|
[1] 莊達人, VLSI製造技術, 高立 1019, 2002. [2] International Technology Roadmap for Semiconductors, 2005 [3] J. S. Park, S. Y. Lee, H. Shin, and R. W. Dutton, “Analytical analysis of short-channel effects in MOSFETs for sub-100 nm technology,” IEE Electronic Letters, vol. 38, no. 20, pp. 1222-1223, 2002. [4] A. Chaudhry, and M. J. Kumar, “Controlling Short-Channel Effects in Deep-Submicron SOI MOSFETs for Improved Reliability: A Review,” IEEE Trans. on Devices and Materials Reliability, vol.4, no.1, pp.90-109, 2004. [5] H. Iwai, M. R. Pinto, C. S. Rafferty, J. E. Oristian, and R. W. Dutton, “Analysis of Velocity Saturation and Other Effects on Short-Channel MOS Transistor Capacitances,” IEEE Trans. On Computer-Aided design, vol. CAD-6, no.2, pp.173-184, 1987. [6] T. Numata, T. Mizuno, T. Tezuka, J. Koga, and S. I. Takagi, “Control of Threshold-Voltage and Short-Channel Effects in Ultrathin Strained-SOI CMOS Devices,” IEEE Trans. on Electron Devices, vol. 48, no. 12, pp. 1780-1786, 2005. [7] I. De, and C. M. Osburn, “Impact of Super-Steep-Retrograde Channel Doping Profiles on the Performance of Scaled Devices,” IEEE Trans. on Electron Devices, vol. 46, no. 8, pp. 1711-1717, 1999. [8] T. N. Nguyen, and J. D. Plummer, “Physical Mechanisms Responsible for Short Channel Effects in MOS Devices,” IEDM Tech. Dig., pp. 596-599, 1981. [9] E. Rauly, and F. Balestra, “Short Channel Effects in Sub-0.1μm Thin Film SOI-MOSFETs,” IEE Electronic Letters, vol. 34, no. 7, pp. 700-701, 1998. [10] W. K. Henson, N. Yang, S. Kubicek, E. M. Vogel, J.J. Wortman, K. D. Meyer, and A. Naem, “Analysis of Leakage Currents and Impact on Off-State Power Consumption for CMOS Technology in the 100-nm Regime,” IEEE Trans. on Electron Devices, vol. 47, no. 7, pp. 1393-1400, 2000. [11] S. Slefa, and Y. Taur, “The Influence of Source and Drain Junction Depth on the Short-Channel Effect in MOSFETs,” IEE Electronic Letters, vol. 52, no. 12, pp. 2814-2816, 2005. [12] G. G. Shahidi, “Challenges of CMOS Scaling at below 0.1μm,” The 12th International Conference on Microelectronics, pp. 5-8, 2000 [13] Y. Taur, “CMOS Scaling Beyond 0.1 μm: How Far Can It Go?” VLSI Symp. Tech. Dig., pp. 6-9, 1999. [14] Y. Taur, D. A. Buchanan, W. Chen, D. J. Frank, K. E. Ismail, S. H. Lo, G. A. Sai-Halasz, R. G. Viswanathan, H. J. C. Wann, S. J. Wind, and H. S. Wong, “CMOS Scaling into the Nanometer Regime,” Proc. of IEEE, vol. 85, no. 4, pp. 486-504, 1997. [15] P. M. Zeitzoff, “MOSFET Scaling Trends and Challenges Through The End of The Roadmap,” Proc. of IEEE Custom Integrated Circuit Conference, pp. 233-240, 2004. [16] S. Song, J. H. Yi, W. S. Kim, J. S. Lee, K. Fujihara, H. K. Kang, J. T. Moon, and M. Y. Lee, “,CMOS Device Scaling Beyond 100nm,” IEDM Tech. Dig., pp. 235-238, 2000. [17] S. Song, W. S. Kim, J. S. Lee, T. H. Choe, J. H. Choi, M. S. Kang, U. I. Chung, N. I. Lee, K. Fujihara, H. K. Kang, S. I. Lee, and M. Y. Lee, “Design of Sub-l00nm CMOSFETs: Gate Dielectrics and Channel Engineeringv,” VLSI Symp. Tech. Dig., pp. 190-191, 2000 [18] Y. C. Yeo, Q. Lu, W. C. Lee, T. J. King, C. Hu, X. Wang, X. Guo, and T. P. Ma, "Direct Tunneling Gate Leakage Current in Transistors with Ultrathin Silicon Nitride Gate Dielectric," IEE Electronic Letters, vol. 21, no. 11, pp. 540-542, 2000. [19] S. Yang, “High performance logic technology-scaling trend and future challenges,” Proc. ICSICT Tech. Dig., 2001, pp. 62-67. [20] B. Yu, H. Wang, C. Riccobene, Q. Xiang, and M. R. Lin, "Limits of Gate-Oxide Scaling in Nano-Transistors," VLSI Symp. Tech. Dig., pp. 90-91, 2000 [21] Y. C. Yeo, T. J. King, and C. Hu, "MOSFET Gate Leakage Modeling and Selection Guide for Alternative Gate Dielectrics Based on Leakage Considerations," IEEE Trans. on Electron Devices, vol. 50, no. 4, pp. 1027-1035, 2003. [22] T. Ghani, K. Mistry, P. Packan*, S. Thompson, M. Stealer*, S. Tyagi, M. Bohr, "Scaling Challenges and Device Design Requirements for High Performance Sub-50 nm Gate Length Planar CMOS Transistors," VLSI Symp. Tech. Dig., pp. 174-175, 2000. [23] Y. C. Yeo, Q. Lu, W. C. Lee, T. J. King, and C. Hu, "Scaling Limit of Silicon Nitride Gate Dielectric for Future CMOS Technologies," Proc. of Device Research Conference, pp. 65-66, 2000. [24] J. D. Plummer, "Silicon MOSFETs (Conventional and Non-Traditional) at the Scaling Limit," Proc. of Device Research Conference, pp. 3-6, 2000. [25] K. F. Schuegraf, C. C. King, and C. Hu, "Ultra-thin Silicon Dioxide Leakage Current and Scaling Limit," VLSI Symp. Tech. Dig., pp. 18-19, 1992. [26] B. Yu, C. H. J. Wann, E. D. Nowak, K. Noda, and C. Hu, “Short Channel Effect Improved by lateral channel-engineering in deep-submicrometer MOSFETs,” IEEE Trans. Electron Devices, vol. 44, pp. 627–634, 1997. [27] C. F. Codella and S. Ogura, "Halo Doping Effects in Submicron DI-LDD Device Design," IEDM Tech. Dig., pp. 230-233, 1985. [28] H. Momiyama, S. Yamaguchi, S. Ohkubo, and T. Sugii, “Indium Tilted Channel Implantation Technology for 60 nm nMOSFET,” VLSI Symp. Tech. Dig., pp. 67–68, 1999. [29] S. J. Chang, C.-Y. Chung, C. Chen, J.-W. Chou, T.-S. Chao, and T.-Y.Huang, “An Anomalous crossover in Vth Roll-off for Indium-doped nMOSFETs,” IEEE Electron Device Letter, vol. 21, pp. 457–459, 2000. [30] J. C. Yu, B. C. Lai, and J. Y.-M. Lee, 'Fabrication and Characterization of Metal-Oxide-Semiconductor Field-Effect Transistors and Gated Diodes Using Ta2O5 Gate Oxide," IEEE Electron Device Letters, vol. 21, no. 11, pp. 537-539, 2000. [31] B. He, T. Ma, S. A. Campbell, and W. L. Gladfelter, "A 1.1 nm Oxide Equivalent Gate Insulator Formed Using TiO2 on Nitrided Silicon," IEDM Tech. Dig., pp. 1038-1040, 1998. [32] Y. H. Wu, M. Y. Yang, A. Chin, W. J. Chen, and C. M. Kwei, "Electrical Characteristics of High Quality La2O3 Gate Dielectric with Equivalent Oxide Thickness of 5 Å," IEEE Electron Device Letters, vol. 21, no. 7, pp. 341-343, 2000. [33] H. J. Osten, J. P. Liu, P. Gaworzewski, E. Bugiel, and P. Zaumseil, "High-k Gate Dielectrics with Ultra-Low Leakage Current Based on Praseodymium oxide," IEDM Tech. Dig., pp. 653-656, 2000. [34] W. J. Qi, R. Nieh, B. H. Lee, L. Kang, Y. Teon, K. Onishi, T. Ngai, S. Banerjee and J. C. Lee, 'MOSCAP and MOSFET Characteristics Using ZrO2 Gate Dielectric Deposited Directly on Si ," IEDM Tech. Dig., pp. 145-148, 1999. [35] N. Zhan, K. L. Ng, M. C. Poon, C. W. Kok, M. Chan, and H. Wong, "Characteristics of High Quality Hafnium Oxide Gate Dielectric," Proc. of IEEE Electron Devices Meeting, Hong Kong, pp. 43-46, 2002. [36] K. L. Ng, N. Zhan, M. C. Poon, C. W. Kok, M. Chan, and H. Wong, "Electrical Characteristics of Novel Hafnium Oxide Film," Proc. of IEEE Electron Devices Meeting, Hong Kong, pp. 51-54, 2002. [37] J. S . Suehle, E. M. Vogel, M. D. Edelstein, C. A. Richter, N. V. Nguyen, I. Levin, D. L. Kaiser, H. WU, and J. B. Bernstein, "Challenges of High-k Gate Dielectrics for Future MOS Devices," Proc. of 6th International Symposium on Plasma Process-induced Damage, pp. 90-93, 2001. [38] G. Ribes, J. Mitard, M. Denais, S. Bruyere, F. Monsieur, C. Parthasarathy, E. Vincent, and G. Ghibaudo, "Review on High-k Dielectrics Reliability Issues," IEEE Trans ON Device and Materials Reliability, vol. 5, no. 1, 2005. [39] S. Oates, "Reliability Issues for High-K Gate Dielectrics," IEDM Tech. Dig., pp. 923-926, 2003. [40] T. P. Ma, "Opportunities and Challenges for High-k Gate Dielectrics," Proc. of I l t h IPFA, Taiwan, pp. 1-4, 2003. [41] W. Zhu, J. P. Han, and T. P. Ma, "Mobility Measurement and Degradation Mechanisms of MOSFETs Made With Ultrathin High-k Dielectrics," IEEE Trans on Electron Devices, vol. 51, no. 1, pp. 98-105, 2004. [42] Y. Y. Fan, Q. Xiang, J. An, L. F. Register, and S. K. Banerjee, "Impact of Interfacial Layer and Transition Region on Gate Current Performance for High-K Gate Dielectric Stack: Its Tradeoff With Gate Capacitance," IEEE Trans on Electron Devices, vol. 50, no. 2, pp. 433-439, 2003. [43] B. H. Lee, C. D. Young, R. Choi, J. H. Sim, G. Bersuker, C. Y. Kang, R. Harris, G. A. Brown, K. Matthews, S. C. Song, N. Moumen, J. Barnett, P. Lysaght, K. S. Choi, H. C. Wen, C. Huffman, H. Alshareef, P. Majhi, S. Gopalan, J. Peterson, P. Kirsh, H.-J. Li, J. Gutt, M. Gardner, H. R. Huff, P. Zeitzoff, R. W. Murto, L. Larson, and C. Ramiller, "Intrinsic Characteristics of High-k Devices and Implications of Fast Transient Charging Effects (FTCE) ," IEDM Tech. Dig., pp. 859-862, 2004. [44] L. Collins, “Silicon Talks the Strain,” IEE Review, vol. 49, Issue. 11, pp, 46-49, 2003. [45] B. Yu, H, Wang, O. Milic, Q. Wang, W. Wang, J.-X. An, and M.-R. Lin, “ 50nm Gate-Length CMOS Transistor with super-Halo: Design, Process, and Reliability,” IEEE IEDM Tech. Dig., pp.653-657, 1999. [46] B. Yu, C. H. J. Wann, E. D. Nowak, K. Noda, and C. Hu., “Short – Channel Effect Improved by Lateral Channel-Engineering in Deep-Submicrometer MOSFET’s, ” IEEE Trans Electron Devices, vol.44, pp. 627-634, 1997. [47] H. Momiyama S. Yamaguchi. S. Ohkubo, and T. Sugii, “Indium Tilted Channel Implantation Technology for 60nm nMOSFET,” VLSI Symp. Tech. Dig., pp. 67-68, 1999. [48] C. H. Wann, K. Noda, T. Tanaka, M. Yoshida, and C. Hu, “A comparative study of advanced MOSFET concepts,“ IEEE Trans Electron Devices, vol.43, pp. 1742-1753, 1996. [49] Y. Okumura, “A novel source-to-drain nonuniformity doped channel (NUDC) MOSFET for high –current drivability and threshold voltage controllability,” IEEE IEDM Tech. Dig., pp.391-394, 1990. [50] T. Hori, “A 0.1-�慆 CMOS technology with tilt-implanted punchthrough stopper (TIPS),” IEEE IEDM Tech. Dig., pp.75-78, 1994. [51] J. Tanaka, S. Kimura, H. Noda, T. Toyabe, and S. Ihara, “A sub-0.1�慆 grooved gate MOSFET with high immunity to short-channel effects,” IEEE IEDM Tech. Dig., pp.537-540, 1993. [52] T. N. Buti, S. Ogura, N. Rovedo, K. Tobimatsu, and C. F. Codella, “Asymmetrical halo source GOLD drain (HS-GOLD) deep-half micron n-MOSFET design for reliability and performance,” IEEE IEDM Tech. Dig., pp.617-620, 1989. [53] R. Gwoziecki and T. Skotnicki, “Smart pockets-total suppression of roll-off and roll-up,” VLSI Symp. Tech. Dig., pp. 91-92, 1999. [54] Y. Taur and E. J. Nowak, “CMOS Devices below 0.1μm: How High Will Performance Go?,” IEEE IEDM Tech. Dig., pp.215-218, 1997. [55] Y. Taur, “High Performance 0.1�慆 CMOS Devices with 1.5V Power Supply,” IEEE IEDM Tech. Dig., pp.127-130, 1993. [56] Y. Taur,” A New Shift and Ratio Method for MOSFET Channel-Length Extraction,” IEEE Electron Devices Letter, EDL-13. pp. 267-280, 1992. [57] P. Bouillon, R. Gwoziecki, and T. Skotnicki, “Anomalous short channel effects in indium implanted nMOSFETs technology,” IEEE IEDM Tech. Dig., pp.231-234, 1997. [58] P. Bouillon, “Re-examination of indium-implantation for a low power 0.1�慆 technology,” IEEE IEDM Tech. Dig., pp.897-900, 1995. [59] G. F. Cerofolini, ”Thermodynamic and kinetic properties of indium-implanted silicon,” Thin Solid Films, vol. 101, pp. 263-268, 1983. [60] H. S. Momose, S.-I. Nakamura, T. Ohguro, T. Yoshitomi, E. Morifuji, T. Morimoto, Y. Katsumata, and H. Iwai, "A study of hot-carrier degradation in n- and p-MOSFETs with ultra-thin gate oxides in the direct-tunneling regime ," IEEE IEDM Tech. Dig., pp.453-456, 1997. [61] D. M. Fleetwood, W. L. Warren, J. R. Schwa&, P. S. Winokur, M. R. Shaneyfelt, and L. C. Riewe, “EFFECTS OF INTERFACE TRAPS AND BORDER TRAPS ON MOS POSTIRRADIATION ANNDALING RESPONSE,” IEEE Trans. Nucl. Sci., vol. 42, NO. 6, pp. 1698-1707, 1995. [62] W. Zhao, J. He, R. E. Belford, L. E. Wernersson, and A. Seabaugh, “Partially depleted SOI MOSFETs under uniaxial tensile strain,” IEEE Trans. Electron Devices, vol. 51, no.3, pp. 317–323, Mar. 2004. [63] T. Ghani, M. Armstrong, C. Auth, M. Bost, P. Charvat, G. Glass, T. Hoffmann, K. Johnson, C. Kenyor, J. Liaus, B. Mclntyre, K. Mistry, A. Murthy, J. Sandford, M. Silberstein, S. Silberstein, S. Sivakumar, P. Smith, K. Zawadzki, S. Thompson, and M. Bohr, “A 90 nm high volume manufacturing logic technology featuring novel 45 nm gate length strained silicon CMOS transistors,” IEDM Tech. Dig., pp. 978–980, 2003. [64] K. Mistry, M. Armstrong, C. Auth, S. Cea, T. Ghani, T. Hoffimann, A. Murthy, J. Sandford, R. Shaheed, K. Zawadzki, K. Zhang, S. Thompson, and M. Bohr, “Delaying forever: Uniaxial strained silicon transistors in a 90nm CMOS technology,” VLSI Symp. Tech. Dig., pp. 50–51, 2004. [65] T. Komoda, A. Oishi, T. Sanuki, K. Kasai, H. Yoshimura, K. Ohno, M. Iwai, M. Saito, F. Matusuka, N. Nagashima, and T. Noguchi, “Mobility improvement for 45 nm node by combination of optimized stress control and channel orientation design,” IEDM Tech. Dig., pp. 217–220, 2004. [66] T. Matsumoto, S. Maeda, H. Dang, T. Uchida, K. Ota, T. Hirano, H. Sayama, T. Iwamatsu, T. Ipposhi, H. Oda, S. Maegawa, Y. Inoue, and T. Nishimura, “Novel SOI wafer engineering using low stress and high mobility CMOSFET with <100> channel for embedded RF/analog applications,” IEDM Tech. Dig., pp. 663–666, 2002. [67] S. Pidin, T. Mori, K. Inoue, S. Fukuta, N. Itoh, E. Mutoh, K. Ohkoshi, R. Nakamura, K. Kobayashi, K. Kawamura, T. Saiki, S. Fukuyama, S. Satoh, M. Kase, and K. Hashimoto, “A novel strain enhanced CMOS architecture using selectively deposited high tensile and high compressive silicon nitride films,” IEDM Tech. Dig., p. 213-216, 2004. [68] K. Goto, S. Satoh, H. Ohta, S. Fukuta, T. Yamamoto, T. Mori, Y. Tagawa, T. Sakuma, T. Saiki, Y. Kim, H. Kokura, N. Tamura, N. Horiguchi, M. Kojima, T. Sugii, and K. Hashimoto, “Technology booster using strain-enhancing laminated SiN (SELS) for 65 nm Node HP MPUs,” IEDM Tech. Dig., pp. 209–212, 2004. [69] S. E. Thompson, M. Armstrong, C. Auth, M. Alavi, M. Buehler, R. Chau, S. Cea, T. Ghani, G. Glass, T. Hoffman, C. -H. Jan, C. Kenyon, J. Klaus, K. Kuhn, M. Zhiyong, B. Mcintyre, K. Mistry, A. Murthy, B. Obradovic, R. Nagisetty, P. Nguyen, S. Sivakumar, R. Shaheed, L. Shifren, B. Tufts, S. Tyagi, M. Bohr, and Y. El-Mansy, “A 90 nm logic technology featuring strained-silicon,” IEEE Trans. Electron Devices, vol. 51, no. 11, pp.1790–1797,Nov. 2004. [70] V. Chan, R. Rengarajan, N. Rovedo, W. Jin, T. Hook, P. Nguyen, J. Chen, E. Nowak, X.-D. Chen, D. Lea, A. Chakravarti, V. Ku, S. Yang, A. Steegen, C. Baiocco, P. Shafer, H. Ng, S.-F. Huang, and C. Wann, “High speed 45 nm gate length CMOSFETs integrated into a 90 nm bulk technology incorporating strain engineering,” IEDM Tech. Dig., pp. 77–80, 2003. [71] C. Ortolland, S. Orain, J. Rosa, P. Morin, F. Arnaud, M. Woo, A. Poncet, and P. Stolk, “Electrical characterization and mechanical modeling of process induced strain in 65 nm CMOS technology,” Proc. ESSDERC, pp. 233–236, Sep. 2004. [72] C. Mazure and I. Cayrefourcq, “Status of device mobility enhancement through strained silicon engineering,” Proc. IEEE Int. SOI Conf., pp.1–6, 2005. [73] G. Scott, J. Lutze, M. Rubin, F. Nouri, and M. Manley, “NMOS drive current reduction caused by transistor layout and trench isolation induced stress,” IEDM Tech. Dig., pp. 827–830, 1999. [74] C. T. Sah and F. H. Hielscher, “Evidence of the surface origin of the 1/f noise,” Phys. Rev. Letter., vol. 17, pp. 956-958, 1966. [75] M. J. Kirton and M. J. Uren, “Noise in solid-state microstructure: A new perspective on individual defects, interface stats and low-frequency (1/f) noise,” Adv. Phys., vol. 38, pp. 367-468, 1989. [76] D. M. Fleetwood and J. H. Scofield, “Evidence that similar point defects cause 1/f noise and radiation-induced-hole trapping in metal-oxide-semiconductor transistors,” Phys. Rev. Letter., vol. 64, pp. 579-582, 1990. [77] K. K. Hung, P. K. Ko, C. Hu, and Y. C. Cheng, “Random telegraph noise of deep-submicrometer MOSFETs,” IEEE Electron Device Letters, vol. 11, no. 2, pp. 90-92, 1990 [78] J. Welser, J. L. Hoyt, and J. F. Gibbons, “Electron mobility enhancement in strained-Si N-type metal-oxide-semiconductor field-effect transistors,” IEEE Electron Device Letter., vol. 15, no. 3, pp. 100–102, Mar. 1994. [79] J. F. Zhang, C. Z. Zhao, A. H. Chen, G. Groeseneken, and R. Degraeve, “Hole traps in silicon dioxides—Part I: Properties,” IEEE Trans. Electron Devices, vol. 51, no. 8, pp. 1267–1273, Aug. 2004. [80] C. Z. Zhao, J. F. Zhang, G. Groeseneken, and R. Degraeve, “Hole traps in silicon dioxides—Part II: Generation mechanism,” IEEE Trans. Electron Devices, vol. 51, no. 8, pp. 1274–1280, Aug. 2004. [81] D. J. DiMaria, “The properties of electron and hole traps in thermal silicon dioxide layers grown on silicon,” The Physics of SiO and Its Interfaces, S. T. Pantelides, Ed. New York: Pergamon, pp. 160–178, 1978. [82] J. F. Zhang, H. K. Sii, G. Groeseneken, and R. Degraeve, “Hole trapping and trap generation in the gate silicon dioxide,” IEEE Trans. Electron Devices, vol. 48, no. 6, pp. 1127–1135, Jun. 2001. [83] R. Bellens, E. de Schrijver, G. Van den bosch, G. Groeseneken, P. Heremans, and H. E. Maes, “On the hot-carrier-induced post-stress interface trap generation in n-channel MOS transistors,” IEEE Trans. Electron Devices, vol. 41, no. 3, pp. 413–419, Mar. 1994. [84] V. H. Chan and J. E. Chung, “The impact of nMOSFET hot-carrier degradation on CMOS analog subcircuit performance,” IEEE J. Solid-State Circuits, vol. 30, no. 6, pp. 644–649, Jun. 1995. [85] T. Irisawa, T. Numata, N. Sugiyama, and S.-I. Takagi, “On the origin of increase in substrate current and impact ionization efficiency in strained-Si n- and p-MOSFETs,” IEEE Trans. Electron Devices, vol. 52, no. 5, pp. 993–998, May 2005. [86] C.-H. Choi, J. -H. Chun, and R. W. Dutton, “Electrothermal characteristics of strained-Si MOSFETs in high-current operation,” IEEE Trans. Electron Devices, vol. 51, no. 11, pp. 1928–1931, Nov. 2004. [87] M. F. Lu, S. Chiang, A. Liu, S. Huang-Lu, M. S. Yeh, J. R. Hwang, T. H. Tang, and W. T. Shiau, “Hot carrier degradation in novel strained-Si nMOSFETs,” Proc. Reliab. Phys., pp. 18–22, 2004. [88] Y. A. Alshehri, “Development of a full silicidation (FUSI) process for nickel silicide,” Proc. 22nd Annu. Microelectron. Eng. Conf., pp. 52–56, May 2004. [89] N. Shigyo and R. Dang, “Analysis of inverse narrow-channel effect based on a three-dimensional simulation,” VLSI Symp. Tech. Dig., pp. 54–55, Sep. 1982. [90] N. Shigyo, S. Fukuda, T. Wada, K. Hieda, T. Hamamoto, H. Watanabe, K. Sunouchi, and H. Tango, “Three-dimensional analysis of subthreshold swing and transconductance for fully recessed oxide (trench) isolated 1/4-μm-width MOSFET’s,” IEEE Trans. Electron Devices, vol. 35, no. 7, pp. 945–950, Jul. 1988. [91] K. Ohe, S. Odanaka, K. Moriyama, T. Hori, and G. Fuse, “Narrow-width effects of shallow trench-isolated CMOS with n+-polysilicon gate,” IEEE Trans. Electron Devices, vol. 36, no. 6, pp. 1110–1116, Jun. 1989. [92] C. -M. Lai, Y. -K. Fang, S. -T. Pan, and W. -K. Yeh, “Width effect on hot-carrier-induced degradation for 90 nm partially depleted SOI CMOSFETs,” J. Appl. Phys., vol. 44, no. 4B, pp. 2361–2365, May 2005. [93] T. Ghani, S. Ahmed, P. Aminzadeh*, J. Bielefeld, P. Charvat, C. Chu, M. Harper, P. Jacob, C. Jan, J. Kavalieros, C. Kenyon, R. Nagisetty, P. Packan#, J. Sebastian, M. Taylor, J. Tsai, S. Tyagi, S. Yang, M. Bohr, “100nm Gate Length High Performance/Low Power CMOS Transistor Structure,” IEDM Tech. Dig., pp. 415-418, 1999. [94] Y. C. Liu, J. W. Pan, T. Y. Chang, P. W. Liu, B. C. Lan, C. H. Tung, C. H. Tsai, T. F. Chen, C. J. Lee, W. M. Wang, Y. A. Chen, H. L. Shih, L. Y. Tung, L. W. Cheng, T. M. Shen, S. C. Chiang, M. F. Lu, W. T. Chang, Y. H. Luo, D. Nayak, D. Gitlin, H. L. Meng, and C. T. Tsai, “Single Stress Liner for Both NMOS and PMOS Current Enhancement by a Novel Ultimate Spacer Process,” IEDM Tech. Dig., pp. 836-839, 2005. [95] D. Wu, P E. Hellberg, S L. Zhang, and M. Ostling, “Notched sub-100nm gate MOSFETs for analog applications,” Proc. SSIC Tech. Dig., pp. 539-542, 2001. [96] S. Pidin, H. Shido, T. Yamamoto, N. Horiguchi, H. Kurata, and T. Sugii, “Experimental and Simulation Study on Sub-50nm CMOS Design,” Symp. VLSI Tech. Dig., pp. 35-36, 2001. [97] S. S. Chung, S. J. Chen, C. K. Yang, S. M. Cheng, S. H. Lin, Y. C. Sheng, H. S. Lin, K. T. Hung, D. Y. Wu, T. R. Yew, S. C. Chien, F. T. Liou, and F. Wen, “A Novel and direct Determination of the Interface Traps in Sub-100nm CMOS Devices with Direct Tunneling Regime (12~16 Å) Gate Oxide,” Symp. VLSI Tech. Dig., pp. 74-75, 2002. [98] N. Yang, W. K. Henson, J. R. Hauser, and J. J. Wortman, “Estimation of the Effects of Remote Charge Scattering on Electron Mobility of n-MOSFET’s with Ultrathin Gate Oxides,” IEEE Trans. Electron Devices, vol. 47, no. 2, pp. 440-447, 2000. [99] J. H. Sim, H. C. Wen, J. P. Lu, and D. L. Kwong, “Dual work function metal gates using full nickel silicidation of doped poly-Si,” IEEE Electron Device Letters, vol. 24, no. 10, pp. 631-633, 2003. [100] P. Xuan and J. Bokor, “Investigation of NiSi and TiSi as CMOS gate materials,” IEEE Electron Device Letters, vol. 24, no. 10, pp. 634-636, 2003. [101] J. Kedzierski, D. Boyd, P. Ronsheim, S. Zafar, J. Newbury, J. Ott, C. C. Jr, M. Ieong, and W. Haensch, “Threshold voltage control in NiSi-gated MOSFETs through silicidation induced impurity segregation (SIIS),” IEDM Tech. Dig., pp. 315-318, 2003. [102] C. H. Huang, D. S. Yu, A. Chin, C. H. Wu, W. J. Chen, C. Zhu, M. F. Li, B. J. Cho, and D. -L. Kwong, “Fully silicided NiSi and germanided NiGe dual gates on SiO2/Si and Al2O2/ Ge-on-insulator MOSFETs,” IEDM Tech. Dig., pp. 319-322, 2003. [103] A. Chin, W. J. Chen, T. Chang, R. H. Kao, B. C. Lin, C. Tsai, J. C. –M. Huang, “Thin oxides with in situ native oxide removal [n-MOSFETs],” IEEE Electron Device Letters, vol. 18, no. 9, pp. 417-419, 1997. [104] K. Hosaka, T. Kurahashi, K. Kawamura*, T. Aoyama, Y. Mishima, K. Suzuki, and S. Sato, “A comprehensive study of fully-silicided gates to achieve wide-range work function differences (0.91 eV) for high-performance CMOS devices,” VLSI Symp. Tech. Dig., pp. 66-67, 2005. [105] S. Inumiya, Y. Akasaka, T. matsuki, F. Ootsuka, K. Torii, and Y. Nara, “A Thermally-Stable Sub-0.9nm EOT TaSix/HfSiON Gate Stack with High Electron Mobility, Suitable for Gate-First Fabrication of hp45 LOP Devices,” IEDM Tech. Dig., pp. 23-26, 2005. [106] Y. T. Hou, F. Y. Yen, P. F. Hsu, V. S. Chang, P. S. Lim, C. L. Hung, L. G. Yao, J. C. Jiang, H. J. Lin, Y. Jin, S. M. Jang, H. J. Tao, S. C. Chen and M. S. Liang, “High Performance Tantalum Carbide Metal Gate Stacks for nMOSFET Application,” IEDM Tech. Dig., pp. 31-34, 2005. [107] R. I. Hegde, D. H. Triyoso, P. J. Tobin, S. Kalpat, M. E. Ramon, H.-H. Tseng, J. K. Schaeffer, E. Luckowski, W. J. Taylor, C. C. Capasso, D. C. Gilmer, M. Moosa, A. Haggag, M. Raymond, D. Roan, J. Nguyen, L. B. La, E. Hebert, R. Cotton, X-D. Wang, S. Zollner, R. Gregory, D. Werho, R. S. Rai, L. Fonseca, M. Stoker, C. Tracy, B. W. Chan*, Y. H. Chiu*, and B. E. White Jr. “Microstructure Modified HfO2 Using Zr Addition with TaxCy Gate for Improved Device Performance and Reliability,” IEDM Tech. Dig., pp. 35-38, 2005. [108] R. Jha, B. Lee, B. Chen, S. Novak, P. Majhi1 ,and V. Misra, “Dependence of PMOS Metal Work Functions on Surface Conditions of High-K Gate Dielectrics,” IEDM Tech. Dig., pp. 43-46, 2005. [109] D. Pham, L. Larson, and J. -W. Yang, “FINFET Device Junction Formation Challenges,” Int. Workshop on Junction Technology, pp. 73-77, 2006 [110] N. Collaert, S. Brus, A. D. Keersgieter, A. Dixit, I. Ferain, M. Goodwin, A. Kottantharayil, R. Rooyackers, P. Verheyen, Y. Yim, P. Zimmerman, S. Beckx, B. Degroote, M. Demand, M. Kim, E. Kunnen, S. Locorotondo, G. Mannaert, F. Neuilly, D. Shamiryan, C. Baerts, M. Ercken, D. Laidlcr, F. Leys, R. Loo, J. Lisoni, J. Snow, R. Vos, W. Boullart, I. Pollentier, S. D. Gendt, K. D. Meyer, M. Jurczak, S. Biescmans, “Integration challenges for multi-gate devices,” Int. Conf. on Integrated Circuit Design and Technology, pp. 187-194, 2005. [111] L. Risch, “Pushing CMOS beyond the roadmap,” Proc. of ESSDERC, pp. 63-68, 2005. [112] E. J. Nowak, T. Ludwig, I. Aller, J. Kedzierski, M. Ieong, B. Rainey, M. Breitwisch, V. Gemhoefer, J. Keinert, D. M. Fried, “ Scaling Beyond the 65 nm Node with FinFET-DGCMOS,” Int. Conf. on Custom Integrated Circuit, pp. 339-342, 2003.
|