跳到主要內容

臺灣博碩士論文加值系統

(44.192.49.72) 您好!臺灣時間:2024/09/18 20:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:翁淑涵
研究生(外文):Shu-Han Wong
論文名稱:隧道破裂面露頭與湧水量關係之研究
論文名稱(外文):The Effect of Fracture Outcrops Around Tunnel on Seepage
指導教授:李振誥李振誥引用關係
指導教授(外文):Cheng-Haw Lee
學位類別:碩士
校院名稱:國立成功大學
系所名稱:資源工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:82
中文關鍵詞:破裂岩體露頭有效破裂面隧道湧水量
外文關鍵詞:Fractured rock massFracture outcropsEffective fractureSeepage
相關次數:
  • 被引用被引用:3
  • 點閱點閱:275
  • 評分評分:
  • 下載下載:39
  • 收藏至我的研究室書目清單書目收藏:1
  探討破裂岩體及隧道之地下水流動行為時,不管在何種水力模型下,皆採用破裂面幾何參數來估計水力參數,然邊界上之破裂面露頭則控制了水流出入岩體之通道,成為影響水流通路之重要條件,在隧道湧水亦然。本研究以二維隨機離散破裂面程式TUNFLOW為基礎,以序率方法隨機產生實現值案例,統計模擬結果後分析出關係式,並應用於雪山隧道進行驗證。
  分析結果顯示地下水流並非均勻通過破裂面網路,將在較易通過之破裂面連結形成水力路徑,故破裂面網路存在有效及無效破裂面。破裂面有效露頭比具有臨界值,通過此95%臨界值,破裂岩體之破裂面會快速達到均勻之流場。而破裂面密度、長度為控制露頭數之最大因素,且與破裂面水力參數及隧道湧水量有極佳之相關性。
  於隧道湧水方面,在破裂面之面密度極小時,以離散破裂面模式模擬可考慮無湧水之情形。而在不同破裂面參數下,含水層之破裂面線密度小於1 (1/m)時,有效露頭數與湧水量呈現極佳線性關係,可直接由露頭數估計滲流量。本研究以有露頭數推估隧道湧水量之模式應用於雪山隧道,結果頗為符合現場量測資料。
  Parameters of fractures are the basic components of hydraulic models in fractured rocks. However, the outcrops of fractures on the hydraulic boundary are the actual passages of inflow and outflow in fractured rocks and tunnel wall. The computer code, TUNFLOW, which base on the discrete fracture model is applied to produce random realizations and analysis the results. Then apply the result to the Syueshan tunnel to estimate.
  The results show that groundwater will not pass all the fractures in the fracture net and the preferential path exist in partial cases. Fracture network will be uniform flow field fast when through the threshold of effective outcrop ratio is 95%.Density and trace length of fractures are the major factors to amount of the effective outcrops, which are the outcrops that groundwater passed.
  The simulation results showed that when the density of length of fractured media is smaller than 1 (1/m), there is a positive correlation between seepage and fracture number on outcrops of the tunnel wall. When density is extremely small, the simulation results of seepage by discrete fracture model can be approach to zero. Results could be used in evaluating the groundwater surge with number of outcrops. In the case of Syueshan tunnel, the amount of seepage from simulation is very close to that form the measurement in-situ.
中文摘要 I
英文摘要 II
誌謝 III
目錄 IV
表目錄 VII
圖目錄 VIII
符號表 XI
第一章 諸論 1
1-1 前言 1
1-2 研究動機 2
1-3 研究目的 2
1-4 研究方法與流程 3
第二章 文獻回顧 4
2-1 前言 4
2-2 破裂面參數 4
2-3 破裂岩體模式 6
2-3-1 連續模式 7
2-3-2 離散模式 8
2-4 破裂岩體之隧道滲流 10
2-4-1 連續模式 10
2-4-1 離散模式 12
第三章 研究方法 14
3-1 離散破裂面模式 14
3-1-1 破裂面參數 16
3-1-2 破裂面參數性質與分布型態 17
3-2 離散破裂面模式之建立 19
3-2-1 機率分布之產生 20
3-2-2 離散破裂面模式建立過程 22
3-3 隧道湧水量估計 24
3-3-1 連續模式 24
3-3-2 離散模式 26
3-3-3 破裂面參數對隧道湧水量之影響 26
第四章 模式分析 29
4-1 有效露頭比 32
4-2 有效露頭與破裂岩體透水係數 35
4-2-1 入口數與出口數對透水係數之影響 35
4-2-2 不同破裂面參數之有效露頭數與透水係數 39
4-2-3 固定有效露頭數下透水係數之情形 43
4-3 隧道有效露頭與湧水量 48
4-3-1 Goodman公式與離散模式之比較 51
4-3-2 變化破裂面參數下隧道露頭與湧水量 54
4-3-3 固定露頭與隧道湧水 58
第五章 應用露頭於雪山隧道湧水量之估計 62
5-1 雪山隧道簡介 62
5-2 研究區地質概述 63
5-2-1 雪山隧道地質背景 63
5-2-2 沿線地質簡介 64
5-3 案例概述 66
5-4 案例分析 70
5-4-1 隧道有效露頭數之推估 70
5-4-2 以隧道露頭數推估湧水量 71
第六章 結論與建議 73
6-1 結論 73
6-2 建議 74
參考文獻 75
1.Baecher, G.B., “Statistical analysis of rock mass fracturing,” J Math. Geol., Vol. 15, pp. 329-347, (1983).
2.Call, R.D., Savely, J.P. and Nicholas, D.E., “Estimation of Joint Set Characteristics from Surface Mapping Data,” 17th U.S. Symp. On Rock Mech., 2B2-1-2B2-, (1976).
3.Chiles, J.P., “Fractal and Geostatistical Methods for Modeling of A Fracture Nerwork,” Mathematical Geology, Vol. 20, No. 6, pp. 631-654, (1988).
4.Cruden, D.M., “Describing The Size of Discontinuities,” International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, Vol. 14, pp. 133-137, (1977).
5.Dershowitz, W.S. and Einstein, H. H., “Characterizing rock joint geometry with joint system models1,” Rock Mech. and Rock Eng.,Vol. 21, pp. 21-51, (1988).
6.Dershowitz, W.S., Rock Joint System, Ph.D. Thesis Massachusetts Institute of Technology, Cambridge, Massachusetts, (1984).
7.Dreuzy, J.R., Davy, P. and Bour, O., Hydraulic Properties of Two Dimensional Random Fracture Networks Following A Power Law Distribution 1.Effective Connectivity, Water Resource Research, Vol. 37, No. 8, pp. 2065-2078, (2001).
8.EL Tani, M., “Circular tunnel in a semi-infinite aquifer,” Tunnelling and Underground Space Technology, Vol. 18, pp. 49-55, (2003).
9.EL Tani, M., “Water inflow into tunnels,” Proceedings of the World Tunnel Congress ITA-AITES, Oslo, pp. 6-10, (1999).
10.Goodman, R.E., “Methods of Geological Engineering in Discontinuous Rock,” West, St. Paul, MN, pp. 58-90, (1976).
11.Goodman, R.E., Moye, D.G., Van Schalkwyk, A. and Javandel, I., “Ground water inflows during tunnel driving,” Eng. Geology, Vol. 2, No. 1, pp. 39-56, (1965).
12.Hundson, J.A. and Priest, S.D., “Discontinuities and rock mass geometry,” Int J Rock Mech Min Sci & Geomech Abstr, Vol. 16, pp. 339-362, (1979).
13.Karlsrud, K., “Water control when tunneling under areas in the Olso region,” NFF publication, Vol. 12, No. 4, pp. 4-27, (2001).
14.Kolymbas, D. and Wagner, P., “Groundwater ingress to tunnels – The exact analytical solution,” Tunnelling and Underground Space Technology, Vol. 22, pp. 23-27, (2006).
15.Lee, C.H., Chang, J.L. and Deng, B.W., “A continuum approach for estimating permeability in naturally fractured rocks,” Engineering Geology, Vol. 39, No. 1, pp. 71-85, (1995).
16.Lee, I.M. and Nam, S.W., “Effect of advance rate on seepage forces acting on the underwater tunnel face,” Tunnelling and Underground Space Technology, Vol. 19, pp. 273-281, (2004).
17.Lei, S., “An analytical solution for steady flow into a tunnel,” Ground Water, Vol. 37, No. 1, pp. 23-26, (1999).
18.Lin, B.S. and Lee, C.H., “Groundwater Seepage of Tunneled Sedimentary Rock,” 13th Regional Symp. on Sedimentary Rock Engineering, Taipei, pp. 20-22, (1998).
19.Lin, B.S., Lee, C.H. and Yu, J.L., “Analysis of groundwater seepage of tunnels in fractured rock,” Journal of The Chinese Institute of Environment Engineers, Vol. 23, No. 3, pp. 155-160, (2000).
20.Long, J.C.S., Remer, C.R., Wilsion, C.R. and Witherspoon, P.A., “Porous Media Equivalents for Networks of Discontinuous Fractures,” Water Resource Research, Vol. 18, No. 3, pp. 645-658, (1982).
21.Long, J.C.S., and Witherspoon, P.A., “The Relationship of the Degree of Interconnection to Permeability in Fracture Networks,” Journal of Geophysical Research, Vol. 90, No. B4, pp. 3087-3098, (1985).
22.Neuman, S.P., “Stochastic continuum presentation of fractured rock permeability as an. alternative to REV and fracture network concepts,” Proceedings of the 28th U.S. Symposium on Rock Mechanics, Tucson, Arizona, pp. 533-561, (1987).
23.Novakowski, K.S., Evans, G.V., Lever, D.A. and Raven, K.G., “A field example of measuring hydrodynamic dispersion in a single fracture,” Water Resource Research, Vol. 21, pp. 1165-1174, (1985).
24.Oda, M., “Permeability Tensor for Discontinuous Rock Masses,” Geotech, Vol. 35, pp. 483-495, (1985).
25.Pahl, P.J., “Estimation The Mean Length of Discontinuity Traces,” International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, Vol. 18, pp. 221-228, (1981).
26.Park, Y.J., K, K., Lee G. Kosakowski and B. Berkowitz, “Transport behavior in three-dimensional fracture intersections,” Water Resource Research, Vol. 39, No. 8, pp. TNN1.1-TNN1.9, (2003).
27.Priest, S.D. and Samaniego, A., “A Model for The Analysis of Discontinuity Characteristic in Two Dimension,” Proc. 5th Cong. ISRM, Melbourn, pp. 199-207, (1983).
28.Priest, S.D., “Discontinuity analysis for rock engineering,” Chapman and Hall ,(1993).
29.Renshaw, C.E., “Influence of subcritical fracture growth on the connectivity of fracture networks,” Water Resources Research, Vol. 32, No. 6, pp. 1519-1530, (1996).
30.Rouleau, A., and Gale, J.E., “Stochastic Discrete Fracture Simulation of Groudwater Flow into an Underground Excavation in Granite,” International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, Vol. 24, No.2, pp. 99-112, (1987).
31.Samaniego, J.A. and Priest, S.D., “The prediction of water flows through discontinuity networks into underground excavation,” Design and Performance of Underground Excavations, ISRM/BGS, Cambridge, London, pp. 157-164, (1984).
32.Schwartz, F.W., and Smith, L., “A continuum Approach for Modeling Mass Transport in Fractured Media,” Water Resource Research, Vol. 19, No. 4, pp. 959-969, (1988).
33.Schwartz, F.W., Smith, L. and Crowe, AS., “A stochastic analysis of macroscopic dispersion in fracture media,” Water Resource Research, Vol. 19, No. 5, pp. 1253-1265, (1983).
34.Smith, L. and Schwartz, F.W., “A analysis of influence of fracture geometry on mass transport in fracture media,” Water Resource Research, Vol. 20, No. 9, pp. 1241-1252, (1984).
35.Snow, D.T., “A parallel plate model of fractured permeable media,” Ph D dissertation, University of California, Berkely, (1965).
36.Snow, D.T., “Anisotropic permeability of fractured media,” Water Resource Research, Vol. 5, No. 6, pp. 1273-1289, (1969).
37.Snow, D.T., “Rock fracture spacings,” openings and porosities, J Soil Mech Found Div ASCE 94(SM1), pp. 73-91, (1968).
38.Snow, D.T., “The fracture and aperture of fracture in rock,” Int. J Rock Mech. Min. Sci. & Geomech. Abstr., Vol. 7, pp. 23-40, (1970).
39.Villaescusa, E. and Brown. E.T., “Characterizing Joint Spatial Correlation Using Geostastical Methods,” Rock Joint, Barton and Stephansson, Balkema, pp. 115-122 , (1990).
40.Wei, Z.Q., Egger, P. and Descoeudres, F., “Permeability Predictions for Jointed Rocked Masses,” International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Vol. 32, No. 3, pp. 251-261, (1995).
41.Witherspoon, P.A., Wang, J.C.Y., Iwall, K. and Gale, J.E., “Validity of Cubic Law for Fluid Flow in a Deformable Rock Fracture,” Water Resource Research, Vol. 16, No. 6, pp. 1016-1024, (1980).
42.交通部台灣區國道新建工程局,「國道南港宜蘭快速公路工程路線評選階段坪林隧道段地質調查工作期末報告」,財團法人中興顧問工程社 (1990)。
43.交通部台灣區國道新建工程局,「北宜高速公路施工階段坪林隧道湧水問題評估調查服務工作第一年度成果報告」,中興工程顧問股份有限公司 (1998)。
44.李振誥、陳昭旭,「隧道工程地下水探查技術與應用」,隧道工程地質探查技術研討會論文集,臺北,第 99-126頁 (2000)。
45.李禎常,「破裂岩體地下水流與污染物平均傳輸統計分布性質之研究」,碩士論文,國立成功大學資源工程研究所,台南 (2004)。
46.李振誥、余進利,「節理與流動模型」,地工技術雜誌,33,第68-82頁 (1991)。
47.李振誥、李宏徹、黃崇琅、林碧山,「岩體隧道滲流量之預測:以坪林隧道為例」,中國土木水利工程學刊,第十卷,第四期,第 595-604頁 (1998)。
48.李振誥、李森吉、張瑞麟、陳時祖,「估計岩體中不連續面組數,及各組之平均位態與頻率之探討」,地工技術雜誌,第三十九期,第64-76頁 (1992)。
49.林宏奕、李振誥、洪浩原、陳尉平,「應用離散破裂面模式於岩體隧道滲流之研究-以坪林隧道為例」,中國土木水利工程學刊,第十四卷,第三期,第 429-439頁 (2002)。
50.林碧山,「破裂岩體地下水滲流與溶質傳輸」,博士論文,國立成功大學資源工程學系,臺南 (2000)。
51.林宏奕、李振誥、洪浩原、陳尉平,「應用離散破裂面模式於岩體隧道滲流之研究-以坪林隧道為例」,中國土木水利工程學刊,第十四卷,第三期,第429-439頁 (2002)。.
52.侯泰亨,「隧道通過斷層地帶地下水滲流分析」,碩士論文,國立成功大學水利及海洋工程研究所,臺南 (1998)。
53.洪浩原,「破裂岩體隧道滲流之研究」,碩士論文,國立成功大學資源工程研究所,台南 (1999)。
54.洪浩原、林碧山、李振誥,「破裂岩體中破裂面參數對隧道滲流量影響之研究」,1998岩盤工程研討會論文集,新竹,第417-426頁 (1998)。
55.張龍均,「山岳隧道湧水處理之研究」,碩士論文,國立中央大學土木工程學系,中壢 (2001)。
56.陳明君,「頭城地區四稜砂岩水文地質及隧道湧水之研究」,碩士論文,國立台灣大學地質所,臺北 (1997)。
57.陳榮華,「破裂安山岩體放射性核種傳輸之研究」,博士論文,國立成功大學資源工程學系,臺南 (2001)。
58.曾琮愷,「隧道開挖滲流現象之模擬」,碩士論文,中原大學土木工程學系,中壢 (2002)。
59.楊豐榮、龔文瑞、李振誥、林宏奕,「曾文水庫越域引水隧道工程湧水評估」,礦冶中國礦冶工程學會會刊,第48卷,第4期,第29-41頁 (2005)。
60.蔣序元,「新永春隧道之湧水量分析」,碩士論文,國立台灣大學土木工程學研究所,臺北 (2002)。
61.蔡明謙、李振誥,「採樣規模中痕跡線長度與其出現頻率之估計」,岩盤工程研討會,中壢,第31-40頁 (1994)。
62.龔文瑞,「曾文水庫越域引水隧道湧水之研究」,碩士論文,國立成功大學資源工程學系,臺南 (2005)。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top