1.Baecher, G.B., “Statistical analysis of rock mass fracturing,” J Math. Geol., Vol. 15, pp. 329-347, (1983).
2.Call, R.D., Savely, J.P. and Nicholas, D.E., “Estimation of Joint Set Characteristics from Surface Mapping Data,” 17th U.S. Symp. On Rock Mech., 2B2-1-2B2-, (1976).
3.Chiles, J.P., “Fractal and Geostatistical Methods for Modeling of A Fracture Nerwork,” Mathematical Geology, Vol. 20, No. 6, pp. 631-654, (1988).
4.Cruden, D.M., “Describing The Size of Discontinuities,” International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, Vol. 14, pp. 133-137, (1977).
5.Dershowitz, W.S. and Einstein, H. H., “Characterizing rock joint geometry with joint system models1,” Rock Mech. and Rock Eng.,Vol. 21, pp. 21-51, (1988).
6.Dershowitz, W.S., Rock Joint System, Ph.D. Thesis Massachusetts Institute of Technology, Cambridge, Massachusetts, (1984).
7.Dreuzy, J.R., Davy, P. and Bour, O., Hydraulic Properties of Two Dimensional Random Fracture Networks Following A Power Law Distribution 1.Effective Connectivity, Water Resource Research, Vol. 37, No. 8, pp. 2065-2078, (2001).
8.EL Tani, M., “Circular tunnel in a semi-infinite aquifer,” Tunnelling and Underground Space Technology, Vol. 18, pp. 49-55, (2003).
9.EL Tani, M., “Water inflow into tunnels,” Proceedings of the World Tunnel Congress ITA-AITES, Oslo, pp. 6-10, (1999).
10.Goodman, R.E., “Methods of Geological Engineering in Discontinuous Rock,” West, St. Paul, MN, pp. 58-90, (1976).
11.Goodman, R.E., Moye, D.G., Van Schalkwyk, A. and Javandel, I., “Ground water inflows during tunnel driving,” Eng. Geology, Vol. 2, No. 1, pp. 39-56, (1965).
12.Hundson, J.A. and Priest, S.D., “Discontinuities and rock mass geometry,” Int J Rock Mech Min Sci & Geomech Abstr, Vol. 16, pp. 339-362, (1979).
13.Karlsrud, K., “Water control when tunneling under areas in the Olso region,” NFF publication, Vol. 12, No. 4, pp. 4-27, (2001).
14.Kolymbas, D. and Wagner, P., “Groundwater ingress to tunnels – The exact analytical solution,” Tunnelling and Underground Space Technology, Vol. 22, pp. 23-27, (2006).
15.Lee, C.H., Chang, J.L. and Deng, B.W., “A continuum approach for estimating permeability in naturally fractured rocks,” Engineering Geology, Vol. 39, No. 1, pp. 71-85, (1995).
16.Lee, I.M. and Nam, S.W., “Effect of advance rate on seepage forces acting on the underwater tunnel face,” Tunnelling and Underground Space Technology, Vol. 19, pp. 273-281, (2004).
17.Lei, S., “An analytical solution for steady flow into a tunnel,” Ground Water, Vol. 37, No. 1, pp. 23-26, (1999).
18.Lin, B.S. and Lee, C.H., “Groundwater Seepage of Tunneled Sedimentary Rock,” 13th Regional Symp. on Sedimentary Rock Engineering, Taipei, pp. 20-22, (1998).
19.Lin, B.S., Lee, C.H. and Yu, J.L., “Analysis of groundwater seepage of tunnels in fractured rock,” Journal of The Chinese Institute of Environment Engineers, Vol. 23, No. 3, pp. 155-160, (2000).
20.Long, J.C.S., Remer, C.R., Wilsion, C.R. and Witherspoon, P.A., “Porous Media Equivalents for Networks of Discontinuous Fractures,” Water Resource Research, Vol. 18, No. 3, pp. 645-658, (1982).
21.Long, J.C.S., and Witherspoon, P.A., “The Relationship of the Degree of Interconnection to Permeability in Fracture Networks,” Journal of Geophysical Research, Vol. 90, No. B4, pp. 3087-3098, (1985).
22.Neuman, S.P., “Stochastic continuum presentation of fractured rock permeability as an. alternative to REV and fracture network concepts,” Proceedings of the 28th U.S. Symposium on Rock Mechanics, Tucson, Arizona, pp. 533-561, (1987).
23.Novakowski, K.S., Evans, G.V., Lever, D.A. and Raven, K.G., “A field example of measuring hydrodynamic dispersion in a single fracture,” Water Resource Research, Vol. 21, pp. 1165-1174, (1985).
24.Oda, M., “Permeability Tensor for Discontinuous Rock Masses,” Geotech, Vol. 35, pp. 483-495, (1985).
25.Pahl, P.J., “Estimation The Mean Length of Discontinuity Traces,” International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, Vol. 18, pp. 221-228, (1981).
26.Park, Y.J., K, K., Lee G. Kosakowski and B. Berkowitz, “Transport behavior in three-dimensional fracture intersections,” Water Resource Research, Vol. 39, No. 8, pp. TNN1.1-TNN1.9, (2003).
27.Priest, S.D. and Samaniego, A., “A Model for The Analysis of Discontinuity Characteristic in Two Dimension,” Proc. 5th Cong. ISRM, Melbourn, pp. 199-207, (1983).
28.Priest, S.D., “Discontinuity analysis for rock engineering,” Chapman and Hall ,(1993).
29.Renshaw, C.E., “Influence of subcritical fracture growth on the connectivity of fracture networks,” Water Resources Research, Vol. 32, No. 6, pp. 1519-1530, (1996).
30.Rouleau, A., and Gale, J.E., “Stochastic Discrete Fracture Simulation of Groudwater Flow into an Underground Excavation in Granite,” International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, Vol. 24, No.2, pp. 99-112, (1987).
31.Samaniego, J.A. and Priest, S.D., “The prediction of water flows through discontinuity networks into underground excavation,” Design and Performance of Underground Excavations, ISRM/BGS, Cambridge, London, pp. 157-164, (1984).
32.Schwartz, F.W., and Smith, L., “A continuum Approach for Modeling Mass Transport in Fractured Media,” Water Resource Research, Vol. 19, No. 4, pp. 959-969, (1988).
33.Schwartz, F.W., Smith, L. and Crowe, AS., “A stochastic analysis of macroscopic dispersion in fracture media,” Water Resource Research, Vol. 19, No. 5, pp. 1253-1265, (1983).
34.Smith, L. and Schwartz, F.W., “A analysis of influence of fracture geometry on mass transport in fracture media,” Water Resource Research, Vol. 20, No. 9, pp. 1241-1252, (1984).
35.Snow, D.T., “A parallel plate model of fractured permeable media,” Ph D dissertation, University of California, Berkely, (1965).
36.Snow, D.T., “Anisotropic permeability of fractured media,” Water Resource Research, Vol. 5, No. 6, pp. 1273-1289, (1969).
37.Snow, D.T., “Rock fracture spacings,” openings and porosities, J Soil Mech Found Div ASCE 94(SM1), pp. 73-91, (1968).
38.Snow, D.T., “The fracture and aperture of fracture in rock,” Int. J Rock Mech. Min. Sci. & Geomech. Abstr., Vol. 7, pp. 23-40, (1970).
39.Villaescusa, E. and Brown. E.T., “Characterizing Joint Spatial Correlation Using Geostastical Methods,” Rock Joint, Barton and Stephansson, Balkema, pp. 115-122 , (1990).
40.Wei, Z.Q., Egger, P. and Descoeudres, F., “Permeability Predictions for Jointed Rocked Masses,” International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Vol. 32, No. 3, pp. 251-261, (1995).
41.Witherspoon, P.A., Wang, J.C.Y., Iwall, K. and Gale, J.E., “Validity of Cubic Law for Fluid Flow in a Deformable Rock Fracture,” Water Resource Research, Vol. 16, No. 6, pp. 1016-1024, (1980).
42.交通部台灣區國道新建工程局,「國道南港宜蘭快速公路工程路線評選階段坪林隧道段地質調查工作期末報告」,財團法人中興顧問工程社 (1990)。
43.交通部台灣區國道新建工程局,「北宜高速公路施工階段坪林隧道湧水問題評估調查服務工作第一年度成果報告」,中興工程顧問股份有限公司 (1998)。
44.李振誥、陳昭旭,「隧道工程地下水探查技術與應用」,隧道工程地質探查技術研討會論文集,臺北,第 99-126頁 (2000)。
45.李禎常,「破裂岩體地下水流與污染物平均傳輸統計分布性質之研究」,碩士論文,國立成功大學資源工程研究所,台南 (2004)。46.李振誥、余進利,「節理與流動模型」,地工技術雜誌,33,第68-82頁 (1991)。
47.李振誥、李宏徹、黃崇琅、林碧山,「岩體隧道滲流量之預測:以坪林隧道為例」,中國土木水利工程學刊,第十卷,第四期,第 595-604頁 (1998)。48.李振誥、李森吉、張瑞麟、陳時祖,「估計岩體中不連續面組數,及各組之平均位態與頻率之探討」,地工技術雜誌,第三十九期,第64-76頁 (1992)。
49.林宏奕、李振誥、洪浩原、陳尉平,「應用離散破裂面模式於岩體隧道滲流之研究-以坪林隧道為例」,中國土木水利工程學刊,第十四卷,第三期,第 429-439頁 (2002)。50.林碧山,「破裂岩體地下水滲流與溶質傳輸」,博士論文,國立成功大學資源工程學系,臺南 (2000)。51.林宏奕、李振誥、洪浩原、陳尉平,「應用離散破裂面模式於岩體隧道滲流之研究-以坪林隧道為例」,中國土木水利工程學刊,第十四卷,第三期,第429-439頁 (2002)。.
52.侯泰亨,「隧道通過斷層地帶地下水滲流分析」,碩士論文,國立成功大學水利及海洋工程研究所,臺南 (1998)。
53.洪浩原,「破裂岩體隧道滲流之研究」,碩士論文,國立成功大學資源工程研究所,台南 (1999)。54.洪浩原、林碧山、李振誥,「破裂岩體中破裂面參數對隧道滲流量影響之研究」,1998岩盤工程研討會論文集,新竹,第417-426頁 (1998)。
55.張龍均,「山岳隧道湧水處理之研究」,碩士論文,國立中央大學土木工程學系,中壢 (2001)。
56.陳明君,「頭城地區四稜砂岩水文地質及隧道湧水之研究」,碩士論文,國立台灣大學地質所,臺北 (1997)。57.陳榮華,「破裂安山岩體放射性核種傳輸之研究」,博士論文,國立成功大學資源工程學系,臺南 (2001)。58.曾琮愷,「隧道開挖滲流現象之模擬」,碩士論文,中原大學土木工程學系,中壢 (2002)。
59.楊豐榮、龔文瑞、李振誥、林宏奕,「曾文水庫越域引水隧道工程湧水評估」,礦冶中國礦冶工程學會會刊,第48卷,第4期,第29-41頁 (2005)。
60.蔣序元,「新永春隧道之湧水量分析」,碩士論文,國立台灣大學土木工程學研究所,臺北 (2002)。
61.蔡明謙、李振誥,「採樣規模中痕跡線長度與其出現頻率之估計」,岩盤工程研討會,中壢,第31-40頁 (1994)。
62.龔文瑞,「曾文水庫越域引水隧道湧水之研究」,碩士論文,國立成功大學資源工程學系,臺南 (2005)。