0
  • 點閱點閱:275
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
近來嵌入式系統的蓬勃發展,車用型電腦漸漸成為主流,並配備從GPS衛星導航系統到影音播放系統,目前都是車上的標準配備,因此我們實作了一個包含通訊、多媒體、個人化等的多功能數位車用控制台。
一個性能優良的駕駛者與車輛之介面(driver-vehicle interface)下需要具備兩項功能,首先如何有效地預防行車碰撞的發生,其次精確地記錄行車資訊以利事故發生後的調查。而根據統計結果,在車禍事故發生的原因之中,前後車未保持安全的行車間距,佔了大部份的比例,約25%。因此,碰撞預警系統(collision warning system)也是未來汽車上一項必備的功能,因為在行車可能發生碰撞的情況下,它可即時提醒駕駛者並督促駕駛者做適當處置,以減少與前(後)車發生碰撞的機會。再者車上配備一台行車事件記錄器(motor vehicle event data recorder),可紀錄下汽車行駛中的所有數據資料,假設不幸發生車禍事故,相關的行車紀錄能協助釐清肇事原因。
在本篇論文中,除了建置此多功能控制台外,主要探討的是如何實現一個具有即時性及高成效的碰撞預警系統,並將此系統建立在控制台上,如此提供了行車時預防碰撞的機制。在設計上採用智慧化的計算及推測方法,因此使用適應性神經模糊推論系統(adaptive network-based fuzzy inference system)來實現碰撞預警系統,其運算方式是根據下列因素 - (1)後車速度、(2)兩車相對速度、(3)兩車夾角、(4)兩車垂直間距、(5)兩車水平間距、(6)後車之經度緯度 - 做為預警系統輸入變數來推測危險警告的程度,並以適當不同程度的聲響做為輸出,通知駕駛人及車內其他乘客。
最後我們利用MATLAB的ANFIS Toolbox來模擬及實現我們所提出的碰撞預警系統,期望能夠在行車安全方面,提供一個較精準且更具效能的車用預警系統。
With the arrival of embedded systematic era, the car PC products of all kinds push the market lastingly. All of equipments from GPS satellite navigation system to audio-video amusement become the standard facility in an automobile. Thus, we have implemented a multi-function digital automobile console (MFDAC), including communication, multimedia and individualization etc.
Clearly, a good driver-vehicle interface needs two functions. First, how to effectively prevent traffic crash is taken into account. Next, how to record event data precisely is necessary to facilitate the traffic crash investigation after accident. According to the statistics, the highest ratio of causing traffic crash, say 25%, is related to the problem of tail gating. Therefore, a collision warning system (CWS) is necessary to be one of automobile equipments in the near future. This is because it get driver alert if any possibility of the frontal or rear-end impact collision could be mad and urge the driver promptly responding to this warning by taking appropriate precaution measure against traffic crash so that accident could be avoided. Moreover, equipping with motor vehicle event data record (MVEDR) in automobile is also required so that it is used to collect the necessary data in transit. It can assist the traffic crash investigation to tell what was happened in case of car accident.
Besides, the main objective of this study is to explore how to realize real-time high-performance collision warning system in MFDAC such that it provides the mechanism of precaution against traffic crash in transit. An intelligent computation for system’s inference is considered and hence adaptive network-based fuzzy inference system (ANFIS) is employed to realize collision warning system. In this proposed CWS, the computational inference is based on the following factors (input variables) - (1) host vehicle velocity、(2) relative velocity between two vehicles、(3) angle between two vehicles、(4) vertical distance between two vehicles、(5) horizontal distance between two vehicles、(6) longitude and latitude from GPS - and the buzzer will output warning message by different level inferred from CES so as to alert the driver and passengers inside an automobile.
Finally we utilize ANFIS toolbox of MATLAB to simulate and verify the proposed warning system, and expect to achieve better accuracy and more effectiveness of CWS in vehicle safety.
CHAPTER 1 INTRODUCTION 1
1.1 MOTIVATION 1
1.2 OVERVIEW 2
1.3 ORGANIZATION OF THIS THESIS 4
CHAPTER 2 RELATED WORKS 8
2.1 AUTOMOBILE MULTIMEDIA 8
2.1.1 BENQ – AZTECA 516 8
2.1.2 LIFEVIEW - CAR PC 9
2.1.3 YULON - TOBE 10
2.2 VEHICLE SAFETY 11
2.2.1 COLLISION WARNING SYSTEM (CWS) 11
2.2.1.1 VISION BASED SENSORS 11
2.2.1.2 RADAR SENSORS 12
2.2.1.3 LASER SENSORS 13
2.2.1.4 OTHER SENSORS 14
2.2.2 INTEGRATING SYSTEM 14
2.2.3 THREAT ASSESSMENT ALGORITHMS 14
2.3 MOTOR VEHICLE EVENT DATA RECORDER (MVEDR) 15
2.4 CHAPTER SUMMARY 16
CHAPTER 3 TECHNICAL KNOWLEDGE 18
3.1 IEEE 1616 STANDARD FOR MOTOR VEHICLE EVENT DATA RECORDER 18
3.1.1 DATA ATTRIBUTES AND OUTPUT 19
3.1.2 DATA DICTIONARY 22
3.2 ISO 11898 CONTROLLER AREA NETWORK (CAN) 23
3.2.1 ISO/OSI REFERENCE MODEL 24
3.2.2 PRINCIPLES OF DATA EXCHANGE 26
3.2.3 MESSAGE FRAME FORMAT 27
3.3 FUZZY THEOREM 29
3.3.1 FUZZY SET 30
3.3.2 FUZZY INFERENCE 32
3.3.3 FUZZY SYSTEM 34
3.4 FUZZY NEURAL NETWORK 35
3.4.1 ARTIFICIAL NEURAL NETWORK 36
3.4.1.1 PROCESSING ELEMENT 37
3.4.1.2 LAYER 38
3.4.1.3 NETWORK 39
3.4.2 BACK-PROPAGATION ALGORITHM 40
3.4.3 ADAPTIVE NETWORK-BASED FUZZY INFERENCE SYSTEM (ANFIS) 45
CHAPTER 4 HARDWARE ARCHITECTURE 48
4.1 OVERVIEW OF TARGET PLATFORM 48
4.2 FUNCTION BLOCKS AND HARDWARE DEVICES 49
CHAPTER 5 SOFTWARE ORGANIZATION 55
5.1 OVERVIEW OF WINDOWS CE .NET 55
5.2 SOFTWARE FUNCTIONS 56
CHAPTER 6 IMPLEMENTATION 59
6.1 THE IMPLEMENTATION OF AUTOMOBILE DIGITAL CONSOLE 59
6.1.1 THE BUILD-IN SOFTWARE 59
6.1.2 GRAPHIC USER INTERFACE 59
6.1.3 FTP PROGRAM 60
6.1.4 GPS PROGRAM 60
6.1.5 GSM PROGRAM 60
6.1.6 PICTURE VIEWER 61
6.1.7 DICTIONARY 61
6.1.8 TO-DO-LIST 61
6.1.9 DATA EXCHANGER 61
6.1.10 FILE VIEWER 61
6.1.11 DVD PLAYER 65
6.1.11.1 HARDWARE ACCELERATION 65
6.1.11.2 DVD VIDEO PLAYER 66
6.2 THE IMPLEMENTATION OF MVEDR 67
6.2.1 CAN BUS 67
6.2.2 CAN MANAGER 68
6.2.3 MOTOR VEHICLE EVENT DATA RECORDER (MVEDR) 68
6.3 COLLISION WARNING SYSTEMS (CWS) 69
6.3.1 SENSOR STAGE 71
6.3.2 CAN STAGE 72
6.3.3 SCANNING STAGE 72
6.3.4 PREDICT STAGE 74
6.3.5 WARNING STAGE 75
CHAPTER 7 EVALUATION AND RESULT 77
7.1 EVALUATION 77
7.2 RESULTS 82
7.3 SUMMARY 83
CHAPTER 8 CONCLUSIONS AND FUTURE WORKS 91
8.1 CONCLUSIONS 91
8.2 FUTURE WORKS 91
[1] Alexander Kirchner, Christian Ameling, "Integrated Obstacle and Road Tracking using a Laser Scanner", Intelligent Vehicles Symposium, IEEE, 2000
[2] Andreas Ewald, Volker Willhoefi, "Laser Scanners for Obstacle Detection in Automotive Applications", Intelligent Vehicles Symposium, IEEE, 2000
[3] C. Mertz, J. Kozar, J.R. Miller, C. Thorpe, "Eye-safe Laser Line Striper for Outside Use", Intelligent Vehicles Symposium, IEEE, 2002
[4] Christopher T. Lyons, Ismail Taskin, "A low-cost MMIC based radar sensor for frontal, side or rear automotive anticipatory precrash sensing applications", Intelligent Vehicles Symposium, IEEE, 2000
[5] D. E. Rumelhart, G. E. Hinton, R. J. Wiliams, "Learning representations by back-propagating errors", Nature, 1986, 323:533-536
[6] Douglas Boling, "Windows CE .NET Programming 3rd", Microsoft, ISBN: 986-125-385-5, 2004
[7] Ericsson, "R320 AT Command Online Reference", 2000
[8] Etienne Lemaire, El-Miloudi El Koursi, Pascal Deloof, Jean-Pierre Ghys, "Safety Analysis of a Frontal Collision Warning System", Intelligent Vehicles Symposium, IEEE, 2002
[9] F. Thomanek, E.D. Dickmanns and D. Dickmanns, "Multiple Object Recognition and Scene Interpretation for Autonomous Road Vehicle Guidance", Intelligent Vehicles Symposium, IEEE, 1994
[10] Haitao LI, Samir BOUAZIZ, Francis DEVOS, "An embedded system for autonomous collision avoidance and line tracking using artificial CMOS retina sensor", Intelligent Vehicles Symposium, IEEE, 2000
[11] Hajimu Masuda, Yasuhisa Hirosima, Toshio Ito, "Development of Daihatsu ASV2", Intelligent Vehicles Symposium, IEEE, 2000
[12] Hideo Araki, Kenichi Yamada, Yasuhisa Hiroshima, Toshio Ito "Development of Rear-end Collision Avoidance System", Intelligent Transportation Systems, IEEE, 1996
[13] Hiroyuki Kamiya, Yasuhiko Fujita, Takahiro Tsuruga, Yukinobu Nakamura, Shouhei Matsuda, Kouji Enomoto, "Intelligent Technologies of Honda ASV", Intelligent Vehicles Symposium, IEEE, 1996
[14] IEEE Std 1616, "2004 IEEE Standard for Motor Vehicle Event Data Recorders (MVEDRs)", IEEE Std 1616-2004, 2005
[15] James Y. Wilson, Aspi Havewala, "Building Powerful Platform with Windows CE", Addison-Wesley Professional, American, 2001
[16] Jyh Shing Roger Jang, "ANFIS: Adaptive Network-Based Fuzzy Inference System", IEEE Transactions on System, Man and Cybernetics, 1993
[17] Keiji Saneyoshi, "Drive Assist System Using Stereo Image Recognition", Intelligent Vehicles Symposium, IEEE, 1996
[18] Kowalick, T.M, "Pros and Cons of Emerging Event Data Recorders (EDRs) in the Highway Mode of Transportation", Vehicular Technology Conference, IEEE, 2001
[19] Kwang I.Kim,Cheon W.Shin, Seiji Inoguchi, "Collision Avoidance Using Artificial Retina Sensor in ALV", Intelligent Vehicles Symposium, IEEE, 1995
[20] Lee Yang, Ji Hyun Yang, Eric Feron, Vishwesh Kulkarni, "Development of a Performance-Based Approach for a Rear-End Collision Warning and Avoidance System for Automobiles", Intelligent Vehicles Symposium, IEEE, 2003
[21] M. Hillebrand, N. Stevanovic, B. J. Hosticka, J. E. Santos Conde, A. Teuner, M. Schwarz, "High Speed Camera System Using a CMOS Image Sensor", Intelligent Vehicles Symposium, IEEE, 2000
[22] Manabu Sekine, Tetsuo Senco, Ikuhiro Morita, Hiroshi Endo, "Design Method for an Automotive Laser Radar System and Future Prospects for Laser Radar", Intelligent Vehicles Symposium, IEEE, 1992
[23] Masahiro Watanabe, Katsuzi Okazaki, Tadamasa Fukae, Akihito Kato, Katsuyoshi Sato, Masayuki Fujise, "A 60.5GHz Millimeter Wave Spread Spectrum Radar and the Test Data in Several Situations", Intelligent Vehicles Symposium, IEEE, 2002
[24] Masanori Hariyama, Toshiki Takeuchi, Michitaka Kameyama, "Reliable Stereo Matching for Highly-Safe Intelligent Vehicles and Its VLSI Implementation", Intelligent Vehicles Symposium, IEEE, 2000
[25] Michael Skuteke, Dr. Moheb Mekhaiel, Prof. Dr.-Ing. Gerd Wanielik, "A PreCrash System based on Radar for Automotive Applications", Intelligent Vehicles Symposium, IEEE, 2003
[26] Morimichi Nishigaki, Masakazu Saka, Tomoyoshi Aoki, Hiromitsu Yuhara, Makoto Kawai, "Fail Output Algorithm of Vision Sensing", Intelligent Vehicles Symposium, IEEE, 2000
[27] National Highway Trafiic Safety Administration (NHTSA), "Automotive Collision Avoidance System Field Operational Test / First Annual Report", DOT HS 809 196, December 2000
[28] NHTSA, "Motor Vehicle Traffic Crash Fatality Counts and Estimates of People Injured for 2005", NHTSA, American, 2006
[29] Nilesh Rajbharti, "AN738 – PIC18C CAN Routines in C", Microchip Technology, Inc, 2001
[30] Northrop-Grumman, "Collision Warning Radar Interference", Intelligent Vehicles Symposium, IEEE, 1995
[31] P. Zador, S. Krawchuck, R. Voas, "Automotive Collision Avoidance System (ACAS) Program / First Annual Report", NHTSA, DOT HS 809 080, August 2000
[32] Paul Ganci, Steven Potts, and Frank Okurowski, "A Forward Looking Automotive Radar Sensor", Intelligent Vehicles Symposium, IEEE, 1995
[33] Pengjun Zheng, Mike McDonald, "The Effect of Sensor Errors on the Performance of Collision Waming Systems", Intelligent Transportation Systems Proceeding, IEEE, 2003
[34] Robert Bosch Gmbh, "CAN Specification Version 2.0", BOSCH, 1991
[35] S. Hirst, R. Graham, "Ergonomics and Safety of Intelligent Driver Interfaces", The Format and Perception of Collision Warnings, Mahwah, NI, 1997
[36] S. J. Brunson, E. M. Kyle, N. C. Phamdo, G. R. Preziotti, "Alert Algorithm Development Program NHTSA Rear-End Collision Alert Algorithm", USDOT, 2002
[37] Stefan Ernst, Christoph Stiller, Jens Goldbeck, Christoph Roessig, "Camera Calibration for Lane and Obstacle Detection", Intelligent Transportation Systems Proceeding, IEEE, 1999
[38] Surender K. Kenue, "Selection of Range and Azimuth Angle Parameters for a Forward Looking Collision Warning Radar Sensor", Intelligent Vehicles Symposium, IEEE, 1995
[39] Tang-Hsien Chang, Chun-hung Lin, Chih-sheng Hsu, Yao-jan Wu, "A Vision-Based Vehicle Behavior Monitoring and Warning System", Intelligent Transportation Systems Proceeding, IEEE, 2003

[40] Tetsushi Mimuro, Yoshiki Miichi, Takahiro Maemura, Kazuya Hayafune, "Functions and Devices of Mitsubishi Active Safety ASV", Intelligent Vehicles Symposium, IEEE, 1996
[41] Toshio Ito, Kenichi Yamada, "Preceding Vehicle and Road Lanes Recognition Methods for RCAS Using Vision System", Intelligent Vehicles Symposium, IEEE, 1994
[42] Toshio Ito, Kenichi Yamada, Kunio Nishioka, "Understanding Driving Situations Using a Network Model", Intelligent Vehicles Symposium, IEEE, 1995
[43] Wang, Paul P, "Advances in fuzzy theory and technology", N.C.: Bookwrights Press, Durham, 1993
[44] William C. Parnell, "A Unique Government Capability for Supporting ITS Technology Development", Intelligent Vehicles Symposium, IEEE, 1995
[45] Y. S. Kim, "Effects of Driver, Vehicle and Environment Characteristics on Collision Warning System Design", Department of Science of Technology, Linkoping Institute of Technology, 2002
[46] Yongquan Zhang, Xiqin Wang, Wei-bin Zhang, Xiaoyun Lu, Steve Shladover, "New Features of an Algorithm for a Transit Frontal Collision Warning System", Intelligent Transportation Systems Proceeding, IEEE, 2005
[47] Yajun Fang, Marcelo Mizuki, Ichiro Masaki, Berthold Hom, "TV Camera-based Vehicle Motion Detection and its Chip Implementation", Intelligent Vehicles Symposium, IEEE, 2000
[48] Yukinori Yamada, Setsuo Tokoro, Yasuhiro Fujita, "Development of a 60 GHz Radar for Rear-end Collision Avoidance", Intelligent Vehicles Symposium, IEEE, 1994
[49] Yves Guinand, Norrih Valayden. Frederic Bizoueme, Samir Bouaziz, Thierry Maurin, "Control and Validation of Expert Tasks for a Collision Avoidance System", Intelligent Vehicles Symposium, IEEE, 1996
[50] 交通部臺灣區國道高速公路局,"94高速公路年報",交通部臺灣區國道高速公路局,臺北縣,民94
[51] 林信成、彭啟峰,"Oh! Fuzzy模糊理論剖析",第三波發行,臺北市,民83
[52] 葉怡成,"應用類神經網路",儒林圖書公司,臺北市,民91
[53] 黃俊堯,"WinSock 網路程式設計之鑰",資訊人文,臺北市,民85
[54] 鄒開其、徐揚,"模糊系統與專家系統",儒林,臺北市,民82
[55] 盧炳勳、曹登發,"類神經網路理論與應用",全華,臺北市,民81
[56] 蘇木春、張孝德,"機器學習:類神經網路、模糊系統以及基因演算法則",全華,臺北市,民93
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 方吉正(1998)。教師信念研究之回顧與整合-六種研究取向。教育資料與研究,20,36-42。
2. 王恭志(2000)。教師教學信念與教學實務之探析。教育研究資訊,8(2),84-98。
3. 王儷靜(2004)。師範學院兩性教育課程授課教師教學信念之探究。教育學刊,22,129-150。
4. 方德隆(2000)。九年一貫課程學習領域之統整。課程與教學,3(1),1-18。
5. 田耐青(2002)。綜合活動學習領域教科書之再概念化。課程與教學季刊,6(1),61-72。
6. 李錫津(2002)。教師-真正決定課程的人。教師天地,212,4-7。
7. 吳清山(1989)。課程決定的理論探討。教育與心理研究,12,199-299。
8. 吳瓊洳、楊鈴絨(2004)。國民小學綜合活動學習領域教學困境之分析與展望。教育研究資訊,12(4),33-56。
9. 林海青(1996)。高中教師激勵模式與教學效能之研究 。教育與心理研究,19,59-92。
10. 林進材(2002)。教學效能的研究發展及其在教學與研究上的意義 。教育研究月刊,104,32-43。
11. 林銘山(2004)。綜合活動領域課程基本理念與實施。南縣國教,15,36-37。
12. 洪睿聲(2004)。國民小學綜合活動課程實施現況之調查—以屏東縣里港鄉塔樓國小為例。屏師體育,8,45-50。
13. 高新建(2000)。以基本能力及能力指標為本位發展統整課程。教育資料與研究,33,12-18。
14. 徐世瑜(1998)。課程與教學決定歷程中的要素分析。課程與教學季刊,1(4),1-12。
15. 高強華(1992)。教師信念研究及其在學校教育革新上的意義。國立臺灣師範大學教育研究所集刊,34,p85-114。