|
Aggarwal, C. and Yu, P. (2001). Outlier detection for high dimensional data, Proceedings of the ACM SIGMOD International Conference on Management of Data, 30(2), 37-46, Santa Barbara, California, USA.
Agrawal, R., Gehrke, J., Gunopulos, D., and Raghavan, P. (1998). Automatic subspace clustering of high dimensional data mining applications, Proceedings of the ACM SIGMOD International Conference on Management of Data, 94-105, Seattle, Washington, USA.
Barnett, V. and Lewis, T. (1994). Outliers in Statistical Data, 3rd edition, John Wiley & Sons.
Borah, B. and Bhattacharyya, D. K. (2004). An improved sampling-based DBSCAN for Large Spatial Databases, Proceedings of International Conference on Intelligent Sensing and Information Processing, 92-96, Chennai, India.
Cherendinchenko, S. (2005). Outlier Detection in Clustering, University of Joensuu Department of Computer Science, Master Thesis.
Computer Emergency Response Term/Coordination Center, http://www.cert.org/stats/cert_stats.html#incidents
Daszykowski, M., Walczak, B., and Massart, D. L. (2001). Looking for natural patterns in data part 1. density-based approach, Chemometrics and Intelligent Laboratory Systems, 56, 83-92.
Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm, Journal of the Royal Statistical Society, Series B (Methodological), 39(1), 1-38.
Everitt, B. S. (1993). Cluster analysis, Jonhn Wiley & Sons, New York.
Giha, S., Rasstogi, R., and Shim, K. (1998). CURE: an efficient clustering algorithm for large databases, Proceedings of the 1998 ACM SIGMOD International Conference on Management of Data, 73-84, Seattle, Washington, USA.
Halkidi, M., Batiskakis, Y., and Vazirgiannis, M. (2001). Clustering algorithm and validity measures, Proceedings of the Thirteenth International Conference on Scientific and Statistical Database Management, 3-22, Edinburgh, Scotland.
Hautamäki, V., Kärkkäinen, I., and Fränti, P. (2004). Outlier Detection Using k-Nearest Neighbor Graph, Proceedings of the International Conference on Pattern Recognition, 3, 430-433, Cambrige, UK.
Hawkins, D.M. (1980). Identification of Outliers. Chapman and Hall.
Jiang, S., Song, X., Uang, H., Han, J.-J., and Li, Q.-H. (2006). A clustering-based method for unsupervised intrusion detections, Pattern Recognition Letter, 27, 802-810.
Jin, W., Tung, A., and Han, J. (2001). Mining top-n local outliers in large databases, Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 293-298, Santa Barbara, California, USA.
Kantardzic M. (2003), Data Mining – Concepts, Models, Methods and Algorithms, Wiley – Interscience.
Kaufman, L. and Rousseeuw, P.J. (1990). Finding groups in data: an Introduction to cluster analysis, John Wiley & Sons
Knoor, E., Ng, R., and Zamar, R. (2001). Robust space transformation for distance-based operations, Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 126-135, Santa Barbara, California, USA.
Knorr, E., and Ng, R. (1998). Algorithms for mining distance-based outliers in large datasets, Proceedings of the 24th VLDB Conference, 392–403, New York, USA.
MacQueen, J. (1967). Some methods for classification and analysis of multivariate observation, Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, 1, 281-297, Berkeley, California, USA.
Novikov, D., Yampolskiy, R.V., and Reznik, L. (2006). Anomaly detection based intrusion detection, Proceedings of the Third International Conference on Information Technology: New Generations (ITNG’06), 420-425, Las Vegas, Nevada, USA.
Paquet, E. (2004). Exploring anthropometric data through cluster analysis, Published in Digital Human Modeling for Design and Engineering, Seattle, Washington, USA.
Ramaswamy, S., Rastogi, R., and Shim, K. (2000). Efficient algorithms for mining outliers from large data sets, Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, 29(2), 427-438, Dallas, Texas, USA.
Tung, A., Hou, J., and Han, J. (2001). Spatial clustering in the presence of obstacles, Proceedings of the 17th International Conference on Data Engineering, 359-367, Heidelberg, Germany.
Wang, W., Yang, J., and Muntz, R. (1997). Sting: a Statistical information grid approach to spatial data mining, Proceedings of the 23rd International Conference on Very Large Data Bases (VLDB), 186-195, Athens, Greece.
Williams, G., Baxter, R., He, H., Hawkin, S., and Gu, L. (2002). A comparative study for RNN for outlier detection in data mining, Proceedings of the 2nh IEEE International Conference on Data Mining, 709-712, Maebashi TERRSA,Maebashi City, Japan.
Xu, X., Ester, M., Kriegel, H.-P., and Sander, J. (1998). A distribution-based clustering algorithm for mining in large spatial databases, Proceedings of the 14th International Conference on Data Engineering, 342-331, Orlando, Florida, USA.
Yamanishi, K. and Takeuchi, J. (2001). Discovering outlier filtering rules from unlabeled data: combining a supervised learner with and unsupervised learner, Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 389-394, Santa Barbara, California, USA.
|