|
Chapter1 [1] W. van Etten and J. van der Plaats, Fundamentals of Optical Fiber Communications, in prentice hall international series in optoelectronics, New Yor: Prentice Hall, ch. 15, 1991. [2] J. Zheng and H. T. Mouftah, Optical WDM Networks, New Yor: Wiley, ch.1, 2004. [3] G. P. Agrawal, Lightwave Technology, in telecommunication systems. New Yor: Wiley, ch. 9, 2005. [4] G. Keiser, Optical Communications Essentials, New Yor: McGraw-Hill, ch. 12, 2003. [5] C. Dragone, “An N �eN optical multiplexer using a planar arrangement of two star couplers,” IEEE Photon. Technol. Lett., vol. 3, pp. 812–815, Sept. 1991. [6] M. C. Parker and S. D. Walker, “Design of arrayed waveguide gratings using hybrid fourier-fresnel transfom techniques,” IEEE J. Select. Topics Quantum. Electron., vol. 5, pp. 1379–1384, Sept./Oct. 1999. [7] T. Kamalakis and T. Sphicopoulos, “An efficient technique for the design of an arrayed-waveguide grating with flat spectral response,” IEEE Journal of lightwave technology, vol. 19, No. 11 Nov., 2001. [8] J. S. Foresi, B. E. Little, G. Steinmeyer, E. Thoen, H. Haus, E. Ippen, S. Chu, L. Kimerling, and W. Greene, “Si/SiO2 micro-ring resonator opticla add/drop filters,” presented at CLEO’97, Baltimore, MD, 1997, paper CPD-22. [9] B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 micro-ring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett., vol. 10, No. 4, pp. 549-551, April, 1998. [10] T. Negami, H. Haga and S. Yamamoto, “Guided-wave optical wave length demultiplexer using and asymmetric Y junction,”Appl. Phys. Lett., vol. 54, pp.1080-1082, 1989. [11] Z. Weissman, D. Nir, S. Ruschin, and A. Hardy, “Asymmetric Y-junction wavelength demultiplexer based on segmented waveguides,” Appl. Phys. Lett., Vol. 67, No. 3, pp. 302-304, July,1995. [12] L. B. Soldano and E. C. M. Pennings, “Optical Multi-Mode Interference Devices Based on Self-Imaging: Principles and Applications,” J. Lightwave Technol., vol. 13, no. 4, pp. 615-627, 1995. [13] A. Neyer, “Integrated optical multichannel wavelength multiplexer for monomode systems,” Electron. Lett., vol. 20, no. 18, pp. 744-746,1984. [14] F. Rottmann, A. Neyer, W. Mevenkamp and E. Voges, “Integrated-optic wavelength multiplexers on lithium niobate based on two-mode interference,” IEEE Journal of lightwave technology, vol. 6, No. 6, pp. 946-952, June, 1988. [15] M. Lopez-Amo, P. Mendez-Valdes, M. Muriel, P. Kaczmarski and P.E. Lagasse, “Design of two mode interference wavelength filter utilizing symmetric three-mode structure,” Electron. Lett., vol. 24, no. 22, pp. 1525-1526, 1988. [16] I. R. Croston, T. P. Young, and S. Morasca, “A highly dispersive wavelength division demultiplexer in InGaAlAs-InP for 1.5 µm Operation,” IEEE Photon. Technol. Lett., vol. 2, no. 10, pp. 734-737, 1990. [17] C. F. Janz, M. R. Paiam, B. P. Keyworth, and J. N. Broughton, “Bent waveguide couplers for (de)multiplexing of arbitrary broadly-separated wavelengths using two-mode interference,” IEEE photon. Technol. Lett. vol. 7, no. 9, pp. 1037-1039, 1995. [18] K. Y. Yee, “Number solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propagat., vol. AP-14, pp. 302-307, 1966.
Chapter2 [1].N. S. Kapany, and J. J. Burke, Optical Waveguides, New York: Academic, 1972. [2].L. B. Soldano and E. C. M. Pennings, “Optical Multi-Mode Interference Devices Based on Self-Imaging: Principles and Applications,” J. Lightwave Technol., vol. 13, no. 4, pp. 615-627, 1995. [3].A. Yariv, P. Yeh, Optical Waves in Crystals, in Wiley series in Pure and Applied Optics. New Yor: Wiley, ch. 6, 1984.. [4].J. M. Jarem, P. P. Banerjee, B. P. Banerjee, Computational Methods for Electromagnetic and Optical Systems, Marcel Dekker, ch. 2, 2000. [5].T. Y. Tsai, Z. C. Lee, C. S. Gau, F. S. Chen, J. R. Chen, C. C. Chen, “A Novel Wavelength Division Multiplexer Using Grating-Assisted Two-Mode Interference,” IEEE photon. Technol. Lett., Oct., 2004.
Chapter3 [1].M. Lopez-Amo, P. Mendez-Valdes, M. Muriel, P. Kaczmarski and P.E. Lagasse, “Design of two mode interference wavelength filter utilizing symmetric three-mode structure,” Electron. Lett., vol. 24, no. 22, pp. 1525-1526, 1988. [2].I. R. Croston, T. P. Young, and S. Morasca, “A highly dispersive wavelength division demultiplexer in InGaAlAs-InP for 1.5 µm Operation,” IEEE Photon. Technol. Lett., vol. 2, no. 10, pp. 734-737, 1990. [3].C. F. Janz, M. R. Paiam, B. P. Keyworth, and J. N. Broughton, “Bent waveguide couplers for (de)multiplexing of arbitrary broadly-separated wavelengths using two-mode interference,” IEEE photon. Technol. Lett. Vol. 7, no. 9, pp. 1037-1039, 1995. [4].T. Y. Tsai, Z. C. Lee, C. S. Gau, F. S. Chen, J. R. Chen, C. C. Chen, “A Novel Wavelength Division Multiplexer Using Grating-Assisted Two-Mode Interference,” IEEE photon. Technol. Lett., Oct., 2004. (accepted) [5].L. B. Soldano and E. C. M. Pennings, “Optical Multi-Mode Interference Devices Based on Self-Imaging: Principles and Applications,” J. Lightwave Technol., vol. 13, no. 4, pp. 615-627, 1995. [6].A. Yariv, P. Yeh, Optical Waves in Crystals, Wiley Series in Pure and Applied Optics, Ch. 6, 1984.
Chapter4 [1]. D. Marcuse, “Directional couplers made of nonidentical asymmetric slabs. Part II: grating-assisted couplers,” IEEE J. Lightwave Technol., vol. LT-5, no. 2, pp. 268-273, Feb. 1987. [2]. D. B. Kim, C. Y. Park, K. R. Oh, H. M. Kim, and T. H. Yoon, “Design of narrow bandwidth grating-assisted codirectional coupler filter and comparison to the experimental results,” IEEE Photon. Technol. Lett., vol. 3, no. 11, pp. 1505-1507, Nov. 1997. [3]. J. S. Foresi, B. E. Little, G. Steinmeyer, E. Thoen, H. Haus, E. Ippen, S. Chu, L. Kimerling, and W. Greene, “Si/SiO2 micro-ring resonator optical add/drop filters,” presented at CLEO’97, Baltimore, MD, 1997, paper CPD-22. [4]. B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 micro-ring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett., vol. 10, No. 4, pp. 549-551, April, 1998. [5]. C. Dragone, “An N �eN optical multiplexer using a planar arrangement of two star couplers,” IEEE Photon. Technol. Lett., vol. 3, pp. 812–815, Sept. 1991. [6]. M. C. Parker and S. D. Walker, “Design of arrayed waveguide gratings using hybrid fourier-fresnel transform techniques,” IEEE J. Select. Topics Quantum. Electron., vol. 5, pp. 1379–1384, Sept./Oct. 1999. [7]. T. Kamalakis and T. Sphicopoulos, “An efficient technique for the design of an arrayed-waveguide grating with flat spectral response,” IEEE J. Lightwave Technol., vol. 19, no. 11, pp. 1716-1725, Nov., 2001. [8]. A. Neyer, “Integrated optical multichannel wavelength multiplexer for monomode systems,” Electron. Lett., vol. 20, no. 18, pp. 744-746, 1984. [9]. F. Rottmann, A. Neyer, W. Mevenkamp and E. Voges, “Integrated-optic wavelength multiplexers on lithium niobate based on two-mode interference,” IEEE J. Lightwave Technol., vol. 6, no. 6, pp. 946-952, June, 1988.
Chapter5 [1].I. R. Croston, T. P. Young, and S. Morasca, “A highly dispersive wavelength division demultiplexer in InGaAlAs-InP for 1.5 µm Operation,” IEEE Photon. Technol. Lett. vol. 10, pp. 734-737, 1990. [2].C. F. Janz, M. R. Paiam, B. P. Keyworth, and J. N. Broughton,” Bent waveguide couplers for (de)multiplexing of arbitrary broadly-separated wavelengths using two-mode interference”, IEEE Photon. Technol. Lett. vol. 7, pp. 1037-1039, 1995.
Chapter6 [1] K. O. Hill and G. Meltz, “Fiber bragg grating technology fundamentals and overview,” IEEE J. Lightwave Technol., vol. 15, no. 8, pp. 1263-1276, August 1997. [2] M. M. Spuehler and D. Erni, “Towards structural optimization of planar integrated lightwave circuits,” Optical and Quantum Electronics, 32, pp. 701-718, 2000. [3] A. Giorgio, A. G. Perri, and M. N. Armenise, “Modeling of fully etched waveguiding photonic bandgap structures,” IEEE J. Quantum Electron., vol. 38, no. 6, pp. 630-639, June 2002. [4] D. Wiesmann, R. Germann and G. –L. Bona, “Add–drop filter based on apodized surface-corrugated gratings,” J. Opt. Soc. Am. B, vol. 20, no. 3, pp. 417-423, March 2003. [5] J.T. Hastings, M.H. Lim, J.G. Goodberlet and Henry Smith, "Optical Waveguides with Apodized Sidewall Gratings via spatial-phase-locked electron-beam lithography", J. Vac. Sci. Technol. B 20(6), pp. 2753-2757, 2002. [6] A. Yariv, P. Yeh, Optical Waves in Crystals, Wiley Series in Pure and Applied Optics, Chap. 6, 1984.
Chapter7 [1] G. T. Reed, and A. P. Knights, Silicon Photonics: an introduction, Chichester: John Wiley, 2004. [2] R. A. Soref, J. Schmidtchen, and K. Petermann, “Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2 ”, J. Quant. Electron., vol 27, no. 8, pp. 1971-1974, 1991. [3] J. Schmidtchen, A, Splett, B. Schuppert, and K. Petermann, “ Low-loss single-mode optical waveguide with large cross-section on SOI”, Electron. Lett. vol. 27, pp. 1486-1487, 1991. [4] A. G. Rickman, G. T. Reed, and F. Namavar, “Silicon on insulator optical rib waveguide loss and mode characteristics,” J. Lightwave Technol., vol. 12, pp. 1771-1776, 1994. [5] S. Pogossian, L. Vescan, and A. Vonsovici, “The single mode condition for semiconductor rib waveguides with large cross-section,” J. Lightwave Technol., vol. 16, pp. 1851-1853, 1998.
|