|
[1].Y. Hamakawa: Amorphous Semiconductor Technologies and Devices, Japan annual reviews in electronics, computers & telecommunications vol. 22, (Ohmsha, LTD. And North-Holland, Netherlands, 1987). [2].J. P. Kleider, C. Longeaud, R. Bruggemann, and F. Houze, “Electronic and topographic properties of amorphous and microcrystalline silicon thin film,” Thin Solid Films, 383, pp. 57-60 (2001). [3].D. Soler, M. Fonrodona, C. Voz, J. Bertomeu, and J. andreu, “Thin silicon films ranging from amorphous to nanocrystalline obtain by hot-wire CVD,” Thin Solid Films, 383, pp. 189-191 (2001). [4].Semiconductors and Semimetals, ed. J. I. Pankove (Academic Press, London, 1984) Vol. 21D. [5].P. Roca i Cabarrocas, A. Fontcuberta I Morral, Y. Poissant, “Growth and optoelectronic properties of polymorphous silicon thin films,” Thin Solid Films, 403-404, pp. 39-46 (2002). [6].P. P. Ray, P. Chaudhuri, and P. Chatterjee, “Hydrogenated amorphous silicon films with low defect density prepared by argon dilution: application to solar cells,” Thin Solid Films, 403-404, pp. 275-279 (2002). [7].A. A. Parr, C. Bodart, D. Demonchy, and D. J Gardiner, “Depth profiling variously deposited LPCVD polysilicon films using Raman microscopy,” Semiconductor Scence &. Technoogy, 16, pp. 608-613 (2001). [8].T. Noguchi, “Appearance of single-crystalline properties in fin-patterned Si thin film transistor (TFT’s) by solid phase crystallization (SPC) ,” Japanese Journal of Applied Physics, 32, pp. 1584-1939 (1993). [9].S. Lee, Y. Jeon, and S. Joo, “Pd induced lateral crystallization of amorphous Si thin film,” Applied Physics Letters, 66 (13), pp. 1671-1673 (1995). [10].C. H. Oh, and M. Matsumura, “Aproposed single grain-boundary thin-film transistor,” IEEE Electron Device Letters, 22 (1), pp. 20-22 (2001). [11].S.Veprek and V. Marecek, “The preparation of thin layers of ge and si. by chemical hydrogen plasma transport,” Solid State Electron. 11, pp. 683-684 (1968). [12].M. Fukuda, K. Nakagawa, S. Miyazaki, and M. Hirose, “Resonant tunneling through a self-assembled Si quantum dot,” Applied Physics Letters, 70 (17), pp. 2291-2293 (1997). [13].Y. T. Tan, T. Kamiya, Z. A. K. Durrani, and H. Ahmed, “Room temperature nanocrystalline silicon single-electron transistors,” Journal of Applied Physics, 94 (1), pp. 633-637 (2003). [14].S. Tiwari, F. Rana, H. Hanafi, A. Hartstein, E. F. Crabbe, and Kevin Chan, “A silicon nanocrystals based memory,” Applied Physics Letters, 68 (10), pp. 1377-1379 (1996). [15].I. C. Cheng and S. Wagner, “High hole and electron field effect mobil-. ities in nanocrystalline silicon deposited at 150 ℃,” Thin Solid Films. 427, pp. 56-59 (2003). [16].P. Roca I Cabarrocas, Anna Fontcuberta I Morral, Sarra Lebib, and Yves Poissant, “Plasma production of nanocrystalline silicon particles and polymorphous silicon thin films for large-area electronic devices,” Pure and Applied Chemistry, 74 (3), pp. 359-367 (2002). [17].L. T. Canham, “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers,” Applied Physics Letters, 57, pp. 1046-1048 (1990). [18].M. L. Brongersma, A. Polman, K. S. Min, E. Boer, T. Tambo, and H. A. Atwater, “Tuning the emission wavelength of Si nanocrystals in SiO2 by oxidation,“ Applied Physics Letters, 72, pp. 2577-2579 (1998). [19].P. Photopoulos, A. G. Nassiopoulou, and D. N. Kouvatsos, “Photoluminescence from nanocrystalline silicon in Si/SiO2 superlattices,“ Applied Physics Letters, 76, pp. 3588-3590 (2000). [20].M. Benyoucef and M. Kuball, “Raman scattering and photoluminescence studies on Si/SiO2 superlattices,” Journal of Applied Physics, 89, pp. 7903- 7909 (2001) [21].J. P. Kleider, C. longeaud, R. Bruggemann, and F. Houze, “ Electronic and topographic properties of amorphous and microcrystalline silicon thin films”, Thin Solid Film 383, pp. 57-60 (2001). [22].A. Asano, “Effects of hydrogen atoms on the network structure of hydrogenated amorphous and microcrystalline silicon thin films “, Applied Physics Letters, 56, pp. 533-535 (1990). [23].D. Das, “Control of hydrogenation and modulation of the structural network in Si:H by interrupted growth and H-plasma treatment “, Physics Review B 51, pp. 10729-10736 (1995). [24].D. Das and M. Jana, “Hydrogen plasma induced microcrystallization in layer-by-layer growth scheme”, Solar Energy Materials & Solar Cells, 81, pp. 169-181 (2004). [25].C. Y. Chang and S.M. Sze, ULSI Technology, 1st ed., McGraw-Hill, pp. 60~62 (1996). [26].T. Kaneko, M. Wakagi, K.I. Onisawa, and T. Minemura, “Change in crystalline morphologies of polycrystalline silicon films prepared by radio-frequency plasma-enhanced chemical vapor deposition using SiF4+H2 gas mixture at 350 °C”, Applied Physics Letters, 64, pp. 1865-1867 (1994). [27].T. Itoh, K. Yamamoto, K. Ushikoshi, S. Nonomura, and S. Nitta, “Properties and electron field emission of high resistive and transparent polymer-like a-C:H”, Journal of Non-Crystalline Solids, 266-269, pp. 201-205 (2000) [28].P. Alpuim and V. Chu, “Amorphous and microcrystalline silicon films grown at low temperatures by radio-frequency and hot-wire chemical vapor deposition “, Journal of Applied Physics, 86, pp. 3812-3821 (1999) [29].K.C. Park, D.Y. Ma and K.H. Kim, “The physical properties of Al-doped zinc oxide films prepared by RF magnetron sputtering”, Thin Solid Films 305, pp. 201-209 (1997). [30].E. Ziegler, A. Heinrich, H. Opperman and G. Stover, “Electrical. properties and non-stoichiometry in ZnO single crystals “, Physica Status Solidi A 66, pp. 635-648 (1981). [31].B. D. Cullity, Elements of X-Ray Diffraction, 2nd ed., pp. 284-285 (Addison-Wesley, Reading, MA, 1978). [32].H. R. Moutinho, C. S. jiang, J. Perkins, Y. Xu, B. P. Nelson, K. M. Jones, m. J. Romero and M. M. Al-Jassim, “Effect of dilution ratio and seed layer on the crystallinity of microcrystalline silicon thin films deposited by Hot-Wire Chemical vapor Deposition”, Thin Solid Films 430, pp. 135-140 (2003) [33].T. Akasaka and I. Shimizu, “In situ real time studies of the formation of polycrystalline silicon films on glass grown by a layer-by-layer technique”, Applied Physics Letters, 66, pp. 3441-3443 (1995). [34].Y. Uchida, T. Ichimura, M. Ueno, and H. Haruki, “Microcrystalline Si: H Film and Its Application to Solar Cells “, Japanese Journal of Applied Physics, 21, PP. L586-588 (1986). [35].J. Doyle, R. Robertson, G. Lin, M. He, and A. Gallagher, “Production of high-quality amorphous silicon films by evaporative silane surface decomposition “, Journal of Applied Physics, 64, pp. 3215-3223 (1998). [36].N. L. Arthur and L. A. Miles, “Rate constants for H + (CH3)4-nSiHn, n = 1-4”, Chemical Physics Letters, 282, pp. 192-196 (1998). [37].R. E. I. Schropp and K. F. Feenstra, “Device quality polycrystalline and amorphous silicon films by hot-wire chemical vapor deposition”, Philosophical Magazine B, 76, pp. 309-321 (1997). [38].A. Matsuda, “Growth mechanism of microcrystalline silicon obtained from reactive plasma”. Thin Solid Films 337, pp. 1-6 (1999). [39].C. Y. Lin, Y. K. Fang, S. F. Chen, C. S. Lin, T. H. Chou, S. B. Hwang, J. S. Hwang, and K. I. Lin,” Investigation of structure and properties of nanocrystalline silicon on various buffer layers”, Journal of Electronic Materials, 34 (8), pp.1123-1128 (2005) [40].A. Matsuda, “Formation kinetics and control of microcrystallite in μ-Si:Η. from glow discharge plasma,” Journal of Non-Crystalline Solids, 59-60, pp. 767-774 (1983). [41].E. A. Guliants and W. A. Anderson, “Study of dynamics and mechanism of metal-induced silicon growth,” Journal of Applied Physics, 89 (8), pp. 4648-4656 (2001). [42].R.T. Howe and R.S. Muller, “Stress in polycrystalline and amorphous silicon thin films,” Journal of Applied Physics, 54 (8) pp. 4674-4675 (1983). [43].S.M. Sze, VLSI Technology, 2nd ed., McGraw-Hill, pp. 259~263. [44].P. Roca I Cabarrocas, A. Fontcuberta I Morral, B. Kalache, and S. Kasouit, “Microcrystalline Silicon Thin Films Grown by PECVD. Growth Mechanisms and Grain Size Control,” Solid State Phenomena, 93, pp. 257-268 (2003). [45].T. Baron, F. Martin, P. Mur, C. Wyon, and Dupuy M , “Silicon quantum dot nucleation on Si3N4, SiO2 and SiOxNy substrates for nanoelectronic devices,“ Journal of Crystal Growth, 209 (4), pp. 1004-1008 (2000). [46].Y. Kanemitsu, “Light emission from porous silicon and related materials,“ Physics Reports, 263, pp. 1-91 (1995). [47].C. Y. Lin, Y. K. Fang, S. F. Chen, P. C. Lin, C. S. Lin, T. H. Chou, J. S. Hwang, and K. I. Lin, “Growth of nanocrystalline silicon thin film with layer-by-layer technique for fast photo-detecting applications,” Material Science & Engineering: B 127, pp. 251-254 (2006). [48].C. Y. Lin, Y. K. Fang, S. F. Chen, C. S. Lin, T. H. Chou, S. B. Hwang, J. S. Hwang, and K. I. Lin, “,” Preferential coalescence of nanocrystalline silicon on different film substrates,” Journal of Non-Crystalline Solids, 352, pp. 44-50 (2006). [49].K. A. Jeon, J. H. Kim, G. H. Kim, and S. Y. Lee, “Oxidation effects on the photoluminescent properties of Si nanocrystalline thin films,” Optical Materials, 27, pp. 988-990 (2005). [50].C. Y. Lin, Y. K. Fang, S. F. Chen, S. H. Chang, and T. H. Chou ,“Enhancing photoluminescence of nanocrystalline silicon thin film with oxygen plasma oxidation”, Material Science and Engineering B, In press [51].W. C. Choi, E. K. Kim, S. K. Min, C. Y. Park, J. H. Kim, and T. Y. Seong, “Direct formation of nanocrystalline silicon by electron cyclotron resonance chemical vapor deposition,” Applied Physics Letters, 70, pp. 3014-3016 (1997). [52].O. Vetterl, P. Hapke, F. Finger, L. Houben, M. Luysberg, and H. Wagner, “Growth of microcrystalline silicon using the layer-by-layer technique at various plasma excitation frequencies,“ Journal of Non-Crystalline Solids, 227-230, pp. 866-870 (1998). [53].P. Roca I Cabarrocas, “New approaches for the production of nano-, micro-, and polycrystalline silicon thin film,” Physica Status Solidi (c) 1 (5), pp. 1115-1130 (2004). [54].G. Ambrosone, U. Coscia, S. Lettieri, P. Maddalena and C. Minarini, “Optical, structural and electrical properties of μc-Si:H films deposited by SiH4+H2,” Materials Science and Engineering: B, 101, pp. 236-241 (2003). [55].A.Fujishima and K.Honda, “Electrochemical Photolysis of Water at a Semiconductor Electrode,” Nature, 238, pp. 37-38 (1972). [56].A.Fujishima, K.Hashimoto, and T.Watanabe, TiO2 photocatalysis: Fundamentals and Application, BKC, Tokyo (1999). [57].M. R. Hoffmann, S. T. Martin, W.Y. Choi, and D. W. Bahnemann, “Environmental Applications of Semiconductor Photocatalysis,“ Chemical Reviews, 95, pp.69-96 (1995). [58].X. Z. Li, F. B. Li, C. L. Yang, and W. K. Ge, “Photocatalytic activity of WOx-TiO2 under visible light irradiation,” Journal of photochemistry and Photobiology A: Chemistry, 141, pp. 209-217 (2001). [59].A. K. Ghosh and H. P. Maruska,” Photoelectrolysis of Water in Sunlight with Sensitized Semiconductor Electrodes,” Journal of. Electrochemical Society, 124, pp. 1516-1522 (1977). [60].M. Anpo, “Photocatalysis on titanium oxide catalysts. Approaches in achieving highly efficient reactions and realizing the use of visible light,” Catalysis Surveys from Japan, 1, pp. 169-179 (1997). [61].R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, “Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides,“ Science, 293, pp. 269-271 (2001). [62].T. Sugiure, T. Yoshida, and H. Minoura, “Designing a TiO2 Nano-Honeycomb Structure Using Photoelectrochemical Etching,” Electrochemical and Solid-State Letters, 1, pp. 175-177 (1998). [63].B. Ohtani, Y. Ogawa, and S. Nishimoto, “Photocatalytic Activity of Amorphous-Anatase Mixture of Titanium (IV) Oxide Particles Suspended in Aqueous Solutions,“ Journal of Physical Chemistry B, 101, pp. 3746-3752 (1997). [64].R. Y. Tsai, C. T. Wei, D. Lin, W. J. Lee, and M. Y. Hau, “The water-repellant properties of mixed films with TiO2 base,“ Proceeding of SPIE, 3941, pp. 112-120 (2000). [65].C. Y. Lin, Y. K. Fang, C. H. Kuo, S. F. Chen, C.S. Lin, T. H. Chou, Y. H. Lee, J. C. Lin, and S. B. Hwang,” Design and Fabrication of a TiO2/Nano-Silicon Composite Visible-Light Photocatalyst”, Applied Surface Science, 253, pp. 898-903 (2006) [66].J. D. Plummer, D D. Michael., and B. Peter Griffin, Silicon VLSI Technology , Prentice Hall 2000, pp. 352-359. [67].T. V. Torchinskaya, N. E. Korsunskaya, L. Yu. Khomenkova, B. R. Dhumaev, and S. M. Prokes, “The role of oxidation on porous silicon photoluminescence and its excitation,” Thin Solid Film, 381, pp. 88-93 (2001). [68].E. Edelberg, S. Bergh, R. Naone, M. Hall, and E. S. Aydil, “Luminescence from plasma deposited silicon films,” Journal of Applied Physics, 81, pp. 2410-2417 (1997). [69].X. L. Wu, G. G. Siu, S. Tong, X. N. Liu, F. Yan, S. S. Jiang, X. K. Zhang and D. Feng, “Raman scattering of alternating nanocrystalline silicon/amorphous silicon multilayers,“ Applied Physics Letters, 69, pp. 523-525 (1996). [70].Y. L. He, C.Z. Yin, G. X. Cheng, L. C. Wang, X. N. Liu, and G. Y. Hu, “The structure and properties of nanosize crystalline silicon films,” Journal of Applied Physics, 75, pp. 797-803 (1994). [71].L. C. Wang, X. N. Liu, F. Yan, X. M. Bao, and D. Feng, “The pseudo-ordered structure in light emitting porous and nanocrystalline silicon films,” Applied Physics Letters, 70 pp. 2265-2267 (1997). [72].H. Watanabe, N. Aoto, S. Adachi, and T. Kikkawa, “Device application and structure observation for hemispherical-grained Si,” Journal of Applied Physics, 71, pp. 3538-3543 (1992). [73].Y. K. Fang, S. B. Hwang, K. H. Chen, M. J. Tasi, and L. C. Kuo, “Amorphous SiC/Si Heterojunction p-i-n diode for low noise and high sensitivity UV detector,” IEEE Trans. on Electron Devices, 39, pp. 292-296 (1992). [74].Y. K. Fang, K. H. Chen, K. S. Wu, C. R. Liu, and J. D. Hwang, “An amorphous silicon/silicon-carbide double barrier structure with 2.66 peak to valley current ratio negative resistance,” Journal of Applied Physics, 72, pp. 1178-1179 (1992). [75].M. Nakamura, “Role of terminal OH groups on the electrical and hydrophilic properties of hydro-oxygenated amorphous TiOx:OH thin films,” Journal of Applied Physics, 90, pp. 3391-3395 (2001). [76].A. Mills and S. L. Hunte, “An overview of semiconductor photocatalysis,“ Journal of Photochemistry and Photobiology A: Chemistry, 108, pp. 1-35 (1997). [77].C. C. Chen, W. Zhao, P. X. Lei, J. C. Zhao, and N. Serpone, “Photosensitized Degradation of Dyes in Polyoxometalate Solutions Versus TiO2 Dispersions under Visible-Light Irradiation: Mechanistic Implications,” Chemistry - A European Journal, 10, pp. 1956-1965 (2004). [78].Y. Takata, S. Hidaka, M. Masuda, and T. Ito, “Pool boiling on a super-hydrophilic surface,” International Journal of Energy Research, 27, pp. 111-119 (2002). [79].T. Watanabe, A. Nakajima, R. Wang, M. Minabe, S. Koizumi, A. Fujishima, and K. Hashimoto, “Photocatalytic activity and photoinduced hydrophilicity of titanium dioxide coated glass,“ Thin Solid Film, 351, pp. 260-263 (1999).
|