|
Agrawal, R., Umielinski, T. and Swami, A. Mining association rules between sets of items in large database. The 1993 ACM SIGMOD International Conference on Management of Data, 207-216.
Akrivas, G., Wallace, M., Stamou, G. andKollias, S. Context-sensitive query expansion based on fuzzy clustering of index terms. Flexible Query Answering Systems, Proceedings Lecture Notes in Arti‾cal Intelligence, 1-11, 2002.
Berry, M. J. A. and Lino, G. S. Data Mining Techniques: for Marking, Sales, and Customer Support. John Wiley and Sons, 1997.
Berzal, F., Blanco, I., Sanchez, D. and Vila, M. A. Measuring the accuracy and importance of association rules: a new framework. Intelligent Data Analysis, 6, 221-235, 2002.
Buckley, C., Salton, G., Allan, J. and Singhal, A. Automatic query expansion using SMART: TREC 3. Proceeding of Third Text Retrieval Conference, NIST Special Publication 500-225, 69-80, 1994.
Carpineto, C., De Mori, R., Romano, G. and Bigi, B. An information-theoretic ap- proach to automatic query expansion. ACM Transactions on Information Sys- tems, 19(1), 1-27, 1999.
Chandrasekaran, B., Josephson, J. R. and Benjamins, V. R. What are ontologies, and why do we need them?. IEEE Intelligent Systems and Their Applications, 14(1), 20-26, 1999.
Chau, M., Fang, X. and Liu Sheng, R. O. Analysis of the query logs of a web site search engine. Journal of the American Society for Information Science and Technology, 56(13), 1363-1376, 2005.
Chiang, H. L., Chua, E. H. and Storey, V. C. A smart web query method for retrieval of web data. Data and Knowledge Engineering, 38(1), 63-84, 2001.
Chli, M. and Dewilde, P. Internet search: subdivision-based interactive query expansion and the soft semantic web. Applied Soft Computing, 6(4), 372-383, 2006.
Croft, W. B. and Harper, D. J. Using probabilistic models of document retrieval without relevance information. Journal of Documentation, 35, 285-295, 1979.
Croft, W. B., Cook, R. and Wilder, D. Providing government information on the internet: experiences with Thomas. Proceedings of Digital Libraries '95, 19-25, 1995.
Cui, H., Wen, J. R., Nie, J. Y. and Ma, W. Y. Query expansion by mining user logs. IEEE Transactions on Knowledge and Data Engineering, 15(4), 829-840, 2003.
Dey, L., Singh, S., Rai, R. and Gupta, S. Ontology aided query expansion for retriev- ing relevant texts. Advances in Web Intelligence, Proceedings Lecture Notes in Computer Science, 126-132, 2005.
Fayyad, U., Piatetsky-Shapiro, G. and Smyth, P. The KDD process for extracting useful knowledge from volumes of data. Communications of the ACM, 39(11), 27-34, 1996.
Fayyad, U., Piatetsky-Shapiro, G. and Smyth, P. From data mining to knowledge discovery in databases. AI Magazine, 17(3), 37-54, 1996.
Frawley, W. J., Piatetsky-Shapiro, G. and Matheus, C. J. Knowledge discovery in databases - an overview. AI Magazine, 13(3), 57-70, 1992.
Gauck, S. and Smith, J. B. An expert system for automatic query reformulation. Journal of the American Society of Information Science, 44(3), 124-136, 1993.
Gordon, C. and Pathak, P. Finding information on the World Wide Web: the retrieval effectiveness of search engines. Information Processing and Management, 35(2), 141-180, 1999.
Gurber, T. R. A translation approach to portable ontology specifications. Knowledge Acquisition, 5(2), 199-200, 1993.
Hoeber, O., Yang, X. D. and Yao, Y. Y. Conceptual query expansion. Advances in Web Intelligence, Proceedings Lecture Notes in Computer Science, 190-196, 2005.
Hong, T. P., Kuo, C. S. and Chi, S. C. Mining association rules from quantitative data. Intelligent Data Analysis, 3(5), 363-376, 1999.
Kantardzic, M. Data Mining :Concepts, Models, Methods, and Algorithms. John Wiley and Sons, 2003.
Kim, D. W. and Lee K. H. A new fuzzy information retrieval system based on user preference model. The 10th IEEE International Conference on Fuzzy Systems, 1, 127-130, 2001.
Klir, G. J. and Yuan, B. Fuzzy Sets and Fuzzy Logic: Theory and Applications. Prentice Hall, 1995.
Kraft, D. H., Martin-Bautista, M. J., Chen, J. and Vila, M. A. Rules and fuzzy rules in text: concept, extraction and usage. International Journal of Approximate Reasoning, 34(2), 145-161, 2003.
Li, W. S. and Agrawal, D. Supporting web query expansion effciently using multi- granularity indexing and query processing. Data and Knowledge Engineering, 35(3), 239-257, 2000.
Martin-Bautista, M. J., Sanchez, D., Chamorro-Martinez, J., Serrano, J. M. and Vi- la, M. A. Mining web documents to find additional query terms using fuzzy association rules. Fuzzy Sets and Systems, 148(1), 85-104, 2004.
Noy, N. F. and McGuinness, D. L. Ontology development 101: a guide to creating your ‾rst ontology. Stanford Medical Informatics Technical Report, 2001.
Peat, H. P. and Willet, P. The limitations of term co-occurrence data for query expan- sion in document retrieval systems. Journal of the American Society Information Science, 42(5), 378-383, 1991.
Porter, M. F. An algorithm for suffix stripping. Program, 14(5), 130-137, 1980.
Qiu, Y. and Frei, H. P. Concept based query expansion. Proceedings of ACM SIGIR International Conference on Research and Development in Information Retrieval, 160-169, 1993.
Ricardo, B. Y. and Berthier, R. N. Modern Information Retrieval. Addison-Wesley, 2002.
Roberson, S. E. and Sparck Jones, K. Relevance weighting of search terms. Journal of the American Society for Information Science, 27(3), 129-146, 1993.
Salton, G. and Lesk, M. E. Computer evaluation of indexing and text processing. Journal of the ACM, 15(1), 8-36, 1968.
Sparck-Jones, K. Automatic Keyword Classification for Information Retrieval. But- terworth, London, 1971.
Spink, A.,Wolfram, D., Jansen, B. J. and Saracevic, T. Query expansion via conceptual distance in thesaurus indexed collections. Journal of the American Society for Information Science, 52(3), 226-234, 2001.
Tudhope, D., Binding, C., Blocks, D. and Cunliffe, D. Query expansion via conceptual distance in thesaurus indexed collections. Journal of Documentation, 62(4), 509- 533, 2006.
Vechtomova, O. and Wang, Y. A study of the effect of term proximity on query expansion. Journal of Information Science , 32(4), 324-333, 2006.
Velez, B., Weiss, R., Sheldon, M. A. and Gifford, G. K. Fast and effective query refinement. Proceedings of 20th ACM Conference on Research and Development in Information Retrieval (SIGIR'97), Philadelphia, Pennsylvania , 1997.
Xu, J. and Croft, W. B. Query expansion using local and global document analysis. Proceedings of the Nineteenth Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, 4-11, 1996.
|