跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/07 20:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林俊昱
研究生(外文):Chun-Yu Lin
論文名稱:以電漿輔助及熱絲化學氣相沉積法研製運用於光電方面之奈米矽晶薄膜
論文名稱(外文):The Study of Nanocrystalline Silicon Thin Films Prepared by PECVD and Hot-Wire CVD Technologies for Optic-Electronic Applications
指導教授:方炎坤方炎坤引用關係
指導教授(外文):Yean-Kuen Fang
學位類別:博士
校院名稱:國立成功大學
系所名稱:微電子工程研究所碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
畢業學年度:95
語文別:英文
論文頁數:100
中文關鍵詞:電漿輔助化學氣相沉積奈米矽晶熱絲化學氣相沉積
外文關鍵詞:hot-wire chemical vapor depositionplasma enhacement chemical vapor depositionnanocrystalline silicon
相關次數:
  • 被引用被引用:0
  • 點閱點閱:518
  • 評分評分:
  • 下載下載:75
  • 收藏至我的研究室書目清單書目收藏:1
本論文分別研究以熱絲化學氣相沉積(hot-wire chemical vapor deposition, HWCVD)及電漿輔助化學氣相沉積(plasma enhacement chemical vapor deposition, PECVD)運用層疊(layer-by-layer, LBL)兩種方法製備奈米矽晶薄膜(nanocrystalline silicon, nc-Si);分析奈米矽晶之結構與光電特性,將其分別應用於矽基發光材料、快速光檢測器及可見光光觸媒之研製。
在此研究中,nc-Si分別以HWCVD及PECVD運用LBL技術製備,再以微拉曼光譜儀(micro-Raman spectroscopy)、光致發光(photoluminescence, PL)及X射線繞射(X-ray diffraction, XED)作特性分析。此外,nc-Si以HWCVD成長的機制研究中發現,H2的稀釋、熱絲(filament)與基板的溫度對nc-Si的結構及特性有非常大的影響;熱絲與基板的溫度愈高及大量的H2稀釋,都造成較佳的nc-Si結晶性與薄膜特性。另一方面,研究報告指出PECVD運用LBL技術,為一能有效製備高結晶的nc-Si的方法;於此方法中,將先沉積出的非晶矽(a-Si), 運用H電漿(plasma)予以再結晶(re-crystallizing)而成為nc-Si;因此,其相關的成長機制是很重要的,於論文中將詳加探討。
其次,吾人研究利用HWCVD在事先沉積不同薄膜的矽基板與玻璃基板上沉積奈米矽晶薄膜,探討在不同緩衝層(buffer layer)所沉積的奈米矽晶薄膜在結晶、結構及電子傳輸特性上的差異;結果顯示緩衝層的粗糙度愈高與結晶特性愈佳有助奈米矽晶薄膜的結晶性及電特性,因此吾人可藉由選擇適當的緩衝層於低溫的狀態沉積高結晶與電特性的薄膜。
再者,矽基發光材料在光電方面亦是深具潛力;雖然,矽為一間接半導體(indirect),其發光效率不佳,但研究顯示半導體材料當其體相逐漸減小到一定臨界尺寸以下後,材料中載子(電子、電洞)的運動受到限制,導致動能增加,相對地電子結構也由體相連續的擴展能帶變成準分裂的能階,且由於動能增加使能隙增大,粒徑愈小能隙愈大,此為半導體奈米顆粒的量子尺寸效應(quqntum size effect) 。由於量子尺寸效應(quantum size effect)影響,能帶結構發生的變化會引起半導體奈米材料光學性質、電子傳導特性產生與塊體(bulk)材料不同的現象。例如,光吸收向短波長方向移動,而電子傳導出現quantum fluctuation現象,材料的發光peak 出現藍移(blue shift)等。在本論文中,吾人嘗試以低溫氧電漿氧化法(oxygen plasma oxidation)氧化奈米矽晶薄膜,探討氧化過程奈米矽晶的晶粒大小變及其對應的PL強度關係,並驗證此一方法的有效性。
接著,吾人研究電漿輔助化學氣相沉積運用層疊方法製備奈米矽晶薄膜,探討層疊層數對薄膜結晶特性、遷移率及光吸收係數的影響;由結果中取一最佳層數,作為在可見光與近紅外線(near-IR)快速光偵測器之應用。另外,應用奈米矽晶薄膜,吾人製備具TiO2/nc-Si/a-Si結構的可見光觸媒(visible light photocatalyst),此結構中nc-Si係作為電荷提供(charge donor)及促成其上的TiO2薄膜形成顆粒狀(grain-like)的表面型態,而a-Si是用以提升nc-Si顆粒的聚集(aggregation)並增加TiO2/nc-Si結構在玻璃的黏著性。由結果可知此一可見光觸媒的確在TiO2的光觸媒及親水特性有明顯提升,文中對其機制亦詳加探討。
In this dissertation, we report the investigations of nanocrystalline silicon (nc-Si) thin films deposited by both hot-wire chemical vapor deposition (HWCVD) and plasma enhancement chemical vapor deposition (PECVD) with layer-by-layer (LBL) technique in detail. Additionally, the applications of nc-Si films in optic-electronics are discussed.
In this work, the nc-Si films were grown by HWCVD and PECVD with LBL technique and characterized with micro-Raman spectroscopy, Photoluminescence (PL) and X-ray diffraction (XRD). Additionally, the deposition mechanism of nc-Si film by HWCVD was studied and found that the hydrogen dilution, temperature of filament and substrate influence on the structure and properties of nc-Si film profoundly. The higher temperature of filament or substrate and higher hydrogen dilution result in a better crystallinity and the property of nc-Si film. On the other hand, PECVD with LBL technique has been reported as an effective method to obtain high crystallinity thin nc-Si film. In the technique, the participation of hydrogen plasma exposure is a key factor in re-crystallizing the pre-deposited a-Si to form nc-Si film. Therefore, the mechanism of hydrogen plasma exposure in LBL is important and was studied more.
Next, we investigate the effect of various film substrates on the morphology and structure of HWCVD deposited nc-Si film. In the past, the nc-Si thin films were usually deposited on glass or silicon substrate, but very few studies focused on the properties of nc-Si films deposited on other layers, such as Si3N4, SiO2, a-Si and nc-Si. However, we found the structure and properties of nc-Si film can be improved significantly on these layers which has been used as buffer layer on yhe Si substrate. In other words, the columnar grain size (CG), mobility (μ), volume fraction of crystalline (Xc) of the deposited nc-Si films are strongly dependent on the buffer layer’s surface morphology.
Additionally, in order to enhance the photoluminescence (PL) property of nc-Si film, we use oxygen plasma to oxidize the nc-Si films. After oxidation, the size of Si crystallites embedded in SiO2 is reduced thus enhancing the quantum confinement to increase the luminescent intensity. In comparison with the conventionally high temperature thermal oxidation, the new method has the advantages of oxidizing nc-Si effectively under low temperature and is available on glass or plastic substrate. Furthermore, the impact of layers numbers on the properties of nc-Si films deposited by PECVD with LBL technique was studied, including crystallinity, absorption coefficient within wavelength range of 500-2000 nm (visible ~ near IR) and Hall mobility. We found increasing the layer number enhances the grain size, Xc and µ of LBL nc-Si , but degrades the absorption coefficient (α).
Based on the investigation on nc-Si films, we develop a structure of TiO2/nc-Si/a-Si composite visible light photocatalyst. In which, the nc-Si is used as charge donor and to assist TiO2 film deposited on its top the forming a grain-like surface morphology; while the a-Si is employed to enhance the adhesion of TiO2/nc-Si on glass substrate and promote the aggregation of nc-Si grains thus in turn more rugged surface TiO2 film’s morphology. Experiment results show the developed composite photocatalyst has an obvious improvement in photocatalytic and super-hydrophilic ability under visible light irradiation as compared to the conventional one.
目錄 (CONTENTS)
中文摘要 i
誌謝 xv
Table Captions xvi
Figure Captions xvii
Abstract xxi
Chapter 1 Introduction
1-1 Background 1
1-2 Preface of this Dissertation 3
Chapter 2 Preparation and Characterization of Nanocrystalline
Silicon Thin Films
2-1 introduction 5
2-2 Preparation of nc-Si films 6
2-2-1 Hot-wire Chemical vapor deposition system 6
2-2-1-1 The effect of substrate temperature on the
property of nc-Si film 7
2-2-1-2 The effect of filament temperature on the
property of nc-Si film 7
2-2-1-3 The effect of hydrogen dilution on the
property of nc-Si film 8
2-2-2 plasma Enhancement Chemical vapor deposition
system 8
2-2-2-1 The effect of layers number on the properties
of nc-Si films 9
2-3 Characterization of nc-Si films 10
2-3-1 Micro-Raman and Photoluminescence spectroscopy 10
2-3-2 Measurement for transmittance and absorption
coefficient of films 11
2-2-3 X-Ray Diffraction (XRD) 12
Chapter 3 The Growth Mechanism of Nanocrystalline Silicon
Thin Films Deposited by HWCVD and PECVD with
LBL technique
3-1 Introduction 27
3-2 Growth mechanism of nanocrystalline silicon thin films
deposited by HWCVD 28
3-3 Growth mechanism of nanocrystalline silicon thin films
deposited by PECVD with LBL technique 31
3-3-1 The procedure and mechanism of Layer-By-Layer technique 31
3-3-2 Surface diffusion model 32
3-3-3 Etching model 33
3-3-4 Chemical annealing model 33
3-4 Conclusions 34
Chapter 4 Investigation of Structures and Properties of
nanocrystalline Silicon Thin Films on various
Buffer layers
4-1 Introduction 40
4-2 Experiments 41
4-3 Results and Discussions 42
4-4 Conclusions 45
Chapter 5 The Applications of Nanocrystalline Silicon Thin
Films For Optic-Electronics
5-1 Introduction 53
5-2 The photoluminescence study of oxygen plasma oxidized nanocrystalline silicon thin film 56
5-2-1 Experiments 56
5-2-2 Results and Discussions 56
5-2-3 Conclusions 59
5-3 Growth of nanocrystalline silicon thin film with
layer-by-layer technique for fast photo-detecting
applications 59
5-3-1 Experiments 59
5-3-2 Results and Discussions 60
5-3-3 Conclusions 62
5-4 The fabrication of a TiO2/nano-silicon composite
visible-light photocatalyst 63
5-4-1 Design considerations and Operation mechanism 63
5-4-2 Experiments 65
5-4-3 Results and Discussions 66
5-4-4 Conclusions 68
Chapter 6 Conclusions and Prospects
6-1 Conclusions 87
6-2 Prospects 89
References 91
Appendix A Author’s Resume
Appendix B Author’s Related Publications
[1].Y. Hamakawa: Amorphous Semiconductor Technologies and Devices, Japan annual reviews in electronics, computers & telecommunications vol. 22, (Ohmsha, LTD. And North-Holland, Netherlands, 1987).
[2].J. P. Kleider, C. Longeaud, R. Bruggemann, and F. Houze, “Electronic and topographic properties of amorphous and microcrystalline silicon thin film,” Thin Solid Films, 383, pp. 57-60 (2001).
[3].D. Soler, M. Fonrodona, C. Voz, J. Bertomeu, and J. andreu, “Thin silicon films ranging from amorphous to nanocrystalline obtain by hot-wire CVD,” Thin Solid Films, 383, pp. 189-191 (2001).
[4].Semiconductors and Semimetals, ed. J. I. Pankove (Academic Press, London, 1984) Vol. 21D.
[5].P. Roca i Cabarrocas, A. Fontcuberta I Morral, Y. Poissant, “Growth and optoelectronic properties of polymorphous silicon thin films,” Thin Solid Films, 403-404, pp. 39-46 (2002).
[6].P. P. Ray, P. Chaudhuri, and P. Chatterjee, “Hydrogenated amorphous silicon films with low defect density prepared by argon dilution: application to solar cells,” Thin Solid Films, 403-404, pp. 275-279 (2002).
[7].A. A. Parr, C. Bodart, D. Demonchy, and D. J Gardiner, “Depth profiling variously deposited LPCVD polysilicon films using Raman microscopy,” Semiconductor Scence &. Technoogy, 16, pp. 608-613 (2001).
[8].T. Noguchi, “Appearance of single-crystalline properties in fin-patterned Si thin film transistor (TFT’s) by solid phase crystallization (SPC) ,” Japanese Journal of Applied Physics, 32, pp. 1584-1939 (1993).
[9].S. Lee, Y. Jeon, and S. Joo, “Pd induced lateral crystallization of amorphous Si thin film,” Applied Physics Letters, 66 (13), pp. 1671-1673 (1995).
[10].C. H. Oh, and M. Matsumura, “Aproposed single grain-boundary thin-film transistor,” IEEE Electron Device Letters, 22 (1), pp. 20-22 (2001).
[11].S.Veprek and V. Marecek, “The preparation of thin layers of ge and si. by chemical hydrogen plasma transport,” Solid State Electron. 11, pp. 683-684 (1968).
[12].M. Fukuda, K. Nakagawa, S. Miyazaki, and M. Hirose, “Resonant tunneling through a self-assembled Si quantum dot,” Applied Physics Letters, 70 (17), pp. 2291-2293 (1997).
[13].Y. T. Tan, T. Kamiya, Z. A. K. Durrani, and H. Ahmed, “Room temperature nanocrystalline silicon single-electron transistors,” Journal of Applied Physics, 94 (1), pp. 633-637 (2003).
[14].S. Tiwari, F. Rana, H. Hanafi, A. Hartstein, E. F. Crabbe, and Kevin Chan, “A silicon nanocrystals based memory,” Applied Physics Letters, 68 (10), pp. 1377-1379 (1996).
[15].I. C. Cheng and S. Wagner, “High hole and electron field effect mobil-. ities in nanocrystalline silicon deposited at 150 ℃,” Thin Solid Films. 427, pp. 56-59 (2003).
[16].P. Roca I Cabarrocas, Anna Fontcuberta I Morral, Sarra Lebib, and Yves Poissant, “Plasma production of nanocrystalline silicon particles and polymorphous silicon thin films for large-area electronic devices,” Pure and Applied Chemistry, 74 (3), pp. 359-367 (2002).
[17].L. T. Canham, “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers,” Applied Physics Letters, 57, pp. 1046-1048 (1990).
[18].M. L. Brongersma, A. Polman, K. S. Min, E. Boer, T. Tambo, and H. A. Atwater, “Tuning the emission wavelength of Si nanocrystals in SiO2 by oxidation,“ Applied Physics Letters, 72, pp. 2577-2579 (1998).
[19].P. Photopoulos, A. G. Nassiopoulou, and D. N. Kouvatsos, “Photoluminescence from nanocrystalline silicon in Si/SiO2 superlattices,“ Applied Physics Letters, 76, pp. 3588-3590 (2000).
[20].M. Benyoucef and M. Kuball, “Raman scattering and photoluminescence studies on Si/SiO2 superlattices,” Journal of Applied Physics, 89, pp. 7903- 7909 (2001)
[21].J. P. Kleider, C. longeaud, R. Bruggemann, and F. Houze, “ Electronic and topographic properties of amorphous and microcrystalline silicon thin films”, Thin Solid Film 383, pp. 57-60 (2001).
[22].A. Asano, “Effects of hydrogen atoms on the network structure of hydrogenated amorphous and microcrystalline silicon thin films “, Applied Physics Letters, 56, pp. 533-535 (1990).
[23].D. Das, “Control of hydrogenation and modulation of the structural network in Si:H by interrupted growth and H-plasma treatment “, Physics Review B 51, pp. 10729-10736 (1995).
[24].D. Das and M. Jana, “Hydrogen plasma induced microcrystallization in layer-by-layer growth scheme”, Solar Energy Materials & Solar Cells, 81, pp. 169-181 (2004).
[25].C. Y. Chang and S.M. Sze, ULSI Technology, 1st ed., McGraw-Hill, pp. 60~62 (1996).
[26].T. Kaneko, M. Wakagi, K.I. Onisawa, and T. Minemura, “Change in crystalline morphologies of polycrystalline silicon films prepared by radio-frequency plasma-enhanced chemical vapor deposition using SiF4+H2 gas mixture at 350 °C”, Applied Physics Letters, 64, pp. 1865-1867 (1994).
[27].T. Itoh, K. Yamamoto, K. Ushikoshi, S. Nonomura, and S. Nitta, “Properties and electron field emission of high resistive and transparent polymer-like a-C:H”, Journal of Non-Crystalline Solids, 266-269, pp. 201-205 (2000)
[28].P. Alpuim and V. Chu, “Amorphous and microcrystalline silicon films grown at low temperatures by radio-frequency and hot-wire chemical vapor deposition “, Journal of Applied Physics, 86, pp. 3812-3821 (1999)
[29].K.C. Park, D.Y. Ma and K.H. Kim, “The physical properties of Al-doped zinc oxide films prepared by RF magnetron sputtering”, Thin Solid Films 305, pp. 201-209 (1997).
[30].E. Ziegler, A. Heinrich, H. Opperman and G. Stover, “Electrical. properties and non-stoichiometry in ZnO single crystals “, Physica Status Solidi A 66, pp. 635-648 (1981).
[31].B. D. Cullity, Elements of X-Ray Diffraction, 2nd ed., pp. 284-285 (Addison-Wesley, Reading, MA, 1978).
[32].H. R. Moutinho, C. S. jiang, J. Perkins, Y. Xu, B. P. Nelson, K. M. Jones, m. J. Romero and M. M. Al-Jassim, “Effect of dilution ratio and seed layer on the crystallinity of microcrystalline silicon thin films deposited by Hot-Wire Chemical vapor Deposition”, Thin Solid Films 430, pp. 135-140 (2003)
[33].T. Akasaka and I. Shimizu, “In situ real time studies of the formation of polycrystalline silicon films on glass grown by a layer-by-layer technique”, Applied Physics Letters, 66, pp. 3441-3443 (1995).
[34].Y. Uchida, T. Ichimura, M. Ueno, and H. Haruki, “Microcrystalline Si: H Film and Its Application to Solar Cells “, Japanese Journal of Applied Physics, 21, PP. L586-588 (1986).
[35].J. Doyle, R. Robertson, G. Lin, M. He, and A. Gallagher, “Production of high-quality amorphous silicon films by evaporative silane surface decomposition “, Journal of Applied Physics, 64, pp. 3215-3223 (1998).
[36].N. L. Arthur and L. A. Miles, “Rate constants for H + (CH3)4-nSiHn, n = 1-4”, Chemical Physics Letters, 282, pp. 192-196 (1998).
[37].R. E. I. Schropp and K. F. Feenstra, “Device quality polycrystalline and amorphous silicon films by hot-wire chemical vapor deposition”, Philosophical Magazine B, 76, pp. 309-321 (1997).
[38].A. Matsuda, “Growth mechanism of microcrystalline silicon obtained from reactive plasma”. Thin Solid Films 337, pp. 1-6 (1999).
[39].C. Y. Lin, Y. K. Fang, S. F. Chen, C. S. Lin, T. H. Chou, S. B. Hwang, J. S. Hwang, and K. I. Lin,” Investigation of structure and properties of nanocrystalline silicon on various buffer layers”, Journal of Electronic Materials, 34 (8), pp.1123-1128 (2005)
[40].A. Matsuda, “Formation kinetics and control of microcrystallite in μ-Si:Η. from glow discharge plasma,” Journal of Non-Crystalline Solids, 59-60, pp. 767-774 (1983).
[41].E. A. Guliants and W. A. Anderson, “Study of dynamics and mechanism of metal-induced silicon growth,” Journal of Applied Physics, 89 (8), pp. 4648-4656 (2001).
[42].R.T. Howe and R.S. Muller, “Stress in polycrystalline and amorphous silicon thin films,” Journal of Applied Physics, 54 (8) pp. 4674-4675 (1983).
[43].S.M. Sze, VLSI Technology, 2nd ed., McGraw-Hill, pp. 259~263.
[44].P. Roca I Cabarrocas, A. Fontcuberta I Morral, B. Kalache, and S. Kasouit, “Microcrystalline Silicon Thin Films Grown by PECVD. Growth Mechanisms and Grain Size Control,” Solid State Phenomena, 93, pp. 257-268 (2003).
[45].T. Baron, F. Martin, P. Mur, C. Wyon, and Dupuy M , “Silicon quantum dot nucleation on Si3N4, SiO2 and SiOxNy substrates for nanoelectronic devices,“ Journal of Crystal Growth, 209 (4), pp. 1004-1008 (2000).
[46].Y. Kanemitsu, “Light emission from porous silicon and related materials,“ Physics Reports, 263, pp. 1-91 (1995).
[47].C. Y. Lin, Y. K. Fang, S. F. Chen, P. C. Lin, C. S. Lin, T. H. Chou, J. S. Hwang, and K. I. Lin, “Growth of nanocrystalline silicon thin film with layer-by-layer technique for fast photo-detecting applications,” Material Science & Engineering: B 127, pp. 251-254 (2006).
[48].C. Y. Lin, Y. K. Fang, S. F. Chen, C. S. Lin, T. H. Chou, S. B. Hwang, J. S. Hwang, and K. I. Lin, “,” Preferential coalescence of nanocrystalline silicon on different film substrates,” Journal of Non-Crystalline Solids, 352, pp. 44-50 (2006).
[49].K. A. Jeon, J. H. Kim, G. H. Kim, and S. Y. Lee, “Oxidation effects on the photoluminescent properties of Si nanocrystalline thin films,” Optical Materials, 27, pp. 988-990 (2005).
[50].C. Y. Lin, Y. K. Fang, S. F. Chen, S. H. Chang, and T. H. Chou ,“Enhancing photoluminescence of nanocrystalline silicon thin film with oxygen plasma oxidation”, Material Science and Engineering B, In press
[51].W. C. Choi, E. K. Kim, S. K. Min, C. Y. Park, J. H. Kim, and T. Y. Seong, “Direct formation of nanocrystalline silicon by electron cyclotron resonance chemical vapor deposition,” Applied Physics Letters, 70, pp. 3014-3016 (1997).
[52].O. Vetterl, P. Hapke, F. Finger, L. Houben, M. Luysberg, and H. Wagner, “Growth of microcrystalline silicon using the layer-by-layer technique at various plasma excitation frequencies,“ Journal of Non-Crystalline Solids, 227-230, pp. 866-870 (1998).
[53].P. Roca I Cabarrocas, “New approaches for the production of nano-, micro-, and polycrystalline silicon thin film,” Physica Status Solidi (c) 1 (5), pp. 1115-1130 (2004).
[54].G. Ambrosone, U. Coscia, S. Lettieri, P. Maddalena and C. Minarini, “Optical, structural and electrical properties of μc-Si:H films deposited by SiH4+H2,” Materials Science and Engineering: B, 101, pp. 236-241 (2003).
[55].A.Fujishima and K.Honda, “Electrochemical Photolysis of Water at a Semiconductor Electrode,” Nature, 238, pp. 37-38 (1972).
[56].A.Fujishima, K.Hashimoto, and T.Watanabe, TiO2 photocatalysis: Fundamentals and Application, BKC, Tokyo (1999).
[57].M. R. Hoffmann, S. T. Martin, W.Y. Choi, and D. W. Bahnemann, “Environmental Applications of Semiconductor Photocatalysis,“ Chemical Reviews, 95, pp.69-96 (1995).
[58].X. Z. Li, F. B. Li, C. L. Yang, and W. K. Ge, “Photocatalytic activity of WOx-TiO2 under visible light irradiation,” Journal of photochemistry and Photobiology A: Chemistry, 141, pp. 209-217 (2001).
[59].A. K. Ghosh and H. P. Maruska,” Photoelectrolysis of Water in Sunlight with Sensitized Semiconductor Electrodes,” Journal of. Electrochemical Society, 124, pp. 1516-1522 (1977).
[60].M. Anpo, “Photocatalysis on titanium oxide catalysts. Approaches in achieving highly efficient reactions and realizing the use of visible light,” Catalysis Surveys from Japan, 1, pp. 169-179 (1997).
[61].R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, “Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides,“ Science, 293, pp. 269-271 (2001).
[62].T. Sugiure, T. Yoshida, and H. Minoura, “Designing a TiO2 Nano-Honeycomb Structure Using Photoelectrochemical Etching,” Electrochemical and Solid-State Letters, 1, pp. 175-177 (1998).
[63].B. Ohtani, Y. Ogawa, and S. Nishimoto, “Photocatalytic Activity of Amorphous-Anatase Mixture of Titanium (IV) Oxide Particles Suspended in Aqueous Solutions,“ Journal of Physical Chemistry B, 101, pp. 3746-3752 (1997).
[64].R. Y. Tsai, C. T. Wei, D. Lin, W. J. Lee, and M. Y. Hau, “The water-repellant properties of mixed films with TiO2 base,“ Proceeding of SPIE, 3941, pp. 112-120 (2000).
[65].C. Y. Lin, Y. K. Fang, C. H. Kuo, S. F. Chen, C.S. Lin, T. H. Chou, Y. H. Lee, J. C. Lin, and S. B. Hwang,” Design and Fabrication of a TiO2/Nano-Silicon Composite Visible-Light Photocatalyst”, Applied Surface Science, 253, pp. 898-903 (2006)
[66].J. D. Plummer, D D. Michael., and B. Peter Griffin, Silicon VLSI Technology , Prentice Hall 2000, pp. 352-359.
[67].T. V. Torchinskaya, N. E. Korsunskaya, L. Yu. Khomenkova, B. R. Dhumaev, and S. M. Prokes, “The role of oxidation on porous silicon photoluminescence and its excitation,” Thin Solid Film, 381, pp. 88-93 (2001).
[68].E. Edelberg, S. Bergh, R. Naone, M. Hall, and E. S. Aydil, “Luminescence from plasma deposited silicon films,” Journal of Applied Physics, 81, pp. 2410-2417 (1997).
[69].X. L. Wu, G. G. Siu, S. Tong, X. N. Liu, F. Yan, S. S. Jiang, X. K. Zhang and D. Feng, “Raman scattering of alternating nanocrystalline silicon/amorphous silicon multilayers,“ Applied Physics Letters, 69, pp. 523-525 (1996).
[70].Y. L. He, C.Z. Yin, G. X. Cheng, L. C. Wang, X. N. Liu, and G. Y. Hu, “The structure and properties of nanosize crystalline silicon films,” Journal of Applied Physics, 75, pp. 797-803 (1994).
[71].L. C. Wang, X. N. Liu, F. Yan, X. M. Bao, and D. Feng, “The pseudo-ordered structure in light emitting porous and nanocrystalline silicon films,” Applied Physics Letters, 70 pp. 2265-2267 (1997).
[72].H. Watanabe, N. Aoto, S. Adachi, and T. Kikkawa, “Device application and structure observation for hemispherical-grained Si,” Journal of Applied Physics, 71, pp. 3538-3543 (1992).
[73].Y. K. Fang, S. B. Hwang, K. H. Chen, M. J. Tasi, and L. C. Kuo, “Amorphous SiC/Si Heterojunction p-i-n diode for low noise and high sensitivity UV detector,” IEEE Trans. on Electron Devices, 39, pp. 292-296 (1992).
[74].Y. K. Fang, K. H. Chen, K. S. Wu, C. R. Liu, and J. D. Hwang, “An amorphous silicon/silicon-carbide double barrier structure with 2.66 peak to valley current ratio negative resistance,” Journal of Applied Physics, 72, pp. 1178-1179 (1992).
[75].M. Nakamura, “Role of terminal OH groups on the electrical and hydrophilic properties of hydro-oxygenated amorphous TiOx:OH thin films,” Journal of Applied Physics, 90, pp. 3391-3395 (2001).
[76].A. Mills and S. L. Hunte, “An overview of semiconductor photocatalysis,“ Journal of Photochemistry and Photobiology A: Chemistry, 108, pp. 1-35 (1997).
[77].C. C. Chen, W. Zhao, P. X. Lei, J. C. Zhao, and N. Serpone, “Photosensitized Degradation of Dyes in Polyoxometalate Solutions Versus TiO2 Dispersions under Visible-Light Irradiation: Mechanistic Implications,” Chemistry - A European Journal, 10, pp. 1956-1965 (2004).
[78].Y. Takata, S. Hidaka, M. Masuda, and T. Ito, “Pool boiling on a super-hydrophilic surface,” International Journal of Energy Research, 27, pp. 111-119 (2002).
[79].T. Watanabe, A. Nakajima, R. Wang, M. Minabe, S. Koizumi, A. Fujishima, and K. Hashimoto, “Photocatalytic activity and photoinduced hydrophilicity of titanium dioxide coated glass,“ Thin Solid Film, 351, pp. 260-263 (1999).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top