跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2024/12/08 04:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李俊德
研究生(外文):CHUN-TE LEE
論文名稱:複合鈣鈦礦型結構之鈮氧化物陶瓷的結構與微波介電性質之關係
論文名稱(外文):Structure-Microwave Dielectric Property Relations in Some Niobate Ceramics of Complex Perovskite Structure
指導教授:黃啟原黃啟原引用關係
指導教授(外文):CHI-YUEN HUANG
學位類別:博士
校院名稱:國立成功大學
系所名稱:資源工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:227
中文關鍵詞:微波介電陶瓷序化鈣鈦礦非序化
外文關鍵詞:disorderperovskitedielectricceramicordermicrowave
相關次數:
  • 被引用被引用:4
  • 點閱點閱:544
  • 評分評分:
  • 下載下載:71
  • 收藏至我的研究室書目清單書目收藏:1
A(B'1/3B"2/3)O3-type (A= Ba+2, Ca+2; B' = Mg+2 , Zn+2; B" = Nb+5, Ta+5)複合鈣鈦礦型結構的化合物,具有B位置陽離子序化的結構,且在微波頻率下仍存在非常低的介電損耗,但是高成本的鉭氧化物使得應用上不具成本效益.因此,此研究針對複合鈣鈦礦型結構的鈮氧化物,探討其結構與微波介電性質之間的關係.
Ba(Zn1/3Nb2/3)O3 化合物在之前的研究已經被報導具優異的微波介電特性,且其品質因子和序化的晶體結構有顯著的關係,此研究以拉曼光譜儀;X光繞射儀及穿透式電子顯微鏡, 探討�y燒條件對序化結構的演變及品質因子的影響.目前的結果顯示,較低溫下的合成粉末,在燒結過程中,抑制了序化晶域的成長,相對地,以兩次�y燒合成的粉末,其1:2序化的晶域隨著燒結溫度及持溫時間的增加而顯著地成長,其原因是由於二次�y燒造成合成粉末具較高程度的1:2序化結構及良好的均質性,且當採用二次�y燒及1350˚C / 48小時的燒結條件時,燒結體的品質因子可獲得顯著地改善.此研究發現Ba(Zn1/3 Nb2/3)O3化合物的品質因子和序化晶域的大小; 1:2序化的程度及燒結體的相對理論密度有關.
另外, Ba1-xLax[Zn(1+x)/3Nb(2-x)/3]O3 (BLZN) 固溶體的介電及結構性質,亦被探討.其1:1序化的結構可以用隨機分佈的模型來解釋,當鑭元素取代進入結構時,其容忍因子降低,造成氧八面體的傾斜,鄰層間氧八面體的同相或反相傾斜造成共振頻率的溫度係數( )顯著變化.在氧八面體未傾斜成份區間t ≥ 1.01,其 隨著容忍因子下降呈線性上升.而在氧八面體反相傾斜的成份區間0.965 ≤ t < 1.01,其 快速下降,造成 由正值變為負值,進一步地,當容忍因子小於0.965,其同相傾斜造成 再次地緩慢的增加,因此, 可以由容忍因子的計算來預測之,而藉由鑭離子的添加,獲得 =0 ppm/˚C的組成.
另外,本研究進一步地探討CaZrO3 (CZ)添加所造成 Ca(Mg1/3Nb2/3)O3 (CMN) 化合物序化結構的變化,研究顯示,此(1-x)CMN-(x)CZ固溶體被氧八面體同相,異相傾斜及A位置陽離子偏移的出現而形成扭曲的1:2及1:1序化結構.同時,在序化結構的轉換及微波介電性質之間,具有明顯的相關性,當鋯離子取代CMN時,造成容忍因子的下降,而導致晶體結構的不穩定性,進一步造成品質因子的降低而介電常數的上升.此外,容忍因子下降造成 的上升,此乃由於氧八面體傾斜角度的增加而造成的.
本研究中,亦探討另一陽離子欠缺型鈣鈦礦結構的陶瓷系統A5B4O15 (A = Ba+2, Sr+2, Mg+2, Ca+2; B = Nb+5),其具有優異的微波介電特性,探討當以�k取代鋇時,其結構和微波介電特性的變化,在富含Ba離子的組成,拉曼光譜的分裂,顯示在固溶體系統中具不對稱晶體結構,且在富含Sr離子的組成,由X光繞射圖的Rietveld分析發現其對稱性由 轉換成 ,在固溶體中,富含Ba離子的成份區間內,介電常數和 隨著�k離子的增加而增加,但是在富含Sr離子的成份區間中呈現相反的趨勢.原因乃是其晶體結構對稱性的轉換,造成介電常數及 的變化,且變化的行為和NbO6八面體振動及晶格常數c/a比的變化,有顯著的相關性. Mg取代Ba的固溶體系統(Ba1-xMgx)5Nb4O15, 其微波介電性質被探討,研究發現 MgNb2O6第二相的出現,造成 下降,因而可獲得近乎為零的 之微波介電陶瓷的成份組成.
The A(B'1/3B" 2/3)O3-type (A= Ba+2, Ca+2; B' = Mg+2 , Zn+2; B" = Nb+5, Ta+5) complex perovskite compound shows ordering structure in B-site cations and exhibits a very low dielectric loss at microwave frequency. The high cost of Ta-based complex perovskite ceramics makes it less cost-effective for many applications. Therefore, this study aims to investigate the structure-microwave dielectric property relations in the Nb2O5-based complex perovskite ceramics.
Barium zinc niobate, Ba(Zn1/3Nb2/3)O3, complex perovskite has been reported to have excellent microwave dielectric properties with close relation of its ordered structure and quality factor. This study investigates the effect of calcination condition on the evolution of ordered structure and on quality factor with Raman spectroscopy, x-ray diffractometry, and transmission electron microscopy. The present results reveal that the low temperature of synthesis causes the inhibition of ordered domain growth during sintering. In contrast, the 1:2 ordered domain in double-calcined Ba(Zn1/3Nb2/3)O3 powder grows significantly with an increase of sintering temperature and soaking time. It is attributed that the relatively higher degree of 1:2 ordering and better homogeneity are achieved by double calcinations. The quality factor is highly promoted by using double-calcined Ba(Zn1/3Nb2/3)O3 powder and sintered at 1350˚C / 48 h. Certainly, the quality factor closely relates to the size of ordered domain, degree of 1:2 ordering and relative density in Ba(Zn1/3Nb2/3)O3ceramic.
Furthermore, the dielectric properties and microstructural characteristics in solid solutions of Ba1-xLax[Zn(1+x)/3Nb(2-x)/3]O3 (BLZN) are investigated by measuring and observing these properties respectively. The 1:1 ordered structure of BLZN is explained by the random-site model for the distribution of B-site cations. The decrease in the tolerance factor (t) by lanthanum substitution causes the tilting of oxygen octahedra. It appears that the onset of antiphase and inphase tilting causes the variation in the temperature coefficient of resonant frequency. In the untilted region where t ≥ 1.01, the TCF shows a linear increase with decreasing tolerance factor. The region of antiphase tilting where 0.965 ≤ t < 1.01 causes the rapid decrease in TCF , including the reverse sign. The TCF slowly increases where t < 0.965, which is due to the presence of inphase tilting of oxygen octahedra. The is predicted by using the tolerance factor, and the near zero of TCF is obtained with lanthanum substitution in the solid solution of the BLZN system.
Moreover, this study investigates the effect of CaZrO3 (CZ) substitution on the evolution of ordered structure in a Ca(Mg1/3Nb2/3)O3 (CMN) system. It indicates that a (1-x)CMN-(x)CZ solid solution has the 1:2 and 1:1 ordered structure distorted by the antiphase, the inphase tilting of oxygen octahedra and the antiparallel shift of A-site cation. A distinct correlation is noted between the transition of the ordered structure and microwave dielectric properties. The decrease in the tolerance factor by zirconium substitution causes the large anharmonicity, which decreases the quality factor and increases the relative permittivity. Furthermore, the reduction in the tolerance factor causes the increase in because of an increase in tilting amplitude.
The A5B4O15 (A = Ba+2, Sr+2, Mg+2, Ca+2; B = Nb+5) cation-deficient perovskites ceramics also have good microwave dielectric properties. The effects of strontium substitution for barium on the structure and microwave dielectric properties of Ba5Nb4O15 compounds are investigated. The symmetric stretching vibration of Ba-rich compounds splits into two narrow Raman-active modes and indicates the existence of a strong anharmonic lattice in (Ba1-xSrx)5Nb4O15 system. Nevertheless, the symmetry changes from P-3m1 to P-3c1 for the Sr-rich compounds by the Rietveld analysis of XRD patterns. The relative permittivity and temperature coefficient of resonant frequency increases linearly with an increase of strontium content in Ba-rich compounds, but decreases in Sr-rich compounds. The transition of symmetry influences the variation of TCF and K. The behavior of TCF and K is correlated to the variation of symmetric stretching vibrations of NbO6 octahedra and c/a ratio of lattice parameter in the unit cell.
Furthermore, the microwave dielectric properties of (Ba1-xMgx)5Nb4O15 ceramics are also investigated. The formation of second phase MgNb2O6 causes the TCF decrease, including reverse sign and near zero of TCF is obtained.
Chinese Abstract……………………………………………………………………I
English Abstract………………………………………………………………… IV
Thanks……………………………………………………………………………..VII
Contents……………………………………………………………………………VIII
Figure Captions……………………………………………………………………XII
Table Captions……………………………………………………………………XXII
Chapter 1 General Introduction
1-1Application of Microwave Dielectric Ceramics…………………………… 1
1-2Microwave Dielectric Characteristics……………………………………… 5
1-3Microwave Dielectric Ceramics……………………………………………. 11
1-4Structural and Microwave Dielectric Properties Relations………………….16
Chapter 2 Theory
2-1 Structure of Complex Perovskites A(B’1/3B”2/3)O3 (A = Ba, Ca; B’ = Mg, Zn; B” = Ta, Nb) System……………………………………………………….19
2-2 Ordering Phase Transition in Complex Perovskite…………………………26
2-3 Tilting of Oxygen Octahedra in Complex Perovskite………………………29
2-4 Tolerance Factor in Perovskite Ceramics…………………………………...40
2-5 Two Types of Domain Boundary in Complex Perovskite…………………..41
2-6 Structure -Quality Factor (Q) Relations…………………………………….46
2-7 Structure -Temperature Coefficient of Resonant Frequency ( ) Relations.49
2-8 Structure –Relative Permittivity (εr) Relations…………………………… 54
2-9 Raman Spectrum in Complex Perovskite………………………………….57
Chapter 3 Structure -Quality Factor (Q) Relation in Barium Zinc Niobate
3-1 Introduction………………………………………………………………..62
3-2 Experimental Procedure…………………………………………………...63
3-3 Results……………………………………………………………………..66
3-4 Discussion…………………………………………………………………94
3-5 Conclusion…………………………………………………………………95
Chapter 4 Structure - Temperature Coefficient of Resonant Frequency (τf) Relation in Barium Lanthanum Zinc Niobate
4-1 Introduction………………………………………………………………..96
4-2 Experimental Procedure…………………………………………………...101
4-3 Results…………………………………………………………………….104
4-4 Discussion…………………………………………………………………121
4-5 Conclusion…………………………………………………………………127
Chapter 5 Structure – Microwave Dielectric Property Relations in Calcium Magnesium Niobate – CaZrO3
5-1 Introduction………………………………………………………………..128
5-2 Experimental Procedure………………………………………………….. 129
5-3 Results……………………………………………………………………..130
5-4 Discussion…………………………………………………………………155
5-5 Conclusion…………………………………………………………………162
Chapter 6 Structure –Relative Permittivity (εr) Relations in Barium Strontium Niobate
6-1 Introduction………………………………………………………………..163
6-2 Experimental Procedure………………………………………………….. 167
6-3 Results……………………………………………………………………. 167
6-4 Discussion…………………………………………………………………191
6-5 Conclusion…………………………………………………………………197
Chapter 7 Microstructure and Microwave Dielectric Property Relations in Barium Magnesium Niobate
7-1 Introduction…………………………………………………………… …198
7-2 Experimental Procedure………………………………………………… .198
7-3 Results and Discussion……………………………………………………199
7-4 Conclusion………………………………………………………………...209
Chapter 8 Summary……………………………………………………………210
References……………………………………………………………………… 213
Paper List………………………………………………………………………..225
Resume………………………………………………………………………….227
1. Wolfram Wersing, “ Microwave Ceramics for Resonator and Filters”, Solid State & Mat. Sci., 1, 715-731 (1996).
2. A. S. Bhalla, Ruyan Guo, and Rustum Roy, “ The Perovskite Structure- a Review of its Role in Ceramic Science and Technology,” Mat. Res. Innovat., 4, 3-26 (2000).
3. H. Tamura, “Microwave Dielectric Losses Caused by Lattice Defects,” J. Euro. Ceram. Soc., 26, 1775-1780 (2006).
4. M. A. Akbas and P. K. Davies, “Ordering-Induced Microstructures and Microwave Dielectric Properties of the Ba(Mg1/3Nb2/3)O3 – BaZrO3 system,” J. Am. Ceram. Soc., 81, [3] 670-76 (1998).
5. L. Chai, M. A. Akbas, P. K. Davies and J. B. Parise, “Cation ordering transformation in Ba(Mg1/3Ta2/3)O3 – BaZrO3 Perovskite Solid Solutions,” Mater. Res. Bull., 32, [9] 1261-69 (1997).
6. L. Chai and P. K. Davies, “Formation and Structural Characterization of 1:1 Ordered Perovskite in the Ba(Zn1/3Ta2/3)O3 – BaZrO3 System,” J. Am. Ceram. Soc., 80, [12] 3193-98 (1997).
7. J. Chen, H. M. Chan and M. P. Harmer, “ Ordered Structure and Dielectric Properties of Undoped and La/Na-Doped Pb(Mg1/3Nb2/3)O3,” J. Am. Ceram. Soc., 72, [4] 593-98 (1989).
8. M. A. Akbas and P. K. Davies, “ Cation Ordering Transformation in the Ba(Zn1/3Nb2/3)O3 – La(Zn2/3Nb1/3)O3 System,” J. Am. Ceram. Soc., 81, [4] 1061-64 (1998).
9. C. J. Howard and H. T. Stokes, “Structures and Phase Transition in Perovskites- a Group-theoretical Approach,” Acta.Cryst. A61, 93-111 (2005).
10. A. M. Glazer, “ The Classification of Tilted Octahedra in Perovskite,” Acta Cryst, B28, 3384-92 (1972).
11. A. M. Glazer, “ Simple Ways of Determining Perovskite Structure,” Acta Cryst, A31, 756-62 (1975).
12.D. I. Woodward and I. M. Reaney, “Electron Diffraction of Tilted Perovskite.,”Acta Cryst. B61, 387-399 (2005).
13. H. J. Lee, H. M. Park, Y. W. Song, Y. K. Cho, J. h. Paik, S. Nahm, and J. D. Byun, “ Two Types of Domain Boundaries in Lanthanum Magnesium Niobate,” J. Am. Ceram. Soc., 83, [11] 2875-77 (2000).
14. H. J. Lee, H. M. Park, Y. K. Cho, H. Ryu, J. H. Paik, S. Nahm, and J. D. Byun, “ Microstructure of Lanthanum Magnesium Niobate at Elevate Temperature,” J. Am. Ceram. Soc., 83, [4] 943-45 (2000).
15. H. J. Lee, H. M. Park, Y. W. Song, Y. K. Cho, S. Nahm, and J. D. Byun, “Microstructure and Dielectric Properties of Barium Strontium Magnesium Niobate,” J. Am. Ceram. Soc., 84, [9] 2105-10 (2001).
16. H. J. Lee, H. M. Park, Y. K. Cho, H. Ryu, Y. W. Song, J. H. Paik, S. Nahm, and J. D. Byun, “ Microstructural Observations in Calcium Magnesium Niobate,” J. Am. Ceram. Soc., 83, [9] 2267-72 (2000).
17. I. M. Reaney, E. L. Colla and N. Setter, “ Dielectric and Structural Characteristics of Ba- and Sr-based Complex Perovskite as a Function of Tolerance Factor,” Jpn. J. Appl. Phys., 33, 3984-90 (1994).
18. P. L. Wise, I. M. Reaney, W. E. Lee, T. J. Price, D. M. Iddles and D. S. Cannell, “ Structure-microwave Property Relations of Ca and Sr titanates,” J. Euro. Ceram. Soc., 21, 2629-32 (2001).
19. P. K. Davies, J. Tong and T. Negas, “Effect of Ordering-Induced Domain Boundaries on Low-Loss Ba(Zn1/3Ta2/3)O3 – BaZrO3 Perovskite Microwave Dielectrics,” J. Am. Ceram. Soc., 80, [7] 1727-40 (1997).
20. S.Y. Noh, M. J. Yoo, S. Nahm, C. H. Choi, H. M. Park and H. J. Lee, “ Effect of structural Changes on the Microwave Dielectric Properties of Ba(Zn1/3Nb2/3)O3 Ceramics,” Jpn. J. Appl. Phys., 41, 2978-81 (2002).
21. R. I. Scott, M. Thomas and C. Hampson, “Development of low cost, high performance Ba(Zn1/3Nb2/3)O3 based materials for microwave resonator application,” J. Euro. Ceram. Soc., 23, 2467-71 (2003).
22. L.C. Tien, C. C. Chou and D. S. Tsai, “Ordered Structure and Dielectric Properties of Lanthanum-Substituted Ba(Mg1/3Ta2/3)O3,” J. Am. Ceramic. Soc., 83, [8] 2074-78 (2000).
23. M. Onoda, J. Kuwata, K. Kaneta, K. Toyama, and S. Nomura, “Ba(Zn1/3Nb2/3)O3- Sr(Zn1/3Nb2/3)O3 Solid-Solution Ceramics with Temperature-Stable High Dielectric Constant and Low Microwave Loss” Jpn. J. Appl. Phys., 21 [12] 1707-10 (1982).
24. E. L. Colla, I. M. Reaney and N. Setter, “ Effect of Structural Changes in Complex Perovskite on the Temperature Coefficient of the Relative Permittivity,” J. Appl. Phys., 74, [5] 3414-25 (1993).
25. H. S. Park, K. H. Yoon and E. S. Kim, “ Relationship Between the Bond Valence and the Temperature Coefficient of Resonant Frequency in the Complex Perovskite ( Pb1-x Cax)[Fe0.5(Nb1-y Ta y)0.5]O3,” J. Am. Ceram. Soc., 84, [1] 99-103 (2001).
26. S. Y. Cho, H. J. Youn, H. J. Lee, and K. S. Hong, “Contribution of Structure to Temperature Dependence of Resonant Frequency in the (1-x)La(Zn1/2Ti1/2)O3- xATiO3 (A = Ca, Sr) System,” J. Am. Ceram. Soc., 84 [4] 753-58 (2001).
27. Shannon, R. D., Dielectric polarizabilities of ions in oxides and fluorides. J. Appl. Phys., 1993, 73, 348-366.
28. I. G. Siny, R. Tao, R. S. Katiyar, R. Guo, and A. S. Bhalla, “Raman Spectroscopy of Mg-Ta Order-Disorder in Ba(Mg1/3Ta2/3)O3,” J. Phys. Chem. Solids., 59 [2] 181-95 (1998).
29. B. K. Kim, H. Hamaguchi, I. T. Kim, and K. S. Hong, “Probing of 1:2 Ordering in Ba(Ni1/3Nb2/3)O3 and Ba(Zn1/3Nb2/3)O3 Ceramics by XRD and Raman Spectroscopy,” J. Am. Ceram. Soc., 78 [11] 3117-20 (1995).
30. C. T. Chia, Y. C. Chen, H. F. Cheng and I. N. Lin “Correlation of microwave properties and normal vibration modes of xBa(Mg1/3Ta2/3)O3-(1-x)Ba(Mg1/3Nb2/3)O3 ceramics: I. Raman spectroscopy”J. Appl. Phys. 94, 3360 (2003).
31. Tamura, D. A. Sagala and K. Wakino, “ Lattice vibration of Ba(Zn1/3Ta2/3)O3 crystal with ordered perovskite structure.,” Jpn. J. Appl. Phys., 25 [6] 787-791 (1986).
32. S. Kawashima, M. Nishida, I. Ueda, and H. Ouchi, “Ba(Zn1/3Ta2/3)O3 Ceramics with Low Dielectric Loss at Microwave Frequencies,” J. Am. Ceram. Soc., 66 [6] 421-23 (1983).
33. K. Endo, K. Fujimoto, and K. Murakawa, “ Dielectric Properties of Ceramics in Ba(Co1/3Nb2/3)O3- Ba(Zn1/3Nb2/3)O3 Solid Solution,” J. Am. Ceram. Soc., 70 [9] C-215-18 (1987).
34. S. B. Desu and H. M. O’Bryan, “Microwave Loss Quality of BaZn1/3Ta2/3O3 Ceramics,” J. Am. Ceram. Soc., 68 [10] 546-51 (1985).
35 H. Tamura, T. Konoike, Y. Sakabe, and K. Wakino, “Improved High Q Dielectric Resonator with Complex Perovskite Structure,” J. Am. Ceram. Soc., 67 [4] C59-61 (1984).
36. X. M. Chen, D. Liu, R. Z. Hou, X. Hu, and X. Q. Liu, “Microstructures and Microwave Dielectric Characteristics of Ca(Zn1/3Nb2/3)O3 Complex Perovskite Ceramics,” J. Am. Ceram. Soc., 87 [12] 2208-12 (2004).
37. I. M. Reaney, P. L. Wise, I. Qazi, C. A. Miller, T. J. Price, D. S. Cannell, D. M. Iddles, M. J. Rosseinsky, S. M. Moussa, M. Bieringer, L. D. Noailles, and R. M. Ibberson, “Ordering and Quality Factor in 0.95BaZn1/3Ta2/3O3 -0.05SrGa1/2Ta1/2O3 Production Resonators,” J. Euro. Ceram. Soc., 23, 3021-34 (2003).
38. I. M. Reaney, Y. Iqbal, H. Zheng, A. Feteira, H. Hughes, D. Iddles, D. Muir, and T. Price, “Order-Disorder Behaviour in 0.9Ba([Zn0.60Co0.40]1/3Nb2/3)O3 -0.1Ba(Ga0.5Ta0.5)O3 Microwave Dielectric Resonator,” J. Euro. Ceram. Soc., 25, 1183-89 (2005).
39. S. Janaswamy, G. S. Murthy, E. D. Dias, and V. R. K. Murthy, “Structural Analysis of BaMg1/3(Ta,Nb)2/3O3 Ceramics,” Mater. Lett., 55, 414-19 (2002).
40. S. Kamba, H. Hughes, D. Noujni, S. Surendran, R. C. Pullar, P. Samoukhina, J. Petzelt, R. Freer, N. M. Alford, and D. M. Iddles, “Relationship Between Microwave and Lattice Vibration Properties in Ba(Zn1/3Nb2/3)O3-based Microwave Dielectric Ceramics,” J. Phys. D.: Appl. Phys., 37 1980-86 (2004).
41. S. J. Webb, J. Breeeze, R. I. Scott, D. S. Cannell, D. M. Iddles, and N. M. Alford “Raman Spectroscopic Study of Gallium-Doped Ba(Zn1/3Ta2/3)O3,” J. Am. Ceram. Soc., 85 [7] 1753-56 (2002).
42. A. Dias, V. S. T. Ciminelli, F. M. Matinaga, and R. L. Moreira, “Raman Scattering and X-ray Diffraction Investigations on Hydrothermal Barium Magnesium Niobate Ceramics,” J. Euro. Ceram. Soc., 21, 2739-44 (2001).
43. R. L. Moreira, F. M. Matinaga, and A. Dias, “Raman-Spectroscopic Evaluation of the Long-Range Order in Ba(B'1/3B"2/3)O3 Ceramics,” Appl. Phys. Lett., 78 [4] 428-30 (2001).
44. I. M. Reaney, I. Qazi, and W. E. Lee, “Order-Disorder Behavior in Ba(Zn1/3Ta2/3)O3,” J. Appl. Phys., 88 [11] 6708-14 (2000).
45. I. Qazi, I. M. Reaney, and W. E. Lee, “Order-Disorder Transition in Ba(Zn1/3Ta2/3)O3,” J. Euro. Ceram. Soc., 21, 2613-16 (2001).
46. K. Wakino, T. Nishikawa, Y. Ishikawa, and H. Tamura, “Dielectric Resonator Materials and Their Applications for Mobil Communication Systems,” Br. Ceram. Trans. J., 89 [2] 39-43 (1990).
47. R. J. Cava, “Dielectric Materials for Applications in Microwave Communications,” J. Mater. Chem., 11, 54-62 (2001).
48. A. S. Bhalla, R. Guo, and R. Roy, “The Perovskite Structure- a Review of its Role in Ceramic Science and Technology,” Mat. Res. Innovat., 4, 3-26 (2000).
49. Z. Xu, S. M. Gupta, D. Viehland, Y. Yan, and S. J. Pennycook, “Direct Imaging of Atomic Ordering in Undoped and La-Doped Pb(Mg1/3Nb2/3)O3,” J. Am. Ceram. Soc., 83 [1] 181-88 (2000).
50. P. M. Woodward, “Octahedral Tilting in Perovskites. Ⅰ. Geometrical Considerations,” Acta Cryst., B53, 32-43 (1997).
51. P. M. Woodward, “Octahedral Tilting in Perovskites. Ⅱ.Structure Stabilizing Forces,” Acta Cryst., B53, 44-66 (1997).
52. H. J. Lee, H. M. Park, Y. K. Cho, H. Ryu, J. H. Paik, S. Nahm, and J. D. Byun, “Dielectric and Structural Characteristics in Barium Lanthanum Magnesium Niobate,” J. Am. Ceram. Soc., 83 [4] 937-42 (2000).
53. V. Sivasubramanian, V. R. K. Murthy, and B. Viswanathan, “Microwave Dielectric Properties of Certain Simple Alkaline Perovskite Compounds as a Function of Tolerance Factor,” Jpn. J. Appl. Phys., 36, 194-97 (1997).
54. O. Muller and R. Roy, “The Major Ternary Structural Families,” Springer Verlag, Berlin, P.5 (1974).
55. F. Jiang, S. Kojima, C. Zhao, and C. Feng, “Chemical Ordering in Lanthanum-Doped Lead Magnesium Niobate Relaxor Ferroelectrics Probed by A1g Raman Mode,” App. Phys. Lett., 79 [24] 3938-40 (2001).
56. C. S. Park, J. H. Paik, S. Nahm, Y. S. Kim, H. J. Lee, H. M. Park, H. Ryu, and J. D. Byun, “Crystal Structure of A+2(Mg1/3Nb2/3)O3 (A+2 = Sr+2, Ca+2) Ceramics,” J. Mater. Sci. Lett., 18, 691-94 (1999).
57.H. J. Lee, H. M. Park, Y. K. Cho, Y. W. Song, S. Nahm, and J. D. Byun, “Microstructure Characterizations in Calcium Magnesium Niobate,” J. Am. Ceram. Soc., 84 [7] 1632-36 (2001).
58. A. C. Larson, and R. B. Von Dreele, “General structure analysis system (GSAS),” Los Alamos National Laboratory, Los Alamos, (1988).
59. T. Nagai, M. Sugiyama, M. Sando, and K. Niihara, “Structural Changes in Ba(Sr1/3Ta2/3)O3-Type Perovskite Compounds upon Tilting of Oxygen Octahedra,” Jpn. J. Appl. Phys., 36, 1146-53 (1997).
60. C. T. Lee, Y. C. Lin, C. Y. Huang, C.Y. Su, and C. L. Hu, “Structural and Dielectric Characteristics of Barium Lanthanum Zinc Niobate,” J. Am. Ceram. Soc., 89 [12] 3662-68 (2006).
61. I I. N. Jawahar, P. Mohanan, and M. T. Sebastian, “A5B4O15 (A = Ba, Sr, Mg, Ca, Zn; B = Nb, Ta) Microwave Dielectric Ceramics,” Mater. Lett., [57] 4043-4048 (2003).
62. S. Kamba, J. Petzelt, D. Haubrich, P. Vanek, P. Kuzel, I. N. Jawahar, M. T. Sebastian, and P. Mohanan, “High frequency dielectric properties of A5B4O15 microwave ceramics,” J. Appl. Phys., 89 [7] 3900-3906 (2001).
63. I. N. Jawahar, M. T. Sebastian and P. Mohanan, “Microwave dielectric properties of Ba5-xSrxTa4O15, Ba5NbxTa4-xO15 and Sr5NbxTa4-xO15 ceramics,” Mater. Sci. Eng., B106, 207-212 (2004).
64. F. Galasso and L. Katz, “Preparation and Structure of Ba5Ta4O15 and Related Compounds,” Acta Cryst., [14] 647-650 (1961).
65. N. E. Massa, S. Pagola and Paul Carbonio, “ Far-infrared Reflectivity and Raman Spectra of Ba5Nb4O15,” Phys. Rev. B53 [13] 8148-50 (1996).
66. J. Shannon and L. Katz, “A refinement of the structure of barium tantalum oxide, Ba5Ta4O15,” Acta Cryst., B26, 102-105 (1970).
67. S. Pagola, R. E. Carbonio, M. T. Fernandez-Diaz and J. A. Alonso, “Crystal structure refinement of Mg5Nb4O15 and Mg5Ta4O15 by Rietveld analysis of neutron powder diffraction data,” J. Solid State Chem., 137, 359-364 (1998).
68. D. W. Kim, H. J. Youn, K. S. Hong and C. K. Kim, “Microwave Dielectric Properties of (1-x)Ba5Nb4O15-xBaNb2O6 Mixtures,” Jpn. J. Appl. Phys., [41] 3812-3816 (2002).
69. D.W. Kim, J.R. Kim, S.H. Yoon, K.S. Hong and C. K. Kim, “Microwave Dielectric Properties of Low-Fired Ba5Nb4O15”, J. Am. Ceram. Soc., 85 [11] 2759-2762 (2002).
70. D.W. Kim, K.S. Hong, C.S. Yoon and C. K. Kim, “Low-temperature Sintering and Microwave Dielectric Properties of Ba5Nb4O15-BaNb2O6 Mixture for LTCC Application,” J. Euro. Ceram. Soc., [23] 2597-2601 (2003).
71. D. W. Kim, D. K. Kwon, K. S. Hong and D. J. Kim, “Atmospheric dependence on dielectric loss of 1/6 Ba5Nb4O15-5/6BaNb2O6 ceramics,” J. Am. Ceram. Soc., 86[5] 795-799 (2003).
72. H. Sreemoolanadhan, M.T. Sebastian and P. Mohanan, “High permittivity and low loss ceramics in the BaO-SrO-Nb2O5 system,” Mater. Res. Bull., 30[6] 653-658 (1995).
73. R. Ratheesh, H. Sreemoolanadhan, and M. T. Sebastian, “Vibrational Analysis of Ba5-xSrxNb4O15 Microwave Dielectric Ceramic Resonators,” J. Solid State Chem., 131, 2-8 (1997).
74. G. Blasse and G. P. M. Van Den Heuvel, “Vibration spectra and structural considerations of compounds NaLnTiO4,” J. Solid State Chem., 10, 206-210 (1974).
75. C. J. Lee, G., Pezotti, S. H. Kang, D. J. Kim and K. S. Hong, “Quantitative analysis of lattice distortion in Ba(Zn1/3Ta2/3)O3 microwave dielectric ceramics with added B2O3 using Raman spectroscopy,” J. Euro. Ceram. Soc., 26, 1385-1391 (2006).
76. T. Nagai, M. Sugiyama, M. Sando and K. Niihara, “Anomaly in the infrared active phono modes and its relationship to the dielectric constant of (Ba1-xSrx)(Mg1/3Ta2/3)O3 compound,” Jpn. J. Appl. Phys., 35, 5163-5167 (1996).
77. M. Weiden, A. Grauel, J. Norwig, S. Horn and F. Steglich, “Crystalline structure of the strontium niobates Sr4Nb2O9 and Sr5Nb4O15,” J. Alloys Compounds, 218, 13-16 (1995).
78. C. D. Whiston and A. J. Smith, “Double oxides containing niobium or tantalum. II. System involving strontium or barium,” Acta Crystallogr., 23, 82 (1967).
79. N. Teneze, D. Mercurio, G. Trolliard, and J. C. Champarnaud-Mesjard, “ Reinvestigation of the crystal structure of pentastrontium tetraniobate, Sr5Nb4O15,” Z. Kristallogr. NICS, 215,11-12 (2000).
80. C. Vineis, P. K. Davies, T. Negas, and S. Bell, “Microwave dielectric properties of hexagonal perovskites,” Mater. Res. Bull., 31 [5] 431-437 (1996).
81. R. S. Roth and J. L. Waring, J. Research Natl. Bur. Standards, 65A [4] 341 (1961).
82. S. H. Ra, and P. P. Phule, “Processing and microwave dielectric properties of barium magnesium tantalate ceramics for high-quality-factor personal communication service filters,” J. Mater. Res., [14] 4259 (1999).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top