|
1. Wolfram Wersing, “ Microwave Ceramics for Resonator and Filters”, Solid State & Mat. Sci., 1, 715-731 (1996). 2. A. S. Bhalla, Ruyan Guo, and Rustum Roy, “ The Perovskite Structure- a Review of its Role in Ceramic Science and Technology,” Mat. Res. Innovat., 4, 3-26 (2000). 3. H. Tamura, “Microwave Dielectric Losses Caused by Lattice Defects,” J. Euro. Ceram. Soc., 26, 1775-1780 (2006). 4. M. A. Akbas and P. K. Davies, “Ordering-Induced Microstructures and Microwave Dielectric Properties of the Ba(Mg1/3Nb2/3)O3 – BaZrO3 system,” J. Am. Ceram. Soc., 81, [3] 670-76 (1998). 5. L. Chai, M. A. Akbas, P. K. Davies and J. B. Parise, “Cation ordering transformation in Ba(Mg1/3Ta2/3)O3 – BaZrO3 Perovskite Solid Solutions,” Mater. Res. Bull., 32, [9] 1261-69 (1997). 6. L. Chai and P. K. Davies, “Formation and Structural Characterization of 1:1 Ordered Perovskite in the Ba(Zn1/3Ta2/3)O3 – BaZrO3 System,” J. Am. Ceram. Soc., 80, [12] 3193-98 (1997). 7. J. Chen, H. M. Chan and M. P. Harmer, “ Ordered Structure and Dielectric Properties of Undoped and La/Na-Doped Pb(Mg1/3Nb2/3)O3,” J. Am. Ceram. Soc., 72, [4] 593-98 (1989). 8. M. A. Akbas and P. K. Davies, “ Cation Ordering Transformation in the Ba(Zn1/3Nb2/3)O3 – La(Zn2/3Nb1/3)O3 System,” J. Am. Ceram. Soc., 81, [4] 1061-64 (1998). 9. C. J. Howard and H. T. Stokes, “Structures and Phase Transition in Perovskites- a Group-theoretical Approach,” Acta.Cryst. A61, 93-111 (2005). 10. A. M. Glazer, “ The Classification of Tilted Octahedra in Perovskite,” Acta Cryst, B28, 3384-92 (1972). 11. A. M. Glazer, “ Simple Ways of Determining Perovskite Structure,” Acta Cryst, A31, 756-62 (1975). 12.D. I. Woodward and I. M. Reaney, “Electron Diffraction of Tilted Perovskite.,”Acta Cryst. B61, 387-399 (2005). 13. H. J. Lee, H. M. Park, Y. W. Song, Y. K. Cho, J. h. Paik, S. Nahm, and J. D. Byun, “ Two Types of Domain Boundaries in Lanthanum Magnesium Niobate,” J. Am. Ceram. Soc., 83, [11] 2875-77 (2000). 14. H. J. Lee, H. M. Park, Y. K. Cho, H. Ryu, J. H. Paik, S. Nahm, and J. D. Byun, “ Microstructure of Lanthanum Magnesium Niobate at Elevate Temperature,” J. Am. Ceram. Soc., 83, [4] 943-45 (2000). 15. H. J. Lee, H. M. Park, Y. W. Song, Y. K. Cho, S. Nahm, and J. D. Byun, “Microstructure and Dielectric Properties of Barium Strontium Magnesium Niobate,” J. Am. Ceram. Soc., 84, [9] 2105-10 (2001). 16. H. J. Lee, H. M. Park, Y. K. Cho, H. Ryu, Y. W. Song, J. H. Paik, S. Nahm, and J. D. Byun, “ Microstructural Observations in Calcium Magnesium Niobate,” J. Am. Ceram. Soc., 83, [9] 2267-72 (2000). 17. I. M. Reaney, E. L. Colla and N. Setter, “ Dielectric and Structural Characteristics of Ba- and Sr-based Complex Perovskite as a Function of Tolerance Factor,” Jpn. J. Appl. Phys., 33, 3984-90 (1994). 18. P. L. Wise, I. M. Reaney, W. E. Lee, T. J. Price, D. M. Iddles and D. S. Cannell, “ Structure-microwave Property Relations of Ca and Sr titanates,” J. Euro. Ceram. Soc., 21, 2629-32 (2001). 19. P. K. Davies, J. Tong and T. Negas, “Effect of Ordering-Induced Domain Boundaries on Low-Loss Ba(Zn1/3Ta2/3)O3 – BaZrO3 Perovskite Microwave Dielectrics,” J. Am. Ceram. Soc., 80, [7] 1727-40 (1997). 20. S.Y. Noh, M. J. Yoo, S. Nahm, C. H. Choi, H. M. Park and H. J. Lee, “ Effect of structural Changes on the Microwave Dielectric Properties of Ba(Zn1/3Nb2/3)O3 Ceramics,” Jpn. J. Appl. Phys., 41, 2978-81 (2002). 21. R. I. Scott, M. Thomas and C. Hampson, “Development of low cost, high performance Ba(Zn1/3Nb2/3)O3 based materials for microwave resonator application,” J. Euro. Ceram. Soc., 23, 2467-71 (2003). 22. L.C. Tien, C. C. Chou and D. S. Tsai, “Ordered Structure and Dielectric Properties of Lanthanum-Substituted Ba(Mg1/3Ta2/3)O3,” J. Am. Ceramic. Soc., 83, [8] 2074-78 (2000). 23. M. Onoda, J. Kuwata, K. Kaneta, K. Toyama, and S. Nomura, “Ba(Zn1/3Nb2/3)O3- Sr(Zn1/3Nb2/3)O3 Solid-Solution Ceramics with Temperature-Stable High Dielectric Constant and Low Microwave Loss” Jpn. J. Appl. Phys., 21 [12] 1707-10 (1982). 24. E. L. Colla, I. M. Reaney and N. Setter, “ Effect of Structural Changes in Complex Perovskite on the Temperature Coefficient of the Relative Permittivity,” J. Appl. Phys., 74, [5] 3414-25 (1993). 25. H. S. Park, K. H. Yoon and E. S. Kim, “ Relationship Between the Bond Valence and the Temperature Coefficient of Resonant Frequency in the Complex Perovskite ( Pb1-x Cax)[Fe0.5(Nb1-y Ta y)0.5]O3,” J. Am. Ceram. Soc., 84, [1] 99-103 (2001). 26. S. Y. Cho, H. J. Youn, H. J. Lee, and K. S. Hong, “Contribution of Structure to Temperature Dependence of Resonant Frequency in the (1-x)La(Zn1/2Ti1/2)O3- xATiO3 (A = Ca, Sr) System,” J. Am. Ceram. Soc., 84 [4] 753-58 (2001). 27. Shannon, R. D., Dielectric polarizabilities of ions in oxides and fluorides. J. Appl. Phys., 1993, 73, 348-366. 28. I. G. Siny, R. Tao, R. S. Katiyar, R. Guo, and A. S. Bhalla, “Raman Spectroscopy of Mg-Ta Order-Disorder in Ba(Mg1/3Ta2/3)O3,” J. Phys. Chem. Solids., 59 [2] 181-95 (1998). 29. B. K. Kim, H. Hamaguchi, I. T. Kim, and K. S. Hong, “Probing of 1:2 Ordering in Ba(Ni1/3Nb2/3)O3 and Ba(Zn1/3Nb2/3)O3 Ceramics by XRD and Raman Spectroscopy,” J. Am. Ceram. Soc., 78 [11] 3117-20 (1995). 30. C. T. Chia, Y. C. Chen, H. F. Cheng and I. N. Lin “Correlation of microwave properties and normal vibration modes of xBa(Mg1/3Ta2/3)O3-(1-x)Ba(Mg1/3Nb2/3)O3 ceramics: I. Raman spectroscopy”J. Appl. Phys. 94, 3360 (2003). 31. Tamura, D. A. Sagala and K. Wakino, “ Lattice vibration of Ba(Zn1/3Ta2/3)O3 crystal with ordered perovskite structure.,” Jpn. J. Appl. Phys., 25 [6] 787-791 (1986). 32. S. Kawashima, M. Nishida, I. Ueda, and H. Ouchi, “Ba(Zn1/3Ta2/3)O3 Ceramics with Low Dielectric Loss at Microwave Frequencies,” J. Am. Ceram. Soc., 66 [6] 421-23 (1983). 33. K. Endo, K. Fujimoto, and K. Murakawa, “ Dielectric Properties of Ceramics in Ba(Co1/3Nb2/3)O3- Ba(Zn1/3Nb2/3)O3 Solid Solution,” J. Am. Ceram. Soc., 70 [9] C-215-18 (1987). 34. S. B. Desu and H. M. O’Bryan, “Microwave Loss Quality of BaZn1/3Ta2/3O3 Ceramics,” J. Am. Ceram. Soc., 68 [10] 546-51 (1985). 35 H. Tamura, T. Konoike, Y. Sakabe, and K. Wakino, “Improved High Q Dielectric Resonator with Complex Perovskite Structure,” J. Am. Ceram. Soc., 67 [4] C59-61 (1984). 36. X. M. Chen, D. Liu, R. Z. Hou, X. Hu, and X. Q. Liu, “Microstructures and Microwave Dielectric Characteristics of Ca(Zn1/3Nb2/3)O3 Complex Perovskite Ceramics,” J. Am. Ceram. Soc., 87 [12] 2208-12 (2004). 37. I. M. Reaney, P. L. Wise, I. Qazi, C. A. Miller, T. J. Price, D. S. Cannell, D. M. Iddles, M. J. Rosseinsky, S. M. Moussa, M. Bieringer, L. D. Noailles, and R. M. Ibberson, “Ordering and Quality Factor in 0.95BaZn1/3Ta2/3O3 -0.05SrGa1/2Ta1/2O3 Production Resonators,” J. Euro. Ceram. Soc., 23, 3021-34 (2003). 38. I. M. Reaney, Y. Iqbal, H. Zheng, A. Feteira, H. Hughes, D. Iddles, D. Muir, and T. Price, “Order-Disorder Behaviour in 0.9Ba([Zn0.60Co0.40]1/3Nb2/3)O3 -0.1Ba(Ga0.5Ta0.5)O3 Microwave Dielectric Resonator,” J. Euro. Ceram. Soc., 25, 1183-89 (2005). 39. S. Janaswamy, G. S. Murthy, E. D. Dias, and V. R. K. Murthy, “Structural Analysis of BaMg1/3(Ta,Nb)2/3O3 Ceramics,” Mater. Lett., 55, 414-19 (2002). 40. S. Kamba, H. Hughes, D. Noujni, S. Surendran, R. C. Pullar, P. Samoukhina, J. Petzelt, R. Freer, N. M. Alford, and D. M. Iddles, “Relationship Between Microwave and Lattice Vibration Properties in Ba(Zn1/3Nb2/3)O3-based Microwave Dielectric Ceramics,” J. Phys. D.: Appl. Phys., 37 1980-86 (2004). 41. S. J. Webb, J. Breeeze, R. I. Scott, D. S. Cannell, D. M. Iddles, and N. M. Alford “Raman Spectroscopic Study of Gallium-Doped Ba(Zn1/3Ta2/3)O3,” J. Am. Ceram. Soc., 85 [7] 1753-56 (2002). 42. A. Dias, V. S. T. Ciminelli, F. M. Matinaga, and R. L. Moreira, “Raman Scattering and X-ray Diffraction Investigations on Hydrothermal Barium Magnesium Niobate Ceramics,” J. Euro. Ceram. Soc., 21, 2739-44 (2001). 43. R. L. Moreira, F. M. Matinaga, and A. Dias, “Raman-Spectroscopic Evaluation of the Long-Range Order in Ba(B'1/3B"2/3)O3 Ceramics,” Appl. Phys. Lett., 78 [4] 428-30 (2001). 44. I. M. Reaney, I. Qazi, and W. E. Lee, “Order-Disorder Behavior in Ba(Zn1/3Ta2/3)O3,” J. Appl. Phys., 88 [11] 6708-14 (2000). 45. I. Qazi, I. M. Reaney, and W. E. Lee, “Order-Disorder Transition in Ba(Zn1/3Ta2/3)O3,” J. Euro. Ceram. Soc., 21, 2613-16 (2001). 46. K. Wakino, T. Nishikawa, Y. Ishikawa, and H. Tamura, “Dielectric Resonator Materials and Their Applications for Mobil Communication Systems,” Br. Ceram. Trans. J., 89 [2] 39-43 (1990). 47. R. J. Cava, “Dielectric Materials for Applications in Microwave Communications,” J. Mater. Chem., 11, 54-62 (2001). 48. A. S. Bhalla, R. Guo, and R. Roy, “The Perovskite Structure- a Review of its Role in Ceramic Science and Technology,” Mat. Res. Innovat., 4, 3-26 (2000). 49. Z. Xu, S. M. Gupta, D. Viehland, Y. Yan, and S. J. Pennycook, “Direct Imaging of Atomic Ordering in Undoped and La-Doped Pb(Mg1/3Nb2/3)O3,” J. Am. Ceram. Soc., 83 [1] 181-88 (2000). 50. P. M. Woodward, “Octahedral Tilting in Perovskites. Ⅰ. Geometrical Considerations,” Acta Cryst., B53, 32-43 (1997). 51. P. M. Woodward, “Octahedral Tilting in Perovskites. Ⅱ.Structure Stabilizing Forces,” Acta Cryst., B53, 44-66 (1997). 52. H. J. Lee, H. M. Park, Y. K. Cho, H. Ryu, J. H. Paik, S. Nahm, and J. D. Byun, “Dielectric and Structural Characteristics in Barium Lanthanum Magnesium Niobate,” J. Am. Ceram. Soc., 83 [4] 937-42 (2000). 53. V. Sivasubramanian, V. R. K. Murthy, and B. Viswanathan, “Microwave Dielectric Properties of Certain Simple Alkaline Perovskite Compounds as a Function of Tolerance Factor,” Jpn. J. Appl. Phys., 36, 194-97 (1997). 54. O. Muller and R. Roy, “The Major Ternary Structural Families,” Springer Verlag, Berlin, P.5 (1974). 55. F. Jiang, S. Kojima, C. Zhao, and C. Feng, “Chemical Ordering in Lanthanum-Doped Lead Magnesium Niobate Relaxor Ferroelectrics Probed by A1g Raman Mode,” App. Phys. Lett., 79 [24] 3938-40 (2001). 56. C. S. Park, J. H. Paik, S. Nahm, Y. S. Kim, H. J. Lee, H. M. Park, H. Ryu, and J. D. Byun, “Crystal Structure of A+2(Mg1/3Nb2/3)O3 (A+2 = Sr+2, Ca+2) Ceramics,” J. Mater. Sci. Lett., 18, 691-94 (1999). 57.H. J. Lee, H. M. Park, Y. K. Cho, Y. W. Song, S. Nahm, and J. D. Byun, “Microstructure Characterizations in Calcium Magnesium Niobate,” J. Am. Ceram. Soc., 84 [7] 1632-36 (2001). 58. A. C. Larson, and R. B. Von Dreele, “General structure analysis system (GSAS),” Los Alamos National Laboratory, Los Alamos, (1988). 59. T. Nagai, M. Sugiyama, M. Sando, and K. Niihara, “Structural Changes in Ba(Sr1/3Ta2/3)O3-Type Perovskite Compounds upon Tilting of Oxygen Octahedra,” Jpn. J. Appl. Phys., 36, 1146-53 (1997). 60. C. T. Lee, Y. C. Lin, C. Y. Huang, C.Y. Su, and C. L. Hu, “Structural and Dielectric Characteristics of Barium Lanthanum Zinc Niobate,” J. Am. Ceram. Soc., 89 [12] 3662-68 (2006). 61. I I. N. Jawahar, P. Mohanan, and M. T. Sebastian, “A5B4O15 (A = Ba, Sr, Mg, Ca, Zn; B = Nb, Ta) Microwave Dielectric Ceramics,” Mater. Lett., [57] 4043-4048 (2003). 62. S. Kamba, J. Petzelt, D. Haubrich, P. Vanek, P. Kuzel, I. N. Jawahar, M. T. Sebastian, and P. Mohanan, “High frequency dielectric properties of A5B4O15 microwave ceramics,” J. Appl. Phys., 89 [7] 3900-3906 (2001). 63. I. N. Jawahar, M. T. Sebastian and P. Mohanan, “Microwave dielectric properties of Ba5-xSrxTa4O15, Ba5NbxTa4-xO15 and Sr5NbxTa4-xO15 ceramics,” Mater. Sci. Eng., B106, 207-212 (2004). 64. F. Galasso and L. Katz, “Preparation and Structure of Ba5Ta4O15 and Related Compounds,” Acta Cryst., [14] 647-650 (1961). 65. N. E. Massa, S. Pagola and Paul Carbonio, “ Far-infrared Reflectivity and Raman Spectra of Ba5Nb4O15,” Phys. Rev. B53 [13] 8148-50 (1996). 66. J. Shannon and L. Katz, “A refinement of the structure of barium tantalum oxide, Ba5Ta4O15,” Acta Cryst., B26, 102-105 (1970). 67. S. Pagola, R. E. Carbonio, M. T. Fernandez-Diaz and J. A. Alonso, “Crystal structure refinement of Mg5Nb4O15 and Mg5Ta4O15 by Rietveld analysis of neutron powder diffraction data,” J. Solid State Chem., 137, 359-364 (1998). 68. D. W. Kim, H. J. Youn, K. S. Hong and C. K. Kim, “Microwave Dielectric Properties of (1-x)Ba5Nb4O15-xBaNb2O6 Mixtures,” Jpn. J. Appl. Phys., [41] 3812-3816 (2002). 69. D.W. Kim, J.R. Kim, S.H. Yoon, K.S. Hong and C. K. Kim, “Microwave Dielectric Properties of Low-Fired Ba5Nb4O15”, J. Am. Ceram. Soc., 85 [11] 2759-2762 (2002). 70. D.W. Kim, K.S. Hong, C.S. Yoon and C. K. Kim, “Low-temperature Sintering and Microwave Dielectric Properties of Ba5Nb4O15-BaNb2O6 Mixture for LTCC Application,” J. Euro. Ceram. Soc., [23] 2597-2601 (2003). 71. D. W. Kim, D. K. Kwon, K. S. Hong and D. J. Kim, “Atmospheric dependence on dielectric loss of 1/6 Ba5Nb4O15-5/6BaNb2O6 ceramics,” J. Am. Ceram. Soc., 86[5] 795-799 (2003). 72. H. Sreemoolanadhan, M.T. Sebastian and P. Mohanan, “High permittivity and low loss ceramics in the BaO-SrO-Nb2O5 system,” Mater. Res. Bull., 30[6] 653-658 (1995). 73. R. Ratheesh, H. Sreemoolanadhan, and M. T. Sebastian, “Vibrational Analysis of Ba5-xSrxNb4O15 Microwave Dielectric Ceramic Resonators,” J. Solid State Chem., 131, 2-8 (1997). 74. G. Blasse and G. P. M. Van Den Heuvel, “Vibration spectra and structural considerations of compounds NaLnTiO4,” J. Solid State Chem., 10, 206-210 (1974). 75. C. J. Lee, G., Pezotti, S. H. Kang, D. J. Kim and K. S. Hong, “Quantitative analysis of lattice distortion in Ba(Zn1/3Ta2/3)O3 microwave dielectric ceramics with added B2O3 using Raman spectroscopy,” J. Euro. Ceram. Soc., 26, 1385-1391 (2006). 76. T. Nagai, M. Sugiyama, M. Sando and K. Niihara, “Anomaly in the infrared active phono modes and its relationship to the dielectric constant of (Ba1-xSrx)(Mg1/3Ta2/3)O3 compound,” Jpn. J. Appl. Phys., 35, 5163-5167 (1996). 77. M. Weiden, A. Grauel, J. Norwig, S. Horn and F. Steglich, “Crystalline structure of the strontium niobates Sr4Nb2O9 and Sr5Nb4O15,” J. Alloys Compounds, 218, 13-16 (1995). 78. C. D. Whiston and A. J. Smith, “Double oxides containing niobium or tantalum. II. System involving strontium or barium,” Acta Crystallogr., 23, 82 (1967). 79. N. Teneze, D. Mercurio, G. Trolliard, and J. C. Champarnaud-Mesjard, “ Reinvestigation of the crystal structure of pentastrontium tetraniobate, Sr5Nb4O15,” Z. Kristallogr. NICS, 215,11-12 (2000). 80. C. Vineis, P. K. Davies, T. Negas, and S. Bell, “Microwave dielectric properties of hexagonal perovskites,” Mater. Res. Bull., 31 [5] 431-437 (1996). 81. R. S. Roth and J. L. Waring, J. Research Natl. Bur. Standards, 65A [4] 341 (1961). 82. S. H. Ra, and P. P. Phule, “Processing and microwave dielectric properties of barium magnesium tantalate ceramics for high-quality-factor personal communication service filters,” J. Mater. Res., [14] 4259 (1999).
|