跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2025/01/18 03:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄭安欽
研究生(外文):An-Chin Cheng
論文名稱:新材料之技術預測研究∼以奈米陶瓷粉末為例
論文名稱(外文):A research of technology forecasting for the new materials development~An example of nano ceramic powders
指導教授:陳家榮陳家榮引用關係陳忠仁陳忠仁引用關係
指導教授(外文):Chia-Yon ChenChung-Jen Chen
學位類別:博士
校院名稱:國立成功大學
系所名稱:資源工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:86
中文關鍵詞:專利分析Bibliometrics成長曲線FAHP技術預測
外文關鍵詞:patent analysisBibliometricsgrowth curve methodFAHPtechnology forecasting
相關次數:
  • 被引用被引用:5
  • 點閱點閱:653
  • 評分評分:
  • 下載下載:174
  • 收藏至我的研究室書目清單書目收藏:0
在現今變化快速的環境中,新材料已成為公司或是企業相當重要的獲利與成長之重要因子。然而,在新材料的技術發展中,卻充滿著許多的不確定性,故藉由評選出適當的新材料技術預測方法,便漸形日益重要。選擇一個好的技術預測方法,將較能得到一個有用且準確的預測結果。
因此,本研究的主要目的即是利用FAHP方法,探究在新材料技術預測方法評選上的主要評估準則與其較適切之技術預測方法。另外,本研究將以奈米陶瓷粉末為例,深入探討其新材料之技術預測發展情形,尤其在新材料的技術應用上。以下為本研究主要的發現與結論:
1. 新材料技術預測方法評選上的主要評估準則分別為:「資料的可獲得性」、「資料的有效性」、「技術發展的可預測性」、「技術的相似性」、「方法的適應性」、「操作的簡易性」、與「執行的成本」等七項。而根據本研究的結果顯示,在七個評估準則中,以資料的有效性最為重要,其次依序分別為方法的適應性與技術發展的可預測性。
2. 根據專家的評選與FAHP方法,評選出「Delphi法」、「個案研究法」、以及「成長曲線法」,分別依序為前三名最受喜愛使用於新材料領域上的技術預測方法。此外,藉由此評選過程中發現,FAHP方法是個可以提供給公司政策決策者或是研究人員於評選新材料技術預測方法時,有用的評估決策工具。
3. 新材料∼奈米陶瓷粉末目前仍然處於技術生命週期上的萌芽期或是剛進入成長期的初始階段。藉由本研究中的成長曲線法及專家意見法之結果顯示,奈米陶瓷粉末的技術發展要開始進入技術生命週期之成熟期的時間點,皆將落在2010年以後才會見到。
4. 由於奈米級陶瓷粉末的應用分佈情形,相當類似於傳統的陶瓷粉末。以及由成長曲線方法的結果顯示,當傳統的陶瓷粉末將於2011年附近逐漸進入技術生命週期成長緩慢的飽和成熟階段;而奈米陶瓷粉末卻才剛要於2012~2014年進入快速成長的階段。因此,我們可以推斷,在傳統的陶瓷粉末與奈米級的陶瓷粉末技術應用上,存在著部分比例取代之關係;而本研究之專家意見結果亦有著相同顯示之情形。
5. 在本研究中所使用的Bibliometrics 方法和專利分析,提供了一個聯結科學與技術行為的簡單卻有效率之工具,並且能提供量化與具歷史性的資料給技術預測人員,從事相關預測。而此對具有較少歷史資料的研究領域,如新材料領域等,更有實質上之助益。
The main purposes of this study are to perceive the critical evaluation criteria and to evaluate the technology forecasting methods for development of new materials by FAHP approach. Furthermore, we would adopt nanosized ceramic powders as the object of study in new material fields and investigate the technology forecasting of those materials by expert opinion and growth curve method through bibliometrics and patent analysis.
Five major conclusions in our study can be made as follows:
1. Seven criteria were identified for evaluating the new materials development including data availability, data validity, technology development predictability, technology similarity, method adaptability, ease of operation, and implementation cost. The results of the evaluation criteria indicate that among the seven evaluation criteria, the criterion data validity has the highest weight, followed by the criteria method adaptability and technology development predictability in the second and third place, respectively.
2. Based on the subjective judgments made by experts, this comparative study shows that Delphi method, the case study method and growth curve method are the top three most favorable technology forecasting methods in the field of new materials development. In addition, the application of FAHP method could provide an avenue for corporation policy makers and researchers to evaluate the technology forecasting methods for new materials development.
3. The technologies of nanosized ceramic powders were still emerging technologies or in the initial growth periods of technological life cycles nowadays, and the both results through growth curve method and expert opinion method showed the estimated time for the technological life cycles of nanosized ceramic powers beginning from growth periods into maturity periods were over 2010 years.
4. Owing to the distributions of applications of technology for nanosized ceramic powders were similar to traditional ceramic powders. And the results from the growth curve method, that were represented traditional ceramic powder would attain the slow growth period (maturity period) of technological life cycle in 2011 years, but the nanosized ceramic powder would roughly simultaneously arrive the fast growth period in 2012-2014 years. Hence, we could boldly conceive that there were parts of substitutions of applications between traditional and nanosized ceramic powders. Besides, the results of expert opinion expressed the similar consequences.
5. The bibliometrics and patent analysis were proposed as the simple and efficient tools to link the science and technology activities and to obtain quantitative and historical data for helping researchers in technology forecasting, especially in rare historical data available fields, such as the new materials fields.
Chinese Abstract .............................................................I
English Abstract............................................................III
Acknowledgements..............................................................V
Table of Contents............................................................VI
Table Index................................................................VIII
Figure Index.................................................................IX
Ch1.Introduction ............................................................ 1
1.1 Research background and purpose ...................................... 1
1.2 Research content items ................................................. 2
1.3 Research method and procedures ........................................ 3
Ch2. Literature review ................................................. 6
2.1 The literatures about evaluating the technology forcasting methods...... 6
2.2 The related applications of technology forecasting method .............. 13
Ch.3 Evaluation of the technology forecasting methods for the new
materials development.................................................. 21
3.1 The Fuzzy Analytic Hierarchy Process ................................... 21
3.2 Research design......................................................... 26
3.3 Results and discussion.................................................. 31
3.4 Conclusions............................................................. 35
Ch4. The technology forecasting of new materials: nanosized ceramic powders. 37
4.1 Introduction for nanosized ceramic powders market ...................... 37
4.2 The study by the growth curve method ................................... 41
4.3 The study by the expert opinion method.................................. 66
4.4 Conclusions............................................................. 68
Ch5. Conclusions and discussions.................. ......................... 69
5.1 Conclusions............................................................. 69
5.2 Discussions............................................................. 71
References ................................................................. 73
Appendixes Ⅰ............................................................... 79
Appendixes Ⅱ................................................................86
[1] J. P. Martino, Technological Forecasting for Decision Making (3 rd ed.), New York: McGraw-Hill, 1993.
[2] Business Communications Co., Inc., Advanced ceramic powders and nano ceramic powders, 2003.
[3] F. Ghotb, L. Warren, A case study comparison of the analytic hierarchy process and a fuzzy decision methodology, The Engineering Economist 40 (1995) 233-247.
[4] C. K. Kwong, and H. Bai, A fuzzy AHP approach to the determination of importance weights of customer requirements in quality function deployment, Journal of Intelligent Manufacturing 13 (2002) 367-377.
[5] Y. G. Hsu, G. H. Tzeng, and J. Z. Shyu, Fuzzy multiple criteria selection of government-sponsored frontier R&D projects, R&D Management 33 (2003) 539-551.
[6] C. Kahraman, U. Cebeci, and D. Ruan, Multi-attribute comparison of catering service companies using fuzzy AHP: The case of Turkey, International Journal of Production Economics 87 (2004) 171-184.
[7] D. Gabor, Inventing the Future, New York: Alfred A. Knopf, Inc., 1964.
[8] R. R. Levary, D. Han, Choosing a technological forecasting method, Industrial Management 37 (1995) 14-18.
[9] J. P. Martino, A review of selected recent advances in technological forecasting, Technological Forecasting and Social Change 70 (2003) 719-733.
[10] L. D. Frank, An analysis of the effect of the economic situation on modeling and forecasting the diffusion of wireless communications in Finland, Technological Forecasting and Social Change 71 (2004) 391-403.
[11] S. C. Bhargava, A generalized form of the Fisher-Pry model of technological substitution, Technological Forecasting and Social Change 49 (1995) 27-33.
[12] H. Ernst, The Use of Patent for Technological Forecasting: The Diffusion of CNC-Technology in the Machine Tool Industry, Small Business Economics 9 (1997) 361-381.
[13] P. J. Palmer, D. J. Williams, An analysis of technology trends within the electronics industry, Microelectronics International 17 (2000) 13-16.
[14] M. Bengisu, R. Nekhili, Forecasting emerging technologies with the aid of science and technology databases, Technological Forecasting and Social Change 73 (2006) 835-844.
[15] M.J. Norton, Introductory Concepts in Information Science, New Jersey, 2001.
[16] R. S. Campbell, Patent Trends as a Technological Forecasting Tool, World Patent Information 5 (1983) 137–143.
[17] S. Morris et al., DIVA: a visualization system for exploring document databases for technology forecasting, Computers & Industrial Engineering1 43 (2002) 841–862
[18] R. J. Watts, A. L. Porter, Innovation forecasting, Technological Forecasting and Social Change 56 (1997) 25-47.
[19] R. J. Watts, A. L. Porter, R&D cluster quality measures and technology maturity, Technological Forecasting & Social Change 70 (2003) 735–758
[20] Daim et al., Forecasting emerging technologies: use of bibliometrics and patent analysis, Technological Forecasting and Social Change 73 (2006) 981–1012.
[21] J. Y. Teng, G. H. Tzeng, Fuzzy multicriteria ranking of urban transportation investment alternative, Transportation Planning and Technology 20 (1996) 15-31.
[22] R. Zhau, R. Goving, Algebraic characteristics of extended fuzzy numbers, Information Science 54 (1991) 103-130.
[23] E. Williams, Forecasting material and economic flows in the global production chain for silicon, Technological Forecasting and Social Change 70 (2003) 341-357.
[24] L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965) 338-353.
[25] D. Gabor, Inventing the Future, New York: Alfred A. Knopf, 1964.
[26] T. Shin, Using Delphi for long-range technology forecasting, and assessing direction of future R&D activities, Technological Forecasting and Social Change 58 (1998) 125-154.
[27] W. E. Halal, M. D. Kull, A. Leffmann, The George Washington University forecast of emerging technologies, Technological Forecasting and Social Change 59 (1998) 89-110.
[28] P. C. Chang, C. P. Wang, B. J. C. Yuan, F. T. Chuang, Forecast of development trends in Taiwan’s machinery industry, Technological Forecasting and Social Change 69 (2002) 781-802.
[29] P. Ronde, Delphi analysis of national specificities in selected innovation areas in Germany and France, Technological Forecasting and Social Change 70 (2003) 419-448.
[30] P. Young, Technological growth curves – a comparison of forecasting models, Technological Forecasting and Social Change 44 (1993) 375-389.
[31] N. Meade, T. Islam, Technological forecasting model Selection – Model stability, and combining models, Management Science 44 (1998) 1115-1130.
[32] R. L. Hirsch, Reorienting an industrial research laboratory, Research Management 29 (1986) 26-31.
[33] D. N. Fuller, W. T. Scherer, T. A Pomroy, An exploration and case study of population classification for managed healthcare within a state-based modeling framework, International Journal of Healthcare Technology & Management 5 (2003) 123-132.
[34] C. Hjelkrem, Forecasting with limited information: A study of the Norwegian ISDN access market, The Journal of Business Forecasting Methods & Systems 20 (2001) 18-24.
[35] M. Kohlbeck, Reporting earnings at summer Technology-A capstone case involving intermediate Accounting Topics, Issues in Accounting Education 20 (2005) 195-213.
[36] G. Barbiroli, Towards a definition and a dynamic measure of strategic technology, Technovation 12 (1992) 285-297.
[37] L. Hirschhorn, Scenario writing: a developmental approach, American planning association, Journal of the American Planning Association 46 (1980) 172-180.
[38] S. Steven,P. Ziamou, The essentials of scenario writing, Business Horizons 44 (2001) 25-31.
[39] P. Schwartz, The art of the long view, Director 45 (1992) 78-82.
[40] C. J. Chen, C. C. Huang, A multiple criteria evaluation of high-tech industries for the science-based industrial park in Taiwan, Information and Management 41 (2004) 839-851.
[41] K. L. Poh, B. W. Ang, and F. Bai, A comparative analysis of R&D project evaluation methods, R&D Management 31 (2001) 63-75.
[42] F. Narin, D. Olivastro, and K. A. Stevens, Bibliometrics— Theory, Practice and Problems, Evaluation Review 18 (1994) 65-76.
[43] S. W. Cunningham, The content evaluation of British scientific research, Ph.D. thesis, UK, 1997.
[44] E. Garfield, et al., The Metric of Science: The advent of science indicators, New York, 1978.
[45] S. Liu, J. Shyu, Strategic planning for technology development with patent analysis, Int. J. Technol. Manag. 13 (1997) 661–680.
[46] B. Abraham, S. Morita, Innovation assessment through patent analysis, Technovation 21 (2001) 245–252.
[47] A. L. Porter, et al., Forecasting and Management of Technology, Wiley, New York, 1991.
[48] P. S. Meyer, J. W. Yung, and J. H. Ausubel, A primer on logistic growth and substitution: The mathematics of the Logtlet Lab software, Technological Forecasting and Social Change 61 (1999) 247-271.
[49] A. Porter et al., Technological Futures Analysis, Technology Futures Analysis Methods Working Group, 2005.
[50] M. L. Miller, Society technology and material culture, 2006.
[51] B. M. Caruta, New developments in material science research, 2006.
[52] E. Balabanova, and I. Dragieva, Nanoscience & nanotechnology: nanostructured material application & innovation transfer, 2001.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top