跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2025/01/14 21:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:賴建銘
研究生(外文):Chien-Ming Lai
論文名稱:銦環形佈植及CESL應變技術應用於不同閘極結構90奈米金氧半場效電晶體之研究
論文名稱(外文):The Studies of Indium-Halo Implantation and CESL (Contact Etch Stop Layer) Strain Engineering on 90 nm CMOSFETs with Different Gate Structures
指導教授:葉文冠葉文冠引用關係方炎坤方炎坤引用關係
指導教授(外文):Wen-Kuan YehYean-Kuen Fang
學位類別:博士
校院名稱:國立成功大學
系所名稱:微電子工程研究所碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:155
中文關鍵詞:銦環形佈植接觸蝕刻停止層
外文關鍵詞:Indium HaloCESL Strain Engineering
相關次數:
  • 被引用被引用:2
  • 點閱點閱:372
  • 評分評分:
  • 下載下載:37
  • 收藏至我的研究室書目清單書目收藏:0
當金氧半場效電晶體(Metal-Oxide-Semiconductor Field Effect Transistor)的尺寸進入奈米等級時,嚴重的短通道效應(Short Channel Effect, SCE)及閘極漏電流將使得業界難以再藉由縮減通道長度及閘極氧化層厚度來提昇元件的效能。因此本論文一開始將先針對環型佈植結構尋求最佳的熱退火條件以更有效的抑制短通道效應,接著再進一步的結合應力技術及不同閘極結構的應用以更增進元件的效能。
現今在抑制短通道效應方面,大多是以環型佈植結構(Halo 或稱為口袋佈植pocket implantation)為主。在元件尚未微縮至深次微米等級前,nMOSFET的Halo是以硼(Boron)為主,但當元件進入深次微米之後,硼因質量較小,在後續熱製程時易造成擴散使得局部佈植的濃度降低且佈植的profile也較差,使得抑制熱載子效應的能力降低。因此當元件進入深次微米時,nMOSFET的Halo佈植將以質量較大的銦(Indium)取代硼。但因為In的質量較大,在Halo佈植的過程容易對元件造成更多缺陷,因此為除去In-Halo佈植所造成缺陷,後續的熱退火製程是不可貨缺的。為了找出最佳的熱退火條件,本論文中針對In-Halo元件進行不同條件的熱退火製程,在一連串基本的特性量測及熱載子可靠度的實驗後,我們發現經過900℃長時間熱退火(90秒)的In-Halo元件在各項特性上皆具有顯著的提升,其在短通道效應的抑制上,成效較硼更為顯著。
由於深次微米元件所面臨的問題除了短通道效應外,因縮減閘極氧化層所造成的嚴重閘極漏電流以及通道的高濃度臨界電壓摻雜所造成的通道載子移動下降亦十分的嚴重。因此我們除了利用In-Halo結構來抑制短通道效應之外,更需利用其它的方法來提昇元件的效能。 因現今高介電系數(high K)閘極材料的技術尚不具備高可行性,因此本論文中,我們利用了閘極上方的接觸蝕刻停止層(Contact Etch Stop Layer, CESL)來對通道產生應力,藉以提昇載子的移動率。此項技術與傳統的金氧半電晶體製程相容且不需要用到矽鍺技術,因此具有更高的可行性。在實驗中,我們針對不同厚度的CESL,探討CESL厚度對元件特性及熱載子可靠度的影響,發現當CESL厚度在700 Å時,元件具有較好的特性,過厚的CESL將反而導致元件特性的退化。此外我們亦分別製作了結合CESL應變技術與凹陷式閘極(Notch Gate)、完全金屬矽化物閘極(Fully Silicide Gate, FUSI Gate)技術的元件,個別探討不同閘極結構對於元件特性的影響。經由實驗數據証實,應用了FUSI Gate及Notch Gate結構的元件其特性皆優於傳統閘極元件。
In this dissertation, first we investigated that how to efficiently suppress the short channel effects (SCE) and hot-carrier induced degradations on nano scale complementary metal-oxide-semiconductor field effect transistor (CMOSFET) by optimizing the thermal annealing process. Then, used the stressed contact etch stop layer (CESL) strain engineering to enhance the carrier mobility on 90 nm CMOSFET with different gate structures.
First, in order to further improve the suppression of SCE, we made devices with Indium (In) -Halo implantation not the conventional Boron (B) -Halo one for the heavy mass of In; which avoided the Halo-implantation diffusion caused by post thermal processes. Besides, in order to remove the damages caused by In-Halo implantation, we had made In-halo devices with three different post annealing (PA) conditions ( 900 oC-90sec、1000 oC-10sec、and 1050 oC-spiking) to find the optimum one. After various measurements, we found that the control of annealing time is more efficient than that of annealing temperature with respect to improving hot-carrier-induced device’s degradation. For In-halo nMOSFETs as well as As-halo pMOSFETs, device characteristics and hot-carrier-induced device degradation can be improved by PA particularly at medium temperatures with long time annealing (900 oC-90sec) without degrading the device performance.
Next, we applied the CESL strain engineering on devices with different gate structures; which are conventional gate, notched-gate, and Nickel (Ni) fully silicide (FUSI) gate.
For devices with conventional gate structure, we made devices with different CESL thicknesses (700 Å, 1100 Å), gate widths(0.18-10μm), and length of diffusion (LOD) to find the interactive effects and the optimum process parameters for devices performance. We found that devices with appropriate CESL thickness (700 Å), narrow gate width, and large LOD will possess the higher driving capability.
For notch-gate devices, we found that applied the CESL technique in notch gate devices will not only suppress the SCE, reduce the capacitances of overlap region and junction, but also improve the driving capability apparently in nMOSFET without increasing the device leakages seriously. For pMOSFETs, due to the inappropriate CESL induced-stress, the improvement of driving capability was less than nMOSFETs.
Finally, for devices with Ni-FUSI gate, we have made devices with/without the second CESL. After various measurements, we found that the 2nd CESL will further improve the nMOSFETs performances and no apparent degradations were occurred. But for pMOSFETs, the 2nd CESL induced tensile stress will cause apparent degradations in devices’ driving capability, leakages, and low frequency (LF) noise.
Abstract (Chinese) (1)
Abstract (English) (3)
各章中文提要 (6)
誌謝 (19)
Contents (I)
Table Captions (IV)
Figure Captions (V)

Chapter 1
Introduction
1-1 Background and Motivation 1
1-1-1 Halo Structure for Short Channel Effects Suppression 2
1-1-2 New Techniques to Enhance Device Performances 3
1-2 Preface of This Dissertation 5

Chapter 2
Efficiently Improve the Short Channel Effects and Hot Carrier Reliability in 0.1μm CMOSFETs by Indium-Halo Implanted and Post Annealing
2-1 Introduction 10
2-2 Device Fabrication and Experiment Setup 12
2-3 Results and Discussions 13
2-3-1 Non-PA Indium-Halo versus Boron-Halo for nMOSFETs 13
2-3-2 Impacts of Post Annealing Treatments and Hot-Carrier Effects for nMOSFETs 15
2-3-3 Optimum As-Halo Structure for pMOSFETs 18
2-4 Conclusions 19
Chapter 3
The Geometry Effects on Device Performances and Reliability for 90 nm SOI nMOSFETs with Tensile-Stressed Contact Etch Stop Layer
3-1 Introduction 43
3-2 Device Fabrication and Experiment Setup 45
3-3 Results and Discussions 45
3-3-1 The Thickness Effect of HS CESL film on 90 nm SOI nMOSFETs 46
3-3-2 The Geometry Effects on 90 nm CESL-strained SOI nMOSFETs 49
3-4 Conclusions 52

Chapter 4
The Impacts of High Tensile-Stressed Contact Etch Stop Layer on 90 nm CMOSFETs with Notch-Gate Structure
4-1 Introduction 75
4-2 Device Fabrication and Experiment Setup 76
4-3 Results and Discussions 77
4-3-1 Impacts of the Notch-Gate Structure for HS CESL-Induced Stress in nMOSFETs 77
4-3-2 Impacts of the Notch-Gate for The Integrity of Gate Oxide and Si/SiO2 Interface in HS CESL nMOSFETs 79
4-3-3 The Overlap Region Capacitances in HS CESL nMOSFETs with Notch-Gate Structure 80
4-3-4 Impacts of The Notch-Gate Structure for HS CESL-Induced Stress in pMOSFETs 81
4-3-5 Impacts of The Notch-Gate for The Integrity of Gate Oxide and Si/SiO2 Interface in HS CESL pMOSFETs 82
4-3-6 The Overlap Region Capacitances in HS CESL pMOSFETs with Notch-Gate Structure 83
4-4 Conclusions 83
Chapter 5
The Impacts of High Tensile-Stressed Contact Etch Stop Layer on 65 nm CMOSFETs with Nickel-Fully-Silicide Gate Electrode
5-1 Introduction 109
5-2 Device Fabrication and Experiment Setup 111
5-3 Results and Discussions 112
5-3-1 Impacts of The 2nd HS CESL on Ni-FUSI nMOSFETs 112
5-3-2 The Low Frequency Noise for Ni-FUSI nMOSFETs with/without The 2nd HS CESL 115
5-3-3 The Gate Oxide Capacitance for Ni-FUSI nMOSFETs with/without The 2nd HS CESL 116
5-3-4 Impacts of The 2nd HS CESL on Ni-FUSI pMOSFETs 116
5-3-5 The Low Frequency Noise for Ni-FUSI pMOSFETs with/without The 2nd HS CESL 119
5-3-6 The Gate Oxide Capacitance for Ni-FUSI pMOSFETs with/without The 2nd HS CESL 119
5-4 Conclusions 120

Chapter 6
Conclusions and Prospects
6-1 Conclusions 140
6-2 Prospects 142
6-2-1 High-k Gate Dielectric and Metal Gate Electrode 142
6-2-2 FinFET Structure 143

Reference 145
Appendix A Author’s Resume i
Appendix B Author’s Related Publications ii
[1] 莊達人, VLSI製造技術, 高立 1019, 2002.
[2] International Technology Roadmap for Semiconductors, 2005
[3] J. S. Park, S. Y. Lee, H. Shin, and R. W. Dutton, “Analytical analysis of short-channel effects in MOSFETs for sub-100 nm technology,” IEE Electronic Letters, vol. 38, no. 20, pp. 1222-1223, 2002.
[4] A. Chaudhry, and M. J. Kumar, “Controlling Short-Channel Effects in Deep-Submicron SOI MOSFETs for Improved Reliability: A Review,” IEEE Trans. on Devices and Materials Reliability, vol.4, no.1, pp.90-109, 2004.
[5] H. Iwai, M. R. Pinto, C. S. Rafferty, J. E. Oristian, and R. W. Dutton, “Analysis of Velocity Saturation and Other Effects on Short-Channel MOS Transistor Capacitances,” IEEE Trans. On Computer-Aided design, vol. CAD-6, no.2, pp.173-184, 1987.
[6] T. Numata, T. Mizuno, T. Tezuka, J. Koga, and S. I. Takagi, “Control of Threshold-Voltage and Short-Channel Effects in Ultrathin Strained-SOI CMOS Devices,” IEEE Trans. on Electron Devices, vol. 48, no. 12, pp. 1780-1786, 2005.
[7] I. De, and C. M. Osburn, “Impact of Super-Steep-Retrograde Channel Doping Profiles on the Performance of Scaled Devices,” IEEE Trans. on Electron Devices, vol. 46, no. 8, pp. 1711-1717, 1999.
[8] T. N. Nguyen, and J. D. Plummer, “Physical Mechanisms Responsible for Short Channel Effects in MOS Devices,” IEDM Tech. Dig., pp. 596-599, 1981.
[9] E. Rauly, and F. Balestra, “Short Channel Effects in Sub-0.1μm Thin Film SOI-MOSFETs,” IEE Electronic Letters, vol. 34, no. 7, pp. 700-701, 1998.
[10] W. K. Henson, N. Yang, S. Kubicek, E. M. Vogel, J.J. Wortman, K. D. Meyer, and A. Naem, “Analysis of Leakage Currents and Impact on Off-State Power Consumption for CMOS Technology in the 100-nm Regime,” IEEE Trans. on Electron Devices, vol. 47, no. 7, pp. 1393-1400, 2000.
[11] S. Slefa, and Y. Taur, “The Influence of Source and Drain Junction Depth on the Short-Channel Effect in MOSFETs,” IEE Electronic Letters, vol. 52, no. 12, pp. 2814-2816, 2005.
[12] G. G. Shahidi, “Challenges of CMOS Scaling at below 0.1μm,” The 12th International Conference on Microelectronics, pp. 5-8, 2000
[13] Y. Taur, “CMOS Scaling Beyond 0.1 μm: How Far Can It Go?” VLSI Symp. Tech. Dig., pp. 6-9, 1999.
[14] Y. Taur, D. A. Buchanan, W. Chen, D. J. Frank, K. E. Ismail, S. H. Lo, G. A. Sai-Halasz, R. G. Viswanathan, H. J. C. Wann, S. J. Wind, and H. S. Wong, “CMOS Scaling into the Nanometer Regime,” Proc. of IEEE, vol. 85, no. 4, pp. 486-504, 1997.
[15] P. M. Zeitzoff, “MOSFET Scaling Trends and Challenges Through The End of The Roadmap,” Proc. of IEEE Custom Integrated Circuit Conference, pp. 233-240, 2004.
[16] S. Song, J. H. Yi, W. S. Kim, J. S. Lee, K. Fujihara, H. K. Kang, J. T. Moon, and M. Y. Lee, “,CMOS Device Scaling Beyond 100nm,” IEDM Tech. Dig., pp. 235-238, 2000.
[17] S. Song, W. S. Kim, J. S. Lee, T. H. Choe, J. H. Choi, M. S. Kang, U. I. Chung, N. I. Lee, K. Fujihara, H. K. Kang, S. I. Lee, and M. Y. Lee, “Design of Sub-l00nm CMOSFETs: Gate Dielectrics and Channel Engineeringv,” VLSI Symp. Tech. Dig., pp. 190-191, 2000
[18] Y. C. Yeo, Q. Lu, W. C. Lee, T. J. King, C. Hu, X. Wang, X. Guo, and T. P. Ma, "Direct Tunneling Gate Leakage Current in Transistors with Ultrathin Silicon Nitride Gate Dielectric," IEE Electronic Letters, vol. 21, no. 11, pp. 540-542, 2000.
[19] S. Yang, “High performance logic technology-scaling trend and future challenges,” Proc. ICSICT Tech. Dig., 2001, pp. 62-67.
[20] B. Yu, H. Wang, C. Riccobene, Q. Xiang, and M. R. Lin, "Limits of Gate-Oxide Scaling in Nano-Transistors," VLSI Symp. Tech. Dig., pp. 90-91, 2000
[21] Y. C. Yeo, T. J. King, and C. Hu, "MOSFET Gate Leakage Modeling and Selection Guide for Alternative Gate Dielectrics Based on Leakage Considerations," IEEE Trans. on Electron Devices, vol. 50, no. 4, pp. 1027-1035, 2003.
[22] T. Ghani, K. Mistry, P. Packan*, S. Thompson, M. Stealer*, S. Tyagi, M. Bohr, "Scaling Challenges and Device Design Requirements for High Performance Sub-50 nm Gate Length Planar CMOS Transistors," VLSI Symp. Tech. Dig., pp. 174-175, 2000.
[23] Y. C. Yeo, Q. Lu, W. C. Lee, T. J. King, and C. Hu, "Scaling Limit of Silicon Nitride Gate Dielectric for Future CMOS Technologies," Proc. of Device Research Conference, pp. 65-66, 2000.
[24] J. D. Plummer, "Silicon MOSFETs (Conventional and Non-Traditional) at the Scaling Limit," Proc. of Device Research Conference, pp. 3-6, 2000.
[25] K. F. Schuegraf, C. C. King, and C. Hu, "Ultra-thin Silicon Dioxide Leakage Current and Scaling Limit," VLSI Symp. Tech. Dig., pp. 18-19, 1992.
[26] B. Yu, C. H. J. Wann, E. D. Nowak, K. Noda, and C. Hu, “Short Channel Effect Improved by lateral channel-engineering in deep-submicrometer MOSFETs,” IEEE Trans. Electron Devices, vol. 44, pp. 627–634, 1997.
[27] C. F. Codella and S. Ogura, "Halo Doping Effects in Submicron DI-LDD Device Design," IEDM Tech. Dig., pp. 230-233, 1985.
[28] H. Momiyama, S. Yamaguchi, S. Ohkubo, and T. Sugii, “Indium Tilted Channel Implantation Technology for 60 nm nMOSFET,” VLSI Symp. Tech. Dig., pp. 67–68, 1999.
[29] S. J. Chang, C.-Y. Chung, C. Chen, J.-W. Chou, T.-S. Chao, and T.-Y.Huang, “An Anomalous crossover in Vth Roll-off for Indium-doped nMOSFETs,” IEEE Electron Device Letter, vol. 21, pp. 457–459, 2000.
[30] J. C. Yu, B. C. Lai, and J. Y.-M. Lee, 'Fabrication and Characterization of Metal-Oxide-Semiconductor Field-Effect Transistors and Gated Diodes Using Ta2O5 Gate Oxide," IEEE Electron Device Letters, vol. 21, no. 11, pp. 537-539, 2000.
[31] B. He, T. Ma, S. A. Campbell, and W. L. Gladfelter, "A 1.1 nm Oxide Equivalent Gate Insulator Formed Using TiO2 on Nitrided Silicon," IEDM Tech. Dig., pp. 1038-1040, 1998.
[32] Y. H. Wu, M. Y. Yang, A. Chin, W. J. Chen, and C. M. Kwei, "Electrical Characteristics of High Quality La2O3 Gate Dielectric with Equivalent Oxide Thickness of 5 Å," IEEE Electron Device Letters, vol. 21, no. 7, pp. 341-343, 2000.
[33] H. J. Osten, J. P. Liu, P. Gaworzewski, E. Bugiel, and P. Zaumseil, "High-k Gate Dielectrics with Ultra-Low Leakage Current Based on Praseodymium oxide," IEDM Tech. Dig., pp. 653-656, 2000.
[34] W. J. Qi, R. Nieh, B. H. Lee, L. Kang, Y. Teon, K. Onishi, T. Ngai, S. Banerjee and J. C. Lee, 'MOSCAP and MOSFET Characteristics Using ZrO2 Gate Dielectric Deposited Directly on Si ," IEDM Tech. Dig., pp. 145-148, 1999.
[35] N. Zhan, K. L. Ng, M. C. Poon, C. W. Kok, M. Chan, and H. Wong, "Characteristics of High Quality Hafnium Oxide Gate Dielectric," Proc. of IEEE Electron Devices Meeting, Hong Kong, pp. 43-46, 2002.
[36] K. L. Ng, N. Zhan, M. C. Poon, C. W. Kok, M. Chan, and H. Wong, "Electrical Characteristics of Novel Hafnium Oxide Film," Proc. of IEEE Electron Devices Meeting, Hong Kong, pp. 51-54, 2002.
[37] J. S . Suehle, E. M. Vogel, M. D. Edelstein, C. A. Richter, N. V. Nguyen, I. Levin, D. L. Kaiser, H. WU, and J. B. Bernstein, "Challenges of High-k Gate Dielectrics for Future MOS Devices," Proc. of 6th International Symposium on Plasma Process-induced Damage, pp. 90-93, 2001.
[38] G. Ribes, J. Mitard, M. Denais, S. Bruyere, F. Monsieur, C. Parthasarathy, E. Vincent, and G. Ghibaudo, "Review on High-k Dielectrics Reliability Issues," IEEE Trans ON Device and Materials Reliability, vol. 5, no. 1, 2005.
[39] S. Oates, "Reliability Issues for High-K Gate Dielectrics," IEDM Tech. Dig., pp. 923-926, 2003.
[40] T. P. Ma, "Opportunities and Challenges for High-k Gate Dielectrics," Proc. of I l t h IPFA, Taiwan, pp. 1-4, 2003.
[41] W. Zhu, J. P. Han, and T. P. Ma, "Mobility Measurement and Degradation Mechanisms of MOSFETs Made With Ultrathin High-k Dielectrics," IEEE Trans on Electron Devices, vol. 51, no. 1, pp. 98-105, 2004.
[42] Y. Y. Fan, Q. Xiang, J. An, L. F. Register, and S. K. Banerjee, "Impact of Interfacial Layer and Transition Region on Gate Current Performance for High-K Gate Dielectric Stack: Its Tradeoff With Gate Capacitance," IEEE Trans on Electron Devices, vol. 50, no. 2, pp. 433-439, 2003.
[43] B. H. Lee, C. D. Young, R. Choi, J. H. Sim, G. Bersuker, C. Y. Kang, R. Harris, G. A. Brown, K. Matthews, S. C. Song, N. Moumen, J. Barnett, P. Lysaght, K. S. Choi, H. C. Wen, C. Huffman, H. Alshareef, P. Majhi, S. Gopalan, J. Peterson, P. Kirsh, H.-J. Li, J. Gutt, M. Gardner, H. R. Huff, P. Zeitzoff, R. W. Murto, L. Larson, and C. Ramiller, "Intrinsic Characteristics of High-k Devices and Implications of Fast Transient Charging Effects (FTCE) ," IEDM Tech. Dig., pp. 859-862, 2004.
[44] L. Collins, “Silicon Talks the Strain,” IEE Review, vol. 49, Issue. 11, pp, 46-49, 2003.
[45] B. Yu, H, Wang, O. Milic, Q. Wang, W. Wang, J.-X. An, and M.-R. Lin, “ 50nm Gate-Length CMOS Transistor with super-Halo: Design, Process, and Reliability,” IEEE IEDM Tech. Dig., pp.653-657, 1999.
[46] B. Yu, C. H. J. Wann, E. D. Nowak, K. Noda, and C. Hu., “Short – Channel Effect Improved by Lateral Channel-Engineering in Deep-Submicrometer MOSFET’s, ” IEEE Trans Electron Devices, vol.44, pp. 627-634, 1997.
[47] H. Momiyama S. Yamaguchi. S. Ohkubo, and T. Sugii, “Indium Tilted Channel Implantation Technology for 60nm nMOSFET,” VLSI Symp. Tech. Dig., pp. 67-68, 1999.
[48] C. H. Wann, K. Noda, T. Tanaka, M. Yoshida, and C. Hu, “A comparative study of advanced MOSFET concepts,“ IEEE Trans Electron Devices, vol.43, pp. 1742-1753, 1996.
[49] Y. Okumura, “A novel source-to-drain nonuniformity doped channel (NUDC) MOSFET for high –current drivability and threshold voltage controllability,” IEEE IEDM Tech. Dig., pp.391-394, 1990.
[50] T. Hori, “A 0.1-�慆 CMOS technology with tilt-implanted punchthrough stopper (TIPS),” IEEE IEDM Tech. Dig., pp.75-78, 1994.
[51] J. Tanaka, S. Kimura, H. Noda, T. Toyabe, and S. Ihara, “A sub-0.1�慆 grooved gate MOSFET with high immunity to short-channel effects,” IEEE IEDM Tech. Dig., pp.537-540, 1993.
[52] T. N. Buti, S. Ogura, N. Rovedo, K. Tobimatsu, and C. F. Codella, “Asymmetrical halo source GOLD drain (HS-GOLD) deep-half micron n-MOSFET design for reliability and performance,” IEEE IEDM Tech. Dig., pp.617-620, 1989.
[53] R. Gwoziecki and T. Skotnicki, “Smart pockets-total suppression of roll-off and roll-up,” VLSI Symp. Tech. Dig., pp. 91-92, 1999.
[54] Y. Taur and E. J. Nowak, “CMOS Devices below 0.1μm: How High Will Performance Go?,” IEEE IEDM Tech. Dig., pp.215-218, 1997.
[55] Y. Taur, “High Performance 0.1�慆 CMOS Devices with 1.5V Power Supply,” IEEE IEDM Tech. Dig., pp.127-130, 1993.
[56] Y. Taur,” A New Shift and Ratio Method for MOSFET Channel-Length Extraction,” IEEE Electron Devices Letter, EDL-13. pp. 267-280, 1992.
[57] P. Bouillon, R. Gwoziecki, and T. Skotnicki, “Anomalous short channel effects in indium implanted nMOSFETs technology,” IEEE IEDM Tech. Dig., pp.231-234, 1997.
[58] P. Bouillon, “Re-examination of indium-implantation for a low power 0.1�慆 technology,” IEEE IEDM Tech. Dig., pp.897-900, 1995.
[59] G. F. Cerofolini, ”Thermodynamic and kinetic properties of indium-implanted silicon,” Thin Solid Films, vol. 101, pp. 263-268, 1983.
[60] H. S. Momose, S.-I. Nakamura, T. Ohguro, T. Yoshitomi, E. Morifuji, T. Morimoto, Y. Katsumata, and H. Iwai, "A study of hot-carrier degradation in n- and p-MOSFETs with ultra-thin gate oxides in the direct-tunneling regime ," IEEE IEDM Tech. Dig., pp.453-456, 1997.
[61] D. M. Fleetwood, W. L. Warren, J. R. Schwa&, P. S. Winokur, M. R. Shaneyfelt, and L. C. Riewe, “EFFECTS OF INTERFACE TRAPS AND BORDER TRAPS ON MOS POSTIRRADIATION ANNDALING RESPONSE,” IEEE Trans. Nucl. Sci., vol. 42, NO. 6, pp. 1698-1707, 1995.
[62] W. Zhao, J. He, R. E. Belford, L. E. Wernersson, and A. Seabaugh, “Partially depleted SOI MOSFETs under uniaxial tensile strain,” IEEE Trans. Electron Devices, vol. 51, no.3, pp. 317–323, Mar. 2004.
[63] T. Ghani, M. Armstrong, C. Auth, M. Bost, P. Charvat, G. Glass, T. Hoffmann, K. Johnson, C. Kenyor, J. Liaus, B. Mclntyre, K. Mistry, A. Murthy, J. Sandford, M. Silberstein, S. Silberstein, S. Sivakumar, P. Smith, K. Zawadzki, S. Thompson, and M. Bohr, “A 90 nm high volume manufacturing logic technology featuring novel 45 nm gate length strained silicon CMOS transistors,” IEDM Tech. Dig., pp. 978–980, 2003.
[64] K. Mistry, M. Armstrong, C. Auth, S. Cea, T. Ghani, T. Hoffimann, A. Murthy, J. Sandford, R. Shaheed, K. Zawadzki, K. Zhang, S. Thompson, and M. Bohr, “Delaying forever: Uniaxial strained silicon transistors in a 90nm CMOS technology,” VLSI Symp. Tech. Dig., pp. 50–51, 2004.
[65] T. Komoda, A. Oishi, T. Sanuki, K. Kasai, H. Yoshimura, K. Ohno, M. Iwai, M. Saito, F. Matusuka, N. Nagashima, and T. Noguchi, “Mobility improvement for 45 nm node by combination of optimized stress control and channel orientation design,” IEDM Tech. Dig., pp. 217–220, 2004.
[66] T. Matsumoto, S. Maeda, H. Dang, T. Uchida, K. Ota, T. Hirano, H. Sayama, T. Iwamatsu, T. Ipposhi, H. Oda, S. Maegawa, Y. Inoue, and T. Nishimura, “Novel SOI wafer engineering using low stress and high mobility CMOSFET with <100> channel for embedded RF/analog applications,” IEDM Tech. Dig., pp. 663–666, 2002.
[67] S. Pidin, T. Mori, K. Inoue, S. Fukuta, N. Itoh, E. Mutoh, K. Ohkoshi, R. Nakamura, K. Kobayashi, K. Kawamura, T. Saiki, S. Fukuyama, S. Satoh, M. Kase, and K. Hashimoto, “A novel strain enhanced CMOS architecture using selectively deposited high tensile and high compressive silicon nitride films,” IEDM Tech. Dig., p. 213-216, 2004.
[68] K. Goto, S. Satoh, H. Ohta, S. Fukuta, T. Yamamoto, T. Mori, Y. Tagawa, T. Sakuma, T. Saiki, Y. Kim, H. Kokura, N. Tamura, N. Horiguchi, M. Kojima, T. Sugii, and K. Hashimoto, “Technology booster using strain-enhancing laminated SiN (SELS) for 65 nm Node HP MPUs,” IEDM Tech. Dig., pp. 209–212, 2004.
[69] S. E. Thompson, M. Armstrong, C. Auth, M. Alavi, M. Buehler, R. Chau, S. Cea, T. Ghani, G. Glass, T. Hoffman, C. -H. Jan, C. Kenyon, J. Klaus, K. Kuhn, M. Zhiyong, B. Mcintyre, K. Mistry, A. Murthy, B. Obradovic, R. Nagisetty, P. Nguyen, S. Sivakumar, R. Shaheed, L. Shifren, B. Tufts, S. Tyagi, M. Bohr, and Y. El-Mansy, “A 90 nm logic technology featuring strained-silicon,” IEEE Trans. Electron Devices, vol. 51, no. 11, pp.1790–1797,Nov. 2004.
[70] V. Chan, R. Rengarajan, N. Rovedo, W. Jin, T. Hook, P. Nguyen, J. Chen, E. Nowak, X.-D. Chen, D. Lea, A. Chakravarti, V. Ku, S. Yang, A. Steegen, C. Baiocco, P. Shafer, H. Ng, S.-F. Huang, and C. Wann, “High speed 45 nm gate length CMOSFETs integrated into a 90 nm bulk technology incorporating strain engineering,” IEDM Tech. Dig., pp. 77–80, 2003.
[71] C. Ortolland, S. Orain, J. Rosa, P. Morin, F. Arnaud, M. Woo, A. Poncet, and P. Stolk, “Electrical characterization and mechanical modeling of process induced strain in 65 nm CMOS technology,” Proc. ESSDERC, pp. 233–236, Sep. 2004.
[72] C. Mazure and I. Cayrefourcq, “Status of device mobility enhancement through strained silicon engineering,” Proc. IEEE Int. SOI Conf., pp.1–6, 2005.
[73] G. Scott, J. Lutze, M. Rubin, F. Nouri, and M. Manley, “NMOS drive current reduction caused by transistor layout and trench isolation induced stress,” IEDM Tech. Dig., pp. 827–830, 1999.
[74] C. T. Sah and F. H. Hielscher, “Evidence of the surface origin of the 1/f noise,” Phys. Rev. Letter., vol. 17, pp. 956-958, 1966.
[75] M. J. Kirton and M. J. Uren, “Noise in solid-state microstructure: A new perspective on individual defects, interface stats and low-frequency (1/f) noise,” Adv. Phys., vol. 38, pp. 367-468, 1989.
[76] D. M. Fleetwood and J. H. Scofield, “Evidence that similar point defects cause 1/f noise and radiation-induced-hole trapping in metal-oxide-semiconductor transistors,” Phys. Rev. Letter., vol. 64, pp. 579-582, 1990.
[77] K. K. Hung, P. K. Ko, C. Hu, and Y. C. Cheng, “Random telegraph noise of deep-submicrometer MOSFETs,” IEEE Electron Device Letters, vol. 11, no. 2, pp. 90-92, 1990
[78] J. Welser, J. L. Hoyt, and J. F. Gibbons, “Electron mobility enhancement in strained-Si N-type metal-oxide-semiconductor field-effect transistors,” IEEE Electron Device Letter., vol. 15, no. 3, pp. 100–102, Mar. 1994.
[79] J. F. Zhang, C. Z. Zhao, A. H. Chen, G. Groeseneken, and R. Degraeve, “Hole traps in silicon dioxides—Part I: Properties,” IEEE Trans. Electron Devices, vol. 51, no. 8, pp. 1267–1273, Aug. 2004.
[80] C. Z. Zhao, J. F. Zhang, G. Groeseneken, and R. Degraeve, “Hole traps in silicon dioxides—Part II: Generation mechanism,” IEEE Trans. Electron Devices, vol. 51, no. 8, pp. 1274–1280, Aug. 2004.
[81] D. J. DiMaria, “The properties of electron and hole traps in thermal silicon dioxide layers grown on silicon,” The Physics of SiO and Its Interfaces, S. T. Pantelides, Ed. New York: Pergamon, pp. 160–178, 1978.
[82] J. F. Zhang, H. K. Sii, G. Groeseneken, and R. Degraeve, “Hole trapping and trap generation in the gate silicon dioxide,” IEEE Trans. Electron Devices, vol. 48, no. 6, pp. 1127–1135, Jun. 2001.
[83] R. Bellens, E. de Schrijver, G. Van den bosch, G. Groeseneken, P. Heremans, and H. E. Maes, “On the hot-carrier-induced post-stress interface trap generation in n-channel MOS transistors,” IEEE Trans. Electron Devices, vol. 41, no. 3, pp. 413–419, Mar. 1994.
[84] V. H. Chan and J. E. Chung, “The impact of nMOSFET hot-carrier degradation on CMOS analog subcircuit performance,” IEEE J. Solid-State Circuits, vol. 30, no. 6, pp. 644–649, Jun. 1995.
[85] T. Irisawa, T. Numata, N. Sugiyama, and S.-I. Takagi, “On the origin of increase in substrate current and impact ionization efficiency in strained-Si n- and p-MOSFETs,” IEEE Trans. Electron Devices, vol. 52, no. 5, pp. 993–998, May 2005.
[86] C.-H. Choi, J. -H. Chun, and R. W. Dutton, “Electrothermal characteristics of strained-Si MOSFETs in high-current operation,” IEEE Trans. Electron Devices, vol. 51, no. 11, pp. 1928–1931, Nov. 2004.
[87] M. F. Lu, S. Chiang, A. Liu, S. Huang-Lu, M. S. Yeh, J. R. Hwang, T. H. Tang, and W. T. Shiau, “Hot carrier degradation in novel strained-Si nMOSFETs,” Proc. Reliab. Phys., pp. 18–22, 2004.
[88] Y. A. Alshehri, “Development of a full silicidation (FUSI) process for nickel silicide,” Proc. 22nd Annu. Microelectron. Eng. Conf., pp. 52–56, May 2004.
[89] N. Shigyo and R. Dang, “Analysis of inverse narrow-channel effect based on a three-dimensional simulation,” VLSI Symp. Tech. Dig., pp. 54–55, Sep. 1982.
[90] N. Shigyo, S. Fukuda, T. Wada, K. Hieda, T. Hamamoto, H. Watanabe, K. Sunouchi, and H. Tango, “Three-dimensional analysis of subthreshold swing and transconductance for fully recessed oxide (trench) isolated 1/4-μm-width MOSFET’s,” IEEE Trans. Electron Devices, vol. 35, no. 7, pp. 945–950, Jul. 1988.
[91] K. Ohe, S. Odanaka, K. Moriyama, T. Hori, and G. Fuse, “Narrow-width effects of shallow trench-isolated CMOS with n+-polysilicon gate,” IEEE Trans. Electron Devices, vol. 36, no. 6, pp. 1110–1116, Jun. 1989.
[92] C. -M. Lai, Y. -K. Fang, S. -T. Pan, and W. -K. Yeh, “Width effect on hot-carrier-induced degradation for 90 nm partially depleted SOI CMOSFETs,” J. Appl. Phys., vol. 44, no. 4B, pp. 2361–2365, May 2005.
[93] T. Ghani, S. Ahmed, P. Aminzadeh*, J. Bielefeld, P. Charvat, C. Chu, M. Harper, P. Jacob, C. Jan, J. Kavalieros, C. Kenyon, R. Nagisetty, P. Packan#, J. Sebastian, M. Taylor, J. Tsai, S. Tyagi, S. Yang, M. Bohr, “100nm Gate Length High Performance/Low Power CMOS Transistor Structure,” IEDM Tech. Dig., pp. 415-418, 1999.
[94] Y. C. Liu, J. W. Pan, T. Y. Chang, P. W. Liu, B. C. Lan, C. H. Tung, C. H. Tsai, T. F. Chen, C. J. Lee, W. M. Wang, Y. A. Chen, H. L. Shih, L. Y. Tung, L. W. Cheng, T. M. Shen, S. C. Chiang, M. F. Lu, W. T. Chang, Y. H. Luo, D. Nayak, D. Gitlin, H. L. Meng, and C. T. Tsai, “Single Stress Liner for Both NMOS and PMOS Current Enhancement by a Novel Ultimate Spacer Process,” IEDM Tech. Dig., pp. 836-839, 2005.
[95] D. Wu, P E. Hellberg, S L. Zhang, and M. Ostling, “Notched sub-100nm gate MOSFETs for analog applications,” Proc. SSIC Tech. Dig., pp. 539-542, 2001.
[96] S. Pidin, H. Shido, T. Yamamoto, N. Horiguchi, H. Kurata, and T. Sugii, “Experimental and Simulation Study on Sub-50nm CMOS Design,” Symp. VLSI Tech. Dig., pp. 35-36, 2001.
[97] S. S. Chung, S. J. Chen, C. K. Yang, S. M. Cheng, S. H. Lin, Y. C. Sheng, H. S. Lin, K. T. Hung, D. Y. Wu, T. R. Yew, S. C. Chien, F. T. Liou, and F. Wen, “A Novel and direct Determination of the Interface Traps in Sub-100nm CMOS Devices with Direct Tunneling Regime (12~16 Å) Gate Oxide,” Symp. VLSI Tech. Dig., pp. 74-75, 2002.
[98] N. Yang, W. K. Henson, J. R. Hauser, and J. J. Wortman, “Estimation of the Effects of Remote Charge Scattering on Electron Mobility of n-MOSFET’s with Ultrathin Gate Oxides,” IEEE Trans. Electron Devices, vol. 47, no. 2, pp. 440-447, 2000.
[99] J. H. Sim, H. C. Wen, J. P. Lu, and D. L. Kwong, “Dual work function metal gates using full nickel silicidation of doped poly-Si,” IEEE Electron Device Letters, vol. 24, no. 10, pp. 631-633, 2003.
[100] P. Xuan and J. Bokor, “Investigation of NiSi and TiSi as CMOS gate materials,” IEEE Electron Device Letters, vol. 24, no. 10, pp. 634-636, 2003.
[101] J. Kedzierski, D. Boyd, P. Ronsheim, S. Zafar, J. Newbury, J. Ott, C. C. Jr, M. Ieong, and W. Haensch, “Threshold voltage control in NiSi-gated MOSFETs through silicidation induced impurity segregation (SIIS),” IEDM Tech. Dig., pp. 315-318, 2003.
[102] C. H. Huang, D. S. Yu, A. Chin, C. H. Wu, W. J. Chen, C. Zhu, M. F. Li, B. J. Cho, and D. -L. Kwong, “Fully silicided NiSi and germanided NiGe dual gates on SiO2/Si and Al2O2/ Ge-on-insulator MOSFETs,” IEDM Tech. Dig., pp. 319-322, 2003.
[103] A. Chin, W. J. Chen, T. Chang, R. H. Kao, B. C. Lin, C. Tsai, J. C. –M. Huang, “Thin oxides with in situ native oxide removal [n-MOSFETs],” IEEE Electron Device Letters, vol. 18, no. 9, pp. 417-419, 1997.
[104] K. Hosaka, T. Kurahashi, K. Kawamura*, T. Aoyama, Y. Mishima, K. Suzuki, and S. Sato, “A comprehensive study of fully-silicided gates to achieve wide-range work function differences (0.91 eV) for high-performance CMOS devices,” VLSI Symp. Tech. Dig., pp. 66-67, 2005.
[105] S. Inumiya, Y. Akasaka, T. matsuki, F. Ootsuka, K. Torii, and Y. Nara, “A Thermally-Stable Sub-0.9nm EOT TaSix/HfSiON Gate Stack with High Electron Mobility, Suitable for Gate-First Fabrication of hp45 LOP Devices,” IEDM Tech. Dig., pp. 23-26, 2005.
[106] Y. T. Hou, F. Y. Yen, P. F. Hsu, V. S. Chang, P. S. Lim, C. L. Hung, L. G. Yao, J. C. Jiang, H. J. Lin, Y. Jin, S. M. Jang, H. J. Tao, S. C. Chen and M. S. Liang, “High Performance Tantalum Carbide Metal Gate Stacks for nMOSFET Application,” IEDM Tech. Dig., pp. 31-34, 2005.
[107] R. I. Hegde, D. H. Triyoso, P. J. Tobin, S. Kalpat, M. E. Ramon, H.-H. Tseng, J. K. Schaeffer, E. Luckowski, W. J. Taylor, C. C. Capasso, D. C. Gilmer, M. Moosa, A. Haggag, M. Raymond, D. Roan, J. Nguyen, L. B. La, E. Hebert, R. Cotton, X-D. Wang, S. Zollner, R. Gregory, D. Werho, R. S. Rai, L. Fonseca, M. Stoker, C. Tracy, B. W. Chan*, Y. H. Chiu*, and B. E. White Jr. “Microstructure Modified HfO2 Using Zr Addition with TaxCy Gate for Improved Device Performance and Reliability,” IEDM Tech. Dig., pp. 35-38, 2005.
[108] R. Jha, B. Lee, B. Chen, S. Novak, P. Majhi1 ,and V. Misra, “Dependence of PMOS Metal Work Functions on Surface Conditions of High-K Gate Dielectrics,” IEDM Tech. Dig., pp. 43-46, 2005.
[109] D. Pham, L. Larson, and J. -W. Yang, “FINFET Device Junction Formation Challenges,” Int. Workshop on Junction Technology, pp. 73-77, 2006
[110] N. Collaert, S. Brus, A. D. Keersgieter, A. Dixit, I. Ferain, M. Goodwin, A. Kottantharayil, R. Rooyackers, P. Verheyen, Y. Yim, P. Zimmerman, S. Beckx, B. Degroote, M. Demand, M. Kim, E. Kunnen, S. Locorotondo, G. Mannaert, F. Neuilly, D. Shamiryan, C. Baerts, M. Ercken, D. Laidlcr, F. Leys, R. Loo, J. Lisoni, J. Snow, R. Vos, W. Boullart, I. Pollentier, S. D. Gendt, K. D. Meyer, M. Jurczak, S. Biescmans, “Integration challenges for multi-gate devices,” Int. Conf. on Integrated Circuit Design and Technology, pp. 187-194, 2005.
[111] L. Risch, “Pushing CMOS beyond the roadmap,” Proc. of ESSDERC, pp. 63-68, 2005.
[112] E. J. Nowak, T. Ludwig, I. Aller, J. Kedzierski, M. Ieong, B. Rainey, M. Breitwisch, V. Gemhoefer, J. Keinert, D. M. Fried, “ Scaling Beyond the 65 nm Node with FinFET-DGCMOS,” Int. Conf. on Custom Integrated Circuit, pp. 339-342, 2003.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top