跳到主要內容

臺灣博碩士論文加值系統

(44.192.95.161) 您好!臺灣時間:2024/10/16 04:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鐘國益
研究生(外文):Kuo-Yi Chung
論文名稱:高強度Al-Cu系2017合金拉伸性質之通電劣化效應
論文名稱(外文):Effect of Electrical Current Stressing on the Deterioration of Tensile Properties of High Strength Al-Cu 2017 Alloy
指導教授:呂傳盛呂傳盛引用關係黃紀嚴
指導教授(外文):Truan-Sheng LuiChi-Yen Huang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:資源工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:58
中文關鍵詞:電遷移
外文關鍵詞:Al-Cu2017electromigrationtensile
相關次數:
  • 被引用被引用:0
  • 點閱點閱:274
  • 評分評分:
  • 下載下載:33
  • 收藏至我的研究室書目清單書目收藏:0
熱處理型鋁合金的機械性質與溫度的關係已被研究的相當完整,但對於電流與機械性質的關係則沒有太多的討論。本研究對2017-T351的高強度鋁銅合金施加電流密度2000A/cm2的直流電,探討其機械性質、微觀組織與通電之間的關係。
實驗結果顯示,通電後2017-T351的拉伸性質明顯下降,與電流效應有關。通電過後材料的負極端其硬度明顯下降,拉伸強度、延性與通電前相比皆有明顯劣化;由於通電時溫度上升不足以造成試片兩端性質差異,故電流效應的確對2017鋁合金塊材的機械性質劣化具有影響。
通電後試片的拉伸應力應變曲線有鋸齒狀抖動的現象,類似於T4水淬後20分鐘內拉伸的曲線,這現象顯示材料經通電後的拉伸具動態應變時效。T4水淬後若將試片置於室溫下自然時效三天,再作拉伸則沒有動態應變時效,此時如果將該試片置於通電環境下則拉伸曲線再度抖動,可証明拉伸曲線的抖動現象與通電有關。通電會使析出強化相分解,使材料拉伸強度下降,且析出物分解後溶質原子會重新固溶回基地中,當溶質原子濃度足夠時,拉伸變形時溶質原子會與差排作用產生動態應變時效。
The study of relationship between mechanical properties and thermal behavior of the heat treatable aluminum alloy was well known. However, there were few discussions between electrical current stressing and mechanical properties. In this study, mechanical properties and microstructure of the high strength 2017-T351 Al-Cu alloy were discussed by using direct current flow at current density up to 2000A/cm2 .
The results showed the decreasing on the tensile properties of 2017-T351 was notable by electrical current stressing. It related to electrical current effect. There were obviously deterioration in hardness of cathode end , the tensile strength and elongation , the mechanical properties difference between the cathode end and anode end of the 2017 bulk specimens was not only effect of temperature, but also electrical current stressing .
The similar serration phenomenon observed in tensile stress-strain curve after electrical current stressing and solution treatment ( 768K holding 1h and then quenched in water , i.e., T4). The solution-treated samples were tested within 20 min in tension. The serration curve is called “dynamic strain aging” (DSA). If the solution-treated samples were tested in tension after natural aging 3day (T4NA), there was no serration curve. At this time if we tested T4NA samples with electrical current stressing in tension, the curve was serrulated again, so we demonstrated the serration phenomenon was related to electrical current stressing. The electrical current stressing will dissolve precipitates. The dissolved precipitates will cause the strength of 2017-T351 decreasing. It makes solute atoms solve back to matrix , when solute concentration is enough , it would interact with dislocation to cause DSA.
總目錄

摘要…….………………….….…………..….……….………………….I
Abstract…….…………….…….…………..……....……………………II
誌謝..........................................................................................................III
總目錄……………………………………....……………………......…IV
表目錄...................................................................................................
圖目錄…….……………………....……..…………………...……......VII
第一章 前言………………………………………………………….1
第二章 文獻回顧…………………………………….………………2
2-1鋁合金之特性和分類………………….………….…………….2
2-2 Al-Cu系合金與2017鋁合金之介紹…………….…….....……2
2-2通電環境下金屬原子的電遷移現象…….…….……….....……3
2-2-1電遷移現象之動力學通式…………………………………..3
2-2-2鋁導線及無鉛銲錫之電遷移現象………...……….......……5
2-2-3鋁導線中添加銅的效應………..………......……………..…8
2-3 Al-Cu系合金析出行為………………………....……….....……9
2-4動態應變時效…………………………..…….………….....…..10
第三章 實驗步驟與方法…………………..………………………..25
3-1 試片製作………………………………….…………...……25
3-2 直流通電實驗與比對熱處理實驗…………………….…...25
3-2-1 直流通電實驗設備……………………………….……..25
3-2-2 直流通電實驗條件…………………………….………..25
3-2-3 比對熱處理實驗……………………………….………..26
3-3 機械性質分析………………………………….…………...26
3-3-1 硬度試驗……………………………………..………......26
3-3-2 拉伸試驗…………………………………………..……..26
3-4 微組織分析……………………………….………………...27
3-4-1 掃描式電子顯微鏡觀察(SEM)……….………………...27
3-4-2 電子微探儀元素分析(EPMA)……..………….………..27
第四章 實驗結果與討論..................................................................32
4-1 通電過程試片溫度之變化...................................................32
4-2 硬度測試結果.......................................................................32
4-3 拉伸試驗...............................................................................32
4-4 微觀組織分析觀察...............................................................33
4-4-1 拉伸破斷試片巨觀觀察..................................................33
4-4-2 掃描式電子顯微鏡(SEM)觀察.......................................33
4-4-3 電子微探儀(EPMA)元素分析結果................................34
4-5 高強度鋁合金塊材中電遷移現象.....................................34
4-6 銅原子電遷移與析出物分解….........................................34
4-7 電流效應與動態應變時效………...………......................35
第五章 結論與建議............................................................................52
參考文獻..............................................................................................53















表目錄

表2-1調質符號基本定義........................................................................12
表2-2鍛造用鋁合金之種類.....………………………………………...13
表2-3 2017鋁合金之化學組成(ASM)...............………………………14
表2-4 2017-T4 機械性質.....…………………...………………………15
表2-5 2017-T4 電性質.....…………………………...……………........16
表2-6 2017-T4 熱性質.....………………………………………...........16
表2-7 2017-T4 加工性質.....…………………………………………...16
表3-1 2017鋁合金化學組成................................................................ .28
表3-2試片代號對應通電及熱處理條件.............................................. .28























圖目錄

圖2-1 Al-Cu系統相圖………………………………………………….17
圖2-2電子與鋁原子之動量轉移示意圖………………………………18
圖2-3電遷移現象對金屬原子所導致的外加應力示意圖……………19
圖2-4 鋁導線於500°C通電0.5 hr的條件下,不同電流密度與其飄
移速度之關係圖……………………………...……….................2
圖2-5 EPMA分析失效後的接點………………………………………21
圖2-6 θ相析出物受電流作用之分解與成核…………...……………..22
圖2-7 鋁合金2014-T4的等溫時效曲線………………………………23
圖2-8 FCC置換型面心立方固溶合金三種常見鋸齒狀流變型態
的示意圖.......................................................................................24
圖3-1 (a)2017鋁合金試片取樣方向、(b)2017鋁合金之通電及拉伸試片外觀尺寸 29
圖3-2 直流通電試驗裝置示意圖 30
圖3-3 (a) SEM觀察位置及方向; (b) EPMA 取樣位置微觀組織分析取樣位置示意圖 31
圖4-1 180分鐘直流通電過程實驗試片溫度變化圖 37
圖4-2 2017- T351通電180分鐘、30分鐘與通電180分鐘、30分鐘後靜置3天之硬度分布圖..........................................................38
圖4-3 2017-T4自然時效硬度分布圖 39
圖4-4 2017-T4室溫自然時效後通電0、2.5、5分鐘之拉伸應力應變曲線 40
圖4-5 2017-T4室溫自然時效後通電0、2.5、5分鐘之拉伸性質應力圖……..……………………………..…………………………..41
圖4-6 2017-T4 室溫自然時效後通電0、2.5、5分鐘之拉伸性質應變圖..................................................................................................42
圖4-7 2017-T351通直流電0、2.5、5、30、180分鐘之拉伸應力應變曲線 43
圖4-8 2017-T351拉伸試片通電時間與應力變化圖 44
圖4-9 2017-T351拉伸試片通電時間與延性變化圖 45
圖4-10 2017-T351母材、2017-T351通直流電30分鐘、180分鐘及通電30分鐘、180分鐘後自然時效之拉伸應力應變曲線 46
圖4-11 2017-T351母材、T351通電30分鐘、180分鐘、及通電30分鐘、180分鐘後自然時效之拉伸應力圖 47
圖4-12 2017-T351母材、T351通電30分鐘、180分鐘、及通電30分鐘、180分鐘後自然時效之拉伸應變圖………………….48
圖4-13 2017拉伸試片之巨觀觀察:(a)T351通電180分鐘、(b)T351通電30分鐘……………………………………………………..49
圖4-14 2017-T351之拉伸破斷面觀察(a)通直流電2.5分鐘、(b)通直流電5分鐘、(c)通直流電30分鐘、(d)通直流電180分鐘….50
圖4-15 2017-T351 180分鐘直流通電後試片元素分佈………………51
1.V. B. Fiks, “On the Mechanism of the Mobility of Ions in Metal”, Soviet Physics-Solid State, Vol. 1, pp. 14-28, (1959).
2.H. B. Huntington and A. R. Grone, “Current-Induced Marker Motion in Gold Wires”, Journal of Physics and Chemistry of Solids, Vol. 20, No. 1, pp. 76-87, (1961) .
3.H. B. Huntington, in “Diffusion in Solids: Recent Developments”,
edited by A. S. Nowick and J. J. Burton, Academic Press, New York, 303-352, (1975).
4.A. R. Grone, “Current-Induced Marker Motion in Copper”, Journal of Physics and Chemistry of Solids, Vol. 20, No. 1, pp. 88-93, (1961) .
5.R. V. Penney, “Current-Induced Mass Transport in Aluminum”, Journal of Physics and Chemistry of Solids, Vol. 25, pp. 335-345, (1964).
6.王森五, “電遷移現象對高強度Al-Zn-Mg-Cu合金微觀組織及拉伸變形之效應”, 國立成功大學材料科學及工程學系碩士班論文, 第42頁, 民國94年。
7.T. S. Srivatsan, I. A. Ibrahim, F. A. Mohamed and E. J. Lavernia, “Processing techniques for particulate-reinforced metal aluminium matrix composites”, Journal of Materials Science, Vol. 26, pp. 5965-5978, (1991).
8.S. C. Wang, M. J. Starink and N. Gao, “Precipitation hardening in Al-Cu-Mg alloys revisited”, Scripta Materialia, Vol. 54, pp.287-291, (2006) .
9.John E. Hatch, “Aluminum: Properties and Physical Metallurgy”, American Society for Metals, USA, pp. 136-137, (1984).

10.輕金屬協會,“�圮醽懟暪侒蟓U組織シ性質”, 輕金屬學會, JAPAN, pp. 192-217, (1991).
11.http://asm.matweb.com/search/SpecificMaterial.asp?bassnum=MA2017T4
12.I. A. Blech, “Electromigration in thin aluminum films on the titanium nitride”, Journal of Applied Physics, Vol. 47, No.4 , pp.1203-1208, (1976).
13.I. A. Blech and Conyers Herring, “Stress generation by electromigration”, Applied Physics Letters, Vol. 29, No.3, pp. 131-133, (1976).
14.K. N. Tu, “Electromigration in stressed thin films”, Physical Revies B, Vol.45, No.3, pp.1409-1413, (1992).
15.J. P. Dekker, C. A. Volkert, E. Arzt and P. Gumbsch, “Alloying Effects on Electromigration Mass Transport”, Physical Review Letters, Vol. 87, No.3 , pp. 035901[4 pages] , (2001) .
16.J. D’Haen, P. Cosemans, J. V. Manca, G. Lekens, T. Martens, W. De Ceuninck, M. D’Ollieslaeger, L. De Schepper and K. Maex, “Dynamics of Electromigration Induced Void / Hillock Growth and Precipitation / Dissolution of Addition Elements Studied by In-Situ Scanning Electron Microscopy Resistance Measurements”, Microelectronics Reliability, Vol. 39, pp. 1617-1630, (1999).
17.K. N. Tu, “Recent advances on electromigration in very large scale integration of interconnects”, Journal of Applied Physics, Vol. 94, No.9 , pp. 5451-5473, (2003) .
18.J. R. Black, “Electromigration Failure Modes in Aluminum Metalliaztion for Semiconductor Devices”, Proceedings of the IEEE, Vol. 57, No.9, pp.1587-1599, (1969).
19.Q. T. Huynh , C.Y. Liu , C. Chen , K.N. Tu, “Electromigration in eutectic SnPb solder lines”, Journal of Applied Physics, Vol.89, No.8, pp. 4332-4335, (2001).
20.H. Gan, W. J. Choi, G. Xu and K.N. Tu, “Electromigration in Solder Joints and Solder Lines”, JOM. , Vol. 54, No. 6 , pp. 34-37, (2002).
21.I. A. Blech and H. Sello, “The failure of thin aluminum current-carrying strips of oxidized silicon (Description of new mode of metal failures due to passage of direct current at high current density – electrical opens in aluminum strips on silicon oxide)”, Physics of Failure in Electronics, Vol. 5, pp. 496-505, (1967).
22.C. -L. Liu , X. -Y. Liu and L. J. Borucki, “Defect generation and diffusion mechanisms in Al and Al-Cu”, Applied Physics Letters, Vol. 74 , No. 1 , pp. 34-36, (1999).
23.X.-Y. Liu, C.-L. Liu and L. J. Borucki, “A new investigation of copper’s role in enhancing Al-Cu interconnect electromigration resistance from an atomistic view”, Acta Materialia, Vol. 47, Iss.11, pp. 3227-3231, (1999).
24.C. Witt, C. A. Volkert and E. Arzt, “Electromigration-Induced Cu Motion and Precipitation in Bamboo Al-Cu Interconnects”, Acta Materialia, Vol. 51, pp. 49-60, (2003).
25.E. G. Colgan and K. P. Rodbell, “The role of Cu distribution and Al2Cu precipitation on the electromigration reliability of submicrometer Al(Cu) lines”, Journal of Application Physics, Vol. 75, No. 7, pp. 3423-3434, (1994).
26.H. Li, A. Witvrouw, S. Jin, H. Bender, K. Maex and L. Froyen, “Comparison of the electromigration behavior of Al(MgCu) with Al(Cu) and Al(SiCu)”, Advanced Interconnects and Contact Materials and Processes for Future Integrated Circuits, 1998, MRS Spring Meeting, San Francisco, CA, USA, 13-16 Apr. 1998, Material Research Society, pp. 133-138, (1999).
27.C. K. Hu, R. Rosenberg and K. N. Tu, Proceeding of Stress-Induced Phenomena in Metallization, 2nd International Workshop, 1993, American Institute of Physics, New York, Conference Proceeding, Vol. 305, pp. 195-210, (1994).
28.A. Buerke , H. Wendrock and K. Wetzig, “Study of Electromigration Damage in Al Interconnect Lines inside a SEM”, Crystal Research and Technology, Vol. 35, Iss. 6-7, pp. 721-730, (2000).
29.寺�k一雄, “鋁合金構造設計輯覽”, 復漢出版社, 第1-7頁, 民國68年。
30.R. E. Reed-Hill, “Physical metallurgy principles”, PWS Publishing Company, 3ed , pp.515-537, (1994).
31.D. G. Eskin, “The Effect of Alloying Additives on Structure and Properties of Cast Al-Cu-Si-Mg Alloys”, Z. Metall, Vol. 86, No.1, pp. 60-63, (1995).
32.M. J. Starink, V. Abeels and P. van Mourik, “Lattice Parameter and Hardness Variations Resulting from Precipitation and Misfit Accommodation in A Particle-Reinforced Al-Si-Cu-Mg alloy”, Materials Science and Engineering , Vol. A163, No.1 , pp.115-125, (1993).
33.I. Dutta, C. P. Harper and G. Dutta, “Role of Al2O3 Particulate Reinforcements on Precipitation in 2014 Al-Matrix Composites”, Metallurgy and Materials Transaction, Vol. 25A, No.6 , pp.1591, (1994) .
34.John E. Hatch, “Aluminum: Properties and Physical Metallurgy”, American Society for Metals, USA, pp. 175-183, (1984).
35.陳銘欽, “置換型面心立方固溶合金應變時效之理論探討與鋁-鎂合金應變時效實驗”, 國立成功大學礦冶及材料科學研究所博士論文, 第6-42頁, 民國82年。
36.Y. Onodera and K.I. Hirano, “The Effect of Direct Electric Current on Precipitation in a Bulk Al-4 wt. % Cu Alloy”, Journal of Materials Science, Vol. 11, pp. 809-816, (1976).
37.H. Jiang, Q. Zhang, Z. Jiang and X. Wu, “Experimental investigations on kinetics of Portevin-Le Chatelier effect in Al-4wt.% Cu alloys”, Journal of Alloys and Compounds, Vol.48, No.1-2, pp. 151-156, (2007).
38.G. Lasko, P. Hahner and S. Schmauder, “Finite Element Simulation of the Portevin-LeChatelier Effect”, Modelling and Simulation in Materials Science and Engineering, Vol. 13, No. 5, pp. 645-656, (2005).
39.陳銘欽, “置換型面心立方固溶合金應變時效之理論探討與鋁-鎂合金應變時效實驗”, 國立成功大學礦冶及材料科學研究所博士論文, 第53頁, 民國82年。
40.T. Kanadani and Y. Yamamoto, “Effect of an Addition of Ag on the Occurrence of Serration in an Al-6% Zn Alloy”, Journal of Japan Institute of Light Metals (Japan), Vol. 48, No. 1, pp. 48-49, (1998).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top