跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.168) 您好!臺灣時間:2025/01/16 16:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊茹媛
研究生(外文):Ru-Yuan Yang
論文名稱:高介電材料之薄膜製備與微波量測及其在微波濾波元件之應用
論文名稱(外文):Thin film preparation and microwave measurement of the High k dielectric materials and its application on microwave filters
指導教授:蘇炎坤蘇炎坤引用關係
指導教授(外文):YAN-KUIN SU
學位類別:博士
校院名稱:國立成功大學
系所名稱:微電子工程研究所碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
畢業學年度:95
語文別:英文
論文頁數:132
中文關鍵詞:濾波器微波量測高介電薄膜
外文關鍵詞:high k thin filmfiltermicrowave measurement
相關次數:
  • 被引用被引用:5
  • 點閱點閱:512
  • 評分評分:
  • 下載下載:104
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要分成三大部分:(a)高介電薄膜之製備;(b)介電材料之微波量測;(c)整合型被動元件濾波器之設計。
一種微波高介電材料-鈦酸錫鋯薄膜係利用溶膠凝膠製程沈積於(100)面之p型矽基板上。本論文中針對焦化溫度,薄膜厚度及退火溫度對鈦酸錫鋯之微結構與電特性的影響加以探討。微結構之分析包含X光繞射(XRD),掃描式電子顯微鏡(SEM),原子力顯微鏡(AFM),X光螢光光譜儀(XPS),二次離子質譜儀(SIMS)及穿透式電子顯微鏡(TEM)。漏電流與不同微結構之相關性於本論文中亦有討論。
此外,使用有限接地面之共面波導結構(FG-CPW)作為量測微波特性的新穎方法亦於本論文中提出。本論文利用此方法量測未披覆二氧化矽緩衝層之鈮酸鋰基板及不同阻值之矽基板。基板之介電常數與特性阻抗值可藉由使用該有限接地面之共面波導法計算得到,而損失正切(loss tangent)則可經由萃取之介電常數與特性阻抗配合保角映射法精確得到。
又,一種緊密結構濾波器被實作於玻璃纖維基板上,該濾波器係使用開路樁之類指叉式超寬頻濾波器。此濾波器具有寬廣之止帶及較佳之選擇性。該濾波器之優良特性包含一寬頻(3-5.1 GHz),低插入損(-0.6±0.4 dB),快速衰減,及止帶衰減超過15dB。此外,一種具有緊密結構及較佳特性之指叉式共面波導低通濾波器亦被實作於高阻值基板上。該濾波器之截止頻率為31GHz,該濾波器之良好特性包含:低插入損,快速衰減,及較低的相速度延遲。
最後,本論文亦對系統晶片整合技術(SOC)提出一些建議與未來工作方向。
This dissertation divides into three parts: (a) High k thin film preparation; (b) microwave measurements of the dielectric materials and (c) design of the integrated passive filter.
A microwave High k dielectric thin film was firstly fabricated. Zirconium tin titanate (Zr0.8Sn0.2TiO4, ZST) thin films were deposited along the (100) index on a p-type Si substrate by a modified sol-gel method. The effects of firing temperatures, film thickness and annealing temperatures on the crystalline structure and electrical property of the ZST films were investigated. Microstructure analyses were including X-ray diffraction (XRD), secondary electronic microscopy (SEM), conductive atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), secondary ion mass spectroscopy (SIMS), and transmission electron microscopy (TEM). The relationship between the leakage current densities and different crystalline structures was discussed.
In addition, a novel finite ground coplanar waveguide (FG-CPW) was developed to measure the microwave properties of lithium niobate (LiNbO3) substrates, without a thin SiO2 buffer layer, and the silicon substrate. The dielectric constant and the characteristic impedance were extracted from calibrated measurements made up to 20 GHz using the FG-CPW method. The loss tangent was then obtained by the conformal mapping approach after the dielectric constant and characteristic impedance had been accurately extracted.
Furthermore, a compact pseudo-interdigital UWB filter with open stubs having wide stopband and high selectivity was fabricated on FR4 substrate. This designed filter was showing good characteristics including the bandwidth of 3-5.1 GHz (3-dB fractional bandwidth of 52%), low insertion loss of -0.6±0.4, sharp rejection, and wide stopband rejection greater than 15 dB from 5.3-9 GHz. Then, a compact and high performance integrated coplanar waveguide low-pass filter (CPW-LPF) was fabricated on high resistivity silicon (HRS) substrate at millimeter wave. This filter at cutoff frequency fc of 31 GHz has presented very good measured characteristics including the low insertion loss, sharp rejection and low group delay, due to the reducing substrate loss of HRS.
Finally, some suggestions are made in the future work on technology for system on chip (SOC).
Chinese abstract I
English Abstract III
Contents V
Table Captions VII
Figure Captions VIII
Figure Captions VIII
Chapter 1 General Introduction 1
1.1 Background 1
1.2 General review of microwave dielectric materials 2
1.3 Dielectric theory 3
1.4 Microwave dielectric measurement 4
1.5 Basic theory of microwave filters 4
1.6 Organization of this dissertation 5
References 8
Chapter 2 The Structural and Electrical Properties of Sol-Gel-Derived Microwave (Zr,Sn)TiO4 Thin Films 19
2.1 Introduction 19
2.2 Experimental procedures 20
2.3 Results and discussions 21
2.3.1 Effect of firing temperatures 22
2.3.2 Effect of thickness 24
2.4 Summary 28
References 29
Chapter 3 Effect of Annealing Temperatures on Microstructure and Electrical of (Zr0.8Sn0.2)TiO4 Microwave Thin Films Grown by Modified Sol-Gel Technology 45
3.1. Introduction 45
3.2. Experiment details 46
3.3. Results and disscussion 47
3.4 Summary 51
References 53
Chapter 4 Microwave Characteristics of Coplanar Waveguide on Lithium Niobate Crystals as a Microwave Substrate 66
4.1 Introduction 66
4.2 Experiment details 68
4.3 Results and discussion 71
4.4 Summary 74
References 75
Chapter 5 Microwave Properties of Silicon Substrate with Different Resistivities 83
5.1 Introduction 83
5.2 Attenuation mechanisms of coplanar waveguides 84
5.3 Experiment details 85
5.4 Results and discussion 86
5.5 Summary 89
References 91
Chapter 6 Design of Microwave Filter on the Microwave Dielectric Materials 102
6.1 Introduction 102
6.2 Analysis of UWB filter 103
6.3 Experimental results and discussion 104
6.4 Summary 105
References 106
Chapter 7 Fabrication of a Compact Coplanar Waveguide Low-Pass Filter on High Resistivity Silicon Substrate 112
7.1 Introduction 112
7.2 Analysis of coplanar-waveguide low-pass filter 113
7.3 Experimental results and discussion 115
7.4 Summary 117
References 118
Chapter 8 Conclusions and Future Work 125
8.1 Conclusions 125
8.2 Future work 127
Publication List 128
Vita 132
Chapter 1
[1]L. E. Larson, “Integrated circuit technology options for RFICs—Present status and future directions,” IEEE J. Solid-State Circuits, vol. 33, no. 3, pp. 387-399, Mar. 1998.
[2]M. Pfost, H. M. Rein and T. Holzwarth, “Modeling substrate effects in the design of high-speed Si-bipolar IC’s,” IEEE J. Solid-State Circuits, vol. 31, no. 10, pp. 1493-1501, Oct. 1996.
[3]C. Schollhorn, W. Zhao, M. Morschbach and E. Kasper, “Attenuation mechanisms of aluminum millimeter-wave coplanar waveguides on silicon,” IEEE Trans. Electron Devices, vol. 50, no. 3, pp. 740-746, Mar. 2003.
[4]K. T. Chan, A. Chin, S. P. McAlister, C. Y. Chang, J. Liu, S. C. Chien, D. S. Duh and W. J. Lin, “Low RF noise and power loss for ion-implanted Si having an improved implantation process,” IEEE Electron Device Lett., vol. 24, no. 1, pp. 28-30, Jan. 2003.
[5]A. Chin, K. T. Chan, C. H Huang, C. Chen, V. Liang, J. K. Chen, S. C. Chien, S. W. Sun, D. S. Duh, W. J. Lin, C. Zhu, M. F. Li, S. P. McAlister and D. L. Kwong, “RF passive devices on Si with excellent performance close to ideal devices designed by electro-magnetic simulation,” in IEDM Tech. Dig., pp. 15.5.1-15.5.4, Dec. 2003.
[6]K. T. Chan, A. Chin, M. F. Li, D. L. Kwong, S. P. McAlister, D. S. Duh, W. J. Lin and C. Y. Chang, “High-performance microwave coplanar bandpass and bandstop filters on si substrates,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 9, pp. 2036-2040, Sep. 2003.
[7]H. S. Gamble, B. M. Armstrong, S. J. N. Mitchell, Y. Wu, V. F. Fusco and J. A. C. Stewart, “Low-loss CPW lines on surface stabilized high-resistivity silicon,” IEEE Microw. Guided Wave Lett., vol. 9, no. 10, pp. 395-397, Oct. 1999.
[8]K. Wakino, K. Minai and H. Tamura, “Microwave Characteristics of (Zr,Sn)TiO4 and BaO-PbO-Nd2O3-TiO2 Dielectric Resonators,” J. Am. Ceram. Soc. vol. 67, no. 4, pp. 278-281. Apr. 1984.
[9]W. S. Kim, T. H. Hong, E. S. Kim and K. H. Yoon, “Microwave Dielectric Properties and Far Infrared Reflectively Spectra of the (Zr0.8,Sn0.2)TiO4 Ceramics with Additives,“ Jpn. J. Appl. Phys., vol. 37, pp. 5367-5371, 1998.
[10]R. Kudesia, A. E. Mchale and R. L. Snyder, “Effect of LaO2/ZnO Additives on Microstructure and Microwave Dielectric Properties of Zr0.8Sn0.2TiO4 Ceramics,“ J. Am. Ceram. Soc., vol. 77, no. 12, pp. 3215-3220, 1994.
[11]H. Ikawa, A. Iwai, Kazayuki, H. Shimojima, K. Urabe and S. Udagawa, “Phase Transformation and Thermal Expansion of Zirconium and Hafnium Titinates and Their Solid Solutions,” J. Am. Ceram. Soc., vol. 71, no. 11, pp. 120-127, 1988.
[12]S. I. Hirano, T. Hayashi and A. Hattori, “Chemical Processing and Microwave Characteristicss of (Zr,Sn)TiO4 Microwave Dielectric,“ J. Am. Ceram. Soc., 74, no.6, pp.1320-1324, Jun. 1991.
[13]N. Michiura, T. Tatekawa, Y. Higuchi and H. Tamara, “Role of Donor and Acceptor Ions in the Dielectric Loss Tangent of (Zr0.8Sn0.2)TiO4 Dielectric Resonator Material,“ J. Am. Ceram. Soc., vol. 78, no. 3, pp. 793-796, Mar. 1995.
[14]K. R. Han, J. W. Jang, S. Y. Cho, D. Y. Jeong and K. S. Hong, “Preparation and dielectric Properties of Low–Temperature-Sinterable (Zr0.8Sn0.2)TiO4 Powder,” J. Am. Ceram. Soc., vol. 81, no. 5, pp. 1209-1214, 1998.
[15]Y. Kobayashi and M. Katoh, “Microwave Measurement of Dielectric Properties of Low-Loss Materials by the Dielectric Rod Resonator Method,” IEEE Trans. Microw. Theory and Tech, vol. 33, no. 7, pp. 586-592, Jul. 1985.
[16]R. L. Peterson and R. F. Drayton, ”A CPW T-resonator technique for electrical characterization of microwave substrates,” IEEE Microwave and Guided Wave Lett., vol. 12, no. 3, pp. 90-92, Mar. 2002.
[17]S. A. Ivanov and V. N. Peshlov, ”Ring-resonator method - effective procedure for investigation of microstrip line,” IEEE Microw. and Guided Wave Lett., vol. 13, no. 6, pp. 244-246, Jun. 2003.
[18]Lung-Hwa H. and K. Chang, “Equivalent lumped elements G, L, C, and unloaded Q's of closed- and open-loop ring resonators,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 2, pp. 453-460, Feb. 2002.
[19]F. Xiangyi, L. David, W. Chris, C. Brian, “Dielectric constant characterization using a numerical method for the microstrip ring resonator,” Microw. and Optical Tech. Lett., vol 41, no. 1, pp. 14-17, Apr. 2004.
[20]M. D. Janezic and J. A. Jargon, ”Complex permittivity determination from propagation constant measurements,” IEEE Microw. and Wireless Components Lett. , vol. 9, no. 2, pp. 76-78,Feb. 1999.
[21]W. R. Eisenstadt and Y. Eo, ”S-parameter-based IC interconnect transmission line characterization,” IEEE Trans. on Comp., Hybrids, Manufact. Technol., vol. 15 , no 4, pp. 483-490, Aug. 1992.
[22]Y. Eo, and W. R. Eisenstadt, ”High-speed VLSI interconnect modeling based on S-parameter measurements,” IEEE Trans. on Comp., Hybrids, Manufact. Technol., vol. 16, no. 5, pp. 555-562, Aug. 1993.
[23]G. L. Matthaei, L. Young and E. M. T. Jone, “Microwave Filters, Impedance-Maching Networks and Coupling Strustures,” New York, McGraw Hill, 1964.
[24]K. Hettak, N. Dib, A. F. Shetab and S. Toutain, “A class of novel uniplanar series resonators and their implementation in original applications,” IEEE Trans. Microw. Theory Tech., vol. 46, no. 9, pp. 1270-1276, Sep. 1998.
[25]Khireddine, M. Drissi and R. Soares, “Flat group delay low pass filters using two cpw topologies,” IEEE MTT-S Int. Microw. Symp. pp. 2215-2218, 2005.
[26]R. Ian, P. M. Melinda, and P. K. Kelly, “Photonic bandgap structures used as filters in microstrip circuit,” IEEE Microw. and Guided Wave Lett., vol. 8, no. 10, pp. 336-338, Oct. 1998.
Chapter 2
[1]S. M. Sze, Physics of Semiconductor Devices, John Wiley & Sons Inc., New York (1981).
[2]The International Technology for Semiconductor, 2004, Semiconductor Industry Association, Tokyo, Japan (2004).
[3]G. D. Wilk, R. M. Wallace, and J. M. Anthony, “High-k gate dielectrics: Current status and materials properties considerations,” J. Appl. Phys., vol. 89, no. 10, pp. 5243–5275, May, 2001.
[4]Y. Kuo, J. Lu, and J.-Y. Tewg, “Tantalum Nitride Interface Layer Influence on Dielectric Properties of Hafnium Doped Tantalum Oxide High Dielectric Constant Thin Films,” Jpn. J. Appl. Phys., vol. 42, no. 7A, pp. L769-L771, July, 2003.
[5]J. Y. Tewg, Y. Kuo, J. Lu, and B. Schueler, “Dielectric Permittivity and Intercalation Parameters of Li Ion Intercalated Atomic Layer Deposited ZrO2,” J. Electrochem. Soc., vol. 151, no. 3, pp. F54-F58, Jan, 2004.
[6]R. F. Cava, W. F. Peck, and J. J. Krajewski, “Enhancement of the dielectric constant of Ta2O5through substitution with TiO2,” Nature., vol. 377, pp. 215 - 217, Sep. 1995.
[7]H. Ikawa, A. Iwai, Kazayuki, H. Shimojima, K. Urabe and S. Udagawa, “Phase Transformation and Thermal Expansion of Zirconium and Hafnium Titanates and Their Solid Solutions,” J. Am. Ceram. Soc., vol. 71, no. 2, pp. 120–127, Feb. 1988.
[8]C. L. Huang and M. H. Weng, “The Microwave Dielectric Properties and the Microstructures of Bi(Nb, Ta)O4 Ceramics,” Jpn. J. Appl. Phys., vol. 38, no. 10, pp. 5949-5952, Oct. 1999.
[9]Y. Kim, J. Oh, T. G. Kim and B. Park, “Effect of microstructures on the microwave dielectric properties of ZrTiO4 thin films,” Appl. Phys. Lett., vol. 78, no. 16, pp. 2363-2365, Feb. 2001.
[10]O. Nakagawara, Y. Toyota, M. Kobayashi, Y. Yoshino, Y. Katayama, H. Tabata and T. Kawai, “Electrical properties of (Zr,Sn)TiO4 dielectric thin film prepared by pulsed laser deposition,” J. Appl. Phys., vol. 80, no. 1, pp. 388-392, Mar. 1996.
[11]C. L. Huang and C. H. Hsu, “Properties of reactively radio frequency-magnetron sputtered (Zr,Sn)TiO4 dielectric films,” J. Appl. Phys., vol. 96, no. 2, pp. 1186-1191, July, 2004.
[12]R. B. van Dover, L. Schneemeyer, M. Fleming, “Discovery of a useful thin-film dielectric using a composition-spread approach,” Nature., vol. 392, pp. 162 - 164, Mar. 1998.
[13]E. S. Ramakrishnan, K. D. Cornell, G. H. Shapiro, and W. Y. Howng, “Dielectric Properties of Radio Frequency Magnetron Sputter Deposited Zirconium Titanate-Based Thin Films,” J Electrochem. Soc., vol. 145, no. 1, pp. 358-362, Mar. 1998.
[14]D. A. Chang, P. Lin, and T. Y. Tseng, “Growth of highly oriented ZrTiO4 thin films by radio-frequency magnetron sputtering,” Appl. Phys. Lett., vol. 64, no. 24, pp. 3252-3254, Apr. 1994.
[15]F. J. Wu and T.Y. Tseng, “Highly Oriented (Zr0.7Sn0.3)TiO4 Thin Films Grown by rf Magnetron Sputtering,” J. Am. Ceram. Soc., vol. 81, no. 2, pp. 439–445, Feb. 1998.
[16]R. B. van Dover, and L. F. Schneemeyer, “Deposition of uniform Zr-Sn-Ti-O films by on-axis reactive sputtering,” IEEE Electron Device Lett., vol. 19, no. 9, pp. 329-331, Sep. 1998.
[17]W. X. Cheng, A. L. Ding, P. S. Qiu, X. Y. He and X. Sh. Zheng, “Optical and dielectric properties of (Zr0.8,Sn0.2)TiO4 thin films prepared by sol–gel process,” Mater. Sci. Eng., vol. 99, no. 1-3, pp. 382-385, May, 2003.
[18]Y. Senzaki, G. Alers. A. Hochberg. D. Roberts, J. Norman, R. Fleming and H. Krautter, “CVD of Zr-Sn-Ti-O Thin Films by Direct Injection of Solventless Liquid Precursor Mixtures,” Electrochem. Solid –State Lett., vol. 3, no. 9, pp. 435-436, Sep. 2000.
[19]E. L. Mays, D. Hessb, W. S. Rees Jr, “Deposition and characterization of zirconium tin titanate thin films as a potential high-k material for electronic devices,” J. of Cryst. Growth., vol. 261, no. 2-3, pp. 309-315, Jan. 2004.
[20]Y. S. Ho, M-H Weng, S. S. Wang, “High Quality Microwave Zr0.8Sn0.2TiO4 Dielectric Thin Film Prepared by Sol–Gel Method,” Jpn. J. Appl. Phys., vol. 44, no. 7A, pp. 5125-5128, July, 2005.
[21]M. Schultz, Diffraction for Materials Scientists, p. 226 Prentice–Hall Englewood Cliffs, N. J. (1982).
[22]H. Kang, S. Park, K. Kim, M.Y. Sung, and H. Choi, “SrTiO3 Thin Films Deposited by CLCB in Combination with Sol-Gel Processing,” Electrochem. Solid –State Lett., vol. 7, no. 11, pp. F70- F72, July, 2004.
Chapter 3
[1]S. M. Sze, Physics of Semiconductor Devices, John Wiley & Sons Inc., New York, 1981.
[2]The International Technology for Semiconductor, Semiconductor Industry Association, Tokyo, Japan, 2004.
[3]G. D. Wilk, R. M. Wallace, and J. M. Anthony, “High-k gate dielectrics: Current status and materials properties considerations,” J. Appl. Phys., vol. 89, no. 10, pp. 5243–5275, May, 2001.
[4]J. Shappir, A. Anis, and I. Pinsky, “Investigation of MOS capacitors with thin ZrO2layers and various gate materials for advanced DRAM applications,” IEEE Electron Device., vol. ED-33, no. 4, pp. 442–449, Apr. 1986.
[5]J. Y. Tewg, Y. Kuo, J. Lu, and B. Schueler, “Dielectric Permittivity and Intercalation Parameters of Li Ion Intercalated Atomic Layer Deposited ZrO2,” J. Electrochem. Soc., vol. 151, no. 3, pp. F54-F58, Jan. 2004.
[6]R. F. Cava, W. F. Peck, and J. J. Krajewski, “Enhancement of the dielectric constant of Ta2O5through substitution with TiO2,” Nature., vol. 377, pp. 215 - 217, Sep. 1995.
[7]C. Rastogi, and R. N. Sharma, “Structural and electrical characteristics of metal-insulator-semiconductor diodes based on Y2O3 dielectric thin films on silicon,” J. Appl. Phys., vol. 71, no. 10, pp. 5041 - 5052, Feb. 1992.
[8]L. Huang and M. H. Weng, “The Microwave Dielectric Properties and the Microstructures of Bi(Nb, Ta)O4 Ceramics,” Jpn. J. Appl. Phys., vol. 38, no. 10, pp. 5949-5952, Oct. 1999.
[9]Y. Kim, J. Oh, T. G. Kim and B. Park, “Effect of microstructures on the microwave dielectric properties of ZrTiO4 thin films,” Appl. Phys. Lett., vol. 78, no. 16, pp. 2363-2365, Feb. 2001.
[10]Nakagawara, Y. Toyota, M. Kobayashi, Y. Yoshino, Y. Katayama, H. Tabata and T. Kawai, “Electrical properties of (Zr,Sn)TiO4 dielectric thin film prepared by pulsed laser deposition,” J. Appl. Phys., vol. 80, no. 1, pp. 388-392, Mar. 1996.
[11]L. Huang and C. H. Hsu, “Properties of reactively radio frequency-magnetron sputtered (Zr,Sn)TiO4 dielectric films,” J. Appl. Phys., vol. 96, no. 2, pp. 1186-1191, July, 2004.
[12]R. B. van Dover, L. Schneemeyer, M. Fleming, “Discovery of a useful thin-film dielectric using a composition-spread approach,” Nature., vol. 392, pp. 162 - 164, Mar. 1998.
[13]E. S. Ramakrishnan, K. D. Cornell, G. H. Shapiro, and W. Y. Howng, “Dielectric Properties of Radio Frequency Magnetron Sputter Deposited Zirconium Titanate-Based Thin Films,” J Electrochem. Soc., vol. 145, no. 1, pp. 358-362, Mar. 1998.
[14]D. A. Chang, P. Lin, and T. Y. Tseng, “Growth of highly oriented ZrTiO4 thin films by radio-frequency magnetron sputtering,” Appl. Phys. Lett., vol. 64, no. 24, pp. 3252-3254, Apr. 1994.
[15]F. J. Wu and T.Y. Tseng, “Highly Oriented (Zr0.7Sn0.3)TiO4 Thin Films Grown by rf Magnetron Sputtering,” J. Am. Ceram. Soc., vol. 81, no. 2, pp. 439–445, Feb. 1998.
[16]R. B. van Dover, and L. F. Schneemeyer, “Deposition of uniform Zr-Sn-Ti-O films by on-axis reactive sputtering,” IEEE Electron Device Lett., vol. 19, no. 9, pp. 329-331, Sep. 1998.
[17]W. X. Cheng, A. L. Ding, P. S. Qiu, X. Y. He and X. Sh. Zheng, “Optical and dielectric properties of (Zr0.8,Sn0.2)TiO4 thin films prepared by sol–gel process,” Mater. Sci. Eng., vol. 99, no. 1-3, pp. 382-385, May, 2003.
[18]Y. Senzaki, G. Alers. A. Hochberg. D. Roberts, J. Norman, R. Fleming and H. Krautter, “CVD of Zr-Sn-Ti-O Thin Films by Direct Injection of Solventless Liquid Precursor Mixtures,” Electrochem. Solid –State Lett., vol. 3, no. 9, pp. 435-436, Sep. 2000.
[19]E. L. Mays, D. Hessb, W. S. Rees Jr, “Deposition and characterization of zirconium tin titanate thin films as a potential high-k material for electronic devices,” J. of Cryst. Growth., vol. 261, no. 2-3, pp. 309-315, Jan. 2004.
[20]Y. S. Ho, M-H Weng, S. S. Wang, “High Quality Microwave Zr0.8Sn0.2TiO4 Dielectric Thin Film Prepared by Sol–Gel Method,” Jpn. J. Appl. Phys., vol. 44, no. 7A, pp. 5125-5128, July, 2005.
[21]D. A. Chang, P. Lin, and T. Y. Tseng, “Effects of oxygen-argon mixing on the electrical and physical properties of ZrTiO4 films sputtered on silicon at low temperature,” J. Appl. Phys., vol. 78, no. 12, pp. 7103-7108, Dec. 1995.
[22]S. Hofmann, “Effects of oxygen-argon mixing on the electrical and physical properties of ZrTiO4 films sputtered on silicon at low temperature,” J. Vac. Sci. Technol., vol. A4, no. 6, pp. 2789-2796, Nov. 1986.
[23]D. K. Sarkar, E. Desbiens, and M. A. El Khakani, “High-k titanium silicate dielectric thin films grown by pulsed-laser deposition,” Appl. Phys. Lett., vol. 80, no. 2, pp. 294-296, Jan. 2002.
[24]M. J. Guittet, J. P. Crocombette, and M. Gautier-Soyer, “Bonding and XPS chemical shifts in ZrSiO4 versus SiO2 and ZrO2Charge transfer and electrostatic: effects,” Phys. Rev., vol. B63, no. 12, pp. 125117-1-125117-7, Mar. 2001.
[25]H. Ikawa, T. Yamada, K. Kojima, and S. Matsumoto, “X-ray Photoelectron Spectroscopy Study of High- and Low-Temperature Forms of Zirconium Titanate,” J. Am. Ceram. Soc., vol. 74, no. 6, pp. 1459-1462, June, 1991.
[26]E. Mchale, and R. S. Roth, “Investigation of the Phase Transition in ZrTiO4 and ZrTiO4-SnO2 Solid Solutions,” J. Am. Ceram. Soc., vol. 66, no. 6, pp. c-18-c-20, Feb. 1983.
[27]M. Schultz, Diffraction for Materials Scientists, Prentice–Hall Englewood Cliffs, N. J., pp. 226, 1982.
[28]H. Kang, S. Park, K. Kim, M.Y. Sung, and H. Choi, “SrTiO3 Thin Films Deposited by CLCB in Combination with Sol-Gel Processing,” Electrochem. Solid –State Lett., vol. 7, no. 11, pp. F70- F72, July, 2004.
Chapter 4
[1].B. Mathias, and J. P. Remeika, “Dielectric Properties of Sodium and Potassium Niobates,” Phys. Rev. vol. 82, no. 5, pp. 727 - 72, June. 1951.
[2].K. Nassau, H. J. Levinstein, and G. M. Loiacomo, “Ferroelectric Behavior Of Lithium Niobate,” Appl. Phys. Lett., vol. 7, no. 3, pp. 69-70, Aug. 1965..
[3].K. Nassau, H. J. Levinstein, and G. M. Loiacomo, “Ferroelectric lithium niobate. 2. Preparation of single domain crystals,” J. Phys. Chem. Solids, vol. 27, no. 6-7, pp. 989-996, June-July 1966.
[4].K. Noguchi, O. Mitomi, and H. Miyazawa, “J. Millimeter-Wave Ti:LiNbO3 Optical Modulators,” Lightwave Technol. vol. 16,no. 4, pp. 615, April 1998.
[5].K. Noguchi, H. Miyazawa, and O. Mitomi, “Frequency-dependent propagation characteristics of coplanar waveguide electrode on 100 GHz Ti:LiNbO3 optical modulator,” Electron. Lett. vol. 34, no. 7, pp. 661-663, April 1998.
[6].G. Ghione, M. Goano, G. L. Madonna, G. Omegna, M. Pirola, S. Bosso, D. Frassati, and Aldo Perasso, “Microwave modeling and characterization of thick coplanar waveguides on oxide-coated lithium niobate substrates for electrooptical application,” IEEE Trans. Microwave Theory Tech., vol. 47, no. 9, pp. 2287-2293, Dec. 1999.
[7].B. H. Ahn, “Measurement of the indices of refraction and the absorption coefficients of dielectric materials in the millimeter wave region,” J. Appl. Phys. vol. 54, no. 4, pp. 2123-2124, April.1983.
[8].M. Lee, “Dielectric constant and loss tangent in LiNbO3 crystals from 90 to 147 GHz,” Appl. Phys. Lett., vol. 79, no. 9, pp. 1342-1344, Aug. 2001.
[9].T. Tang, J. H. Horng, M. P. Houng, and Y. H. Wang, “A Novel Microwave Microstrip Surface Acoustic Wave Filter with Gigahertz Band Low-Loss Wide Bandwidth for Broad Spectrum Communication System,” Jpn. J. Appl. Phys., vol. 41, Part 1, no. 5A, pp. 2974-2977, May 2002.
[10].R. E. Collin, Foundations for Microwave Engineering (Wiley, New York, 2000), pp. 164–173.
[11].http://www.teraxtal.com/eng/manufacturing.htm
[12].H. T. Lue, and T. Y. Tseng, G. W, Huang, “A method to characterize the dielectric and interfacial properties of metal–insulator-semiconductor structures by microwave measurement,” J. Appl. Phys., vol. 91, no. 8, pp. 5275-5282, April 2002.
[13].M. Kobayashi, and R. Terakado, “Accurately Approximate Formula of Effective Filling Fraction for Microstrip Line with Isotropic Substrate and its Application to the Case with Anisotropic Substrate,” IEEE Trans. Microwave Theory Tech. vol. 27, no. 9, pp. 769-775, sep.1979.
[14].R. L. Peterson, and R. F. Drayton, “A CPW T-resonator technique for electrical characterization of microwave substrates,” IEEE Microw. Wireless Compon. Lett., vol. 12, no. 3, pp. 90-92, Mar. 2002.
[15].S. S. Bedair, and .I. Wolff, “Fast, accurate and simple approximate analytic formulas for calculating the parameters of supported coplanar waveguides for MMIC's,” IEEE Trans. Microwave Theory Tech. vol. 40, no. 1, pp. 41-48, Jan. 1992.
[16].Tomeno and S. Matsumura, Properties of Lithium Niobate (INPSEC, New York, 1989), Chap. 5.5, and references therein.
[17].M. E. Lines and A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Oxford University Press, New York, 1977), Chap. 16.
[18].Http://www.zeland.com, Zeland Software, Inc., IE3D Simulator, 1997.
[19].R. Guo, A. S. Shalla, and L. E. Cross, “Ba(Mg1/3Ta2/3)O3 single crystal fiber grown by the laser heated pedestal growth technique,” J. Appl. Phys., vol. 75, no. 9, pp. 4704-4708, May 1994.
[20].M. H. Weng, T. J. Liang, and C. L. Huang, “Lowering of sintering temperature and microwave dielectric properties of BaTi4O9 ceramics prepared by the polymeric precursor method,” J. Eur. Ceram. Soc., vol. 22, no. 9-10, pp. 1693-1698, Sep. 2002.
Chapter 5
[1]L. E. Larson, “Integrated circuit technology options for RFICs—Present status and future directions,” IEEE J. Solid-State Circuits, vol. 33, no. 3, pp. 387–399, Mar. 1998.
[2]J. Papapolymerou, G. E. Ponchak, E. Dalton, A. Bacon, and M. M. Tentzeris, “Crosstalk between finite ground coplanar waveguides over polyimide layers for 3-D MMICs on Si substrates,” IEEE Trans. Microw. Theory Tech., vol. MTT-52, no. 4, pp. 1292 - 1301, Apr. 2004.
[3]G. Six, G. Prigent, G. Dambrine, and H. Happy, “Fabrication and characterization of low-loss TFMS on silicon substrate up to 220 GHz,” IEEE Trans. Microwave Theory Tech., vol. MTT-53, pp. 301-305, Jan. 2005.
[4]B. Rong, J. N. Burghartz, L. K. Nanver, B. Rejaei, M. van der Zwan, “Surface-passivated high-resistivity silicon substrates for RFICs,” IEEE Electron Device Lett., vol. 25, no. 4, pp. 176 - 178, Apr. 2004.
[5]H. S. Gamble, B. M. Armstrong, S. J. N. Mitchell, Y. Wu, V. F. Fusco, and J. A. C. Stewart, “Low-loss CPW lines on surface stabilized high-resistivity silicon,” IEEE Microwave Guided Wave Lett., vol. 9, no. 10, pp. 395–397, Oct. 1999.
[6]A. Chin, K. T. Chan, C. H Huang, C. Chen, V. Liang, J. K. Chen, S. C. Chien, S. W. Sun, D. S. Duh, W. J. Lin, C. Zhu, M. F. Li, S. P. McAlister, and D. L. Kwong, “RF passive devices on Si with excellent performance close to ideal devices designed by electro-magnetic simulation,” in IEDM Tech. Dig., pp. 15.5.1 - 15.5.4, Dec. 2003.
[7]K. T. Chan, A. Chin, S. P. McAlister, C. Y. Chang, J. Liu, S. C. Chien, D. S. Duh, and W. J. Lin, “Low RF noise and power loss for ion-implanted Si having an improved implantation process,” IEEE Electron Device Lett., vol. 24, no. 1, pp. 28 - 30, Jan. 2003.
[8]J. Büchler, E. Kasper, P. Russer, and K. M. Strohm, “Silicon high-resistivity- substrate millimeter-wave technology,” IEEE Trans. Microwave Theory Tech., vol. MTT-34, pp. 1516–1521, Dec. 1986.
[9]C. Schollhorn, W. Zhao; M. Morschbach, E. Kasper, “Attenuation mechanisms of aluminum millimeter-wave coplanar waveguides on silicon,” IEEE Trans. Electron Devices, vol. 50, no. 3, pp. 740 - 746, Mar. 2003.
[10]C. Kittel, Introduction to Solid State Physics. John Wiley & Sons, 1996.
[11]R. E. Collin, Foundations for microwave engineering, McGraw-Hill, Inc., 1992.
[12]J. Lee, W. Ryu, J. Kim, J. Lee, N. Kim, J. Pak, J. M. Kim, and J. Kim, “Microwave frequency interconnection line model of a wafer level package,” IEEE Trans. Adv. Packag., vol. 25, no. 3, pp. 356 - 364, Aug. 2002.
[13]Http://www.zeland.com, Zeland Software, Inc., IE3D Simulator, 1997.
[14]K. Benaissa, J. Y. Yang, D. Crenshaw, B. Williams, S. Sridhar, J. Ai, G. Boselli, S. Zhao, S. Tang, S. Ashburn, P. Madhani, T. Blythe, N. Mahalingam, and H. Shichijo, “RF CMOS on high-resistivity substrates for system-on-Chip applications,” IEEE Trans. Electron Devices, vol. 50, pp. 567-576, Mar. 2003.
[15]M. Pfost, H. M. Rein, and T. Holzwarth, “Modeling substrate effects in the design of high-speed Si-bipolar IC’s,” IEEE J. Solid-State Circuits, vol. 31, pp. 1493–1501, Oct. 1996.
[16]A. M. Niknejad, and R. G. Meyer, “Analysis of eddy-current losses over conductive substrate with applications to monolithic inductors and transformers,” IEEE Trans. Microwave Theory Tech., vol. 49, pp. 166–176, Jan. 2001.
Chapter 6
[1]G. G. Roberto, and I. A. José, “Design of sharp-rejection and low-loss wide-band planar filters using signal-interference techniques,” IEEE Trans. Microwave Theory Tech. vol.15, no. 8, pp. 530-532, Aug. 2005.
[2]W. Menzel, L. Zhu, K. Wu, and F. Bögelsack, “On the design of novel compact broad-band planar filters,” IEEE Trans. Trans. Microwave Theory Tech. vol. 51, no. 2, pp. 364-370, Feb. 2003.
[3]C. C. Chen, J. T. Kuo, M. Jiang and A. Chin, “Study of parallel coupled-line microstrip filter in broadband,” Microw. Opt. Tech. Lett. vol. 48, no. 2, pp. 373-375, Feb. 2006.
[4]G. L. Matthaei, “Interdigital band-pass filters,” IEEE Trans. Microwave Theory Tech., vol. 10, no. 6, pp. 479-491, Nov. 1962.
[5]J. S. Hong and M. J. Lancaster, “Development of new microstrip pseudo-interdigital bandpass filters,” IEEE Microwave and Guided Wave Lett., vol. 5, no. 8, pp. 261-263, Aug. 1995.
[6]M. H. Weng, W. N. Chen, T. H. Huang, “C. Y. Hung, H. W. Wu, Stepped impedance resonator bandpass filters using tapped-line for controlling spurious response,” Microw. Opt. Tech. Lett., vol. 40, no. 6, pp. 481-484, March 2004.
[7]C. Y. Hung, M. H. Weng, Y. K. Su, R. Y. Yang, H. W. Wu, “Design of UWB filter using interdigital resonators,” Microw. Opt. Tech. Lett., vol. 48, no. 10, pp. 2093-2096, Oct. 2006.
[8]Federal Communications Commission, Revision of part 15 of the commission’s rules regarding ultra-wideband transmission systems, Tech. Rep., ET-Docket FCC 02–48 (2002), 12.
[9]IEEE P802.15 Working Group for Wireless Personal Area Networks, Detailed DS-UWB simulation results IEEE 802.15-04-0483r4 (2004), 11-12.
[10]Zeland Software, Inc., IE3D Simulator, 1997.
[11]J. R. Lee, J. H. Cho, and S. W. Yun, New compact bandpass filter using microstrip λ/4 resonators with open stub inverter, IEEE Microwave and Guided Wave Lett., vol. 10, no. 12, pp. 526-527, Dec. 2000.
Chapter 7
[1]L. E. Larson, “Integrated circuit technology options for RFICs—Present status and future directions,” IEEE J. Solid-State Circuits, vol. 33, no. 3, pp. 387–399, Mar. 1998.
[2]M. Pfost, H. M. Rein, and T. Holzwarth, “Modeling substrate effects in the design of high-speed Si-bipolar IC’s,” IEEE J. Solid-State Circuits, vol. 31, no. 10, pp. 1493–1501, Oct. 1996.
[3]C. Schollhorn, W. Zhao; M. Morschbach, E. Kasper, “Attenuation mechanisms of aluminum millimeter-wave coplanar waveguides on silicon,” IEEE Trans. Electron Devices, vol. 50, no. 3, pp. 740 - 746, Mar. 2003.
[4]K. T. Chan, A. Chin, S. P. McAlister, C. Y. Chang, J. Liu, S. C. Chien, D. S. Duh, and W. J. Lin, “Low RF noise and power loss for ion-implanted Si having an improved implantation process,” IEEE Electron Device Lett., vol. 24, no. 1, pp. 28 - 30, Jan. 2003.
[5]H. S. Gamble, B. M. Armstrong, S. J. N. Mitchell, Y. Wu, V. F. Fusco, and J. A. C. Stewart, “Low-loss CPW lines on surface stabilized high-resistivity silicon,” IEEE Microwave Guided Wave Lett., vol. 9, no. 10, pp. 395–397, Oct. 1999.
[6]A. Chin, K. T. Chan, C. H Huang, C. Chen, V. Liang, J. K. Chen, S. C. Chien, S. W. Sun, D. S. Duh, W. J. Lin, C. Zhu, M. F. Li, S. P. McAlister, and D. L. Kwong, “RF passive devices on Si with excellent performance close to ideal devices designed by electro-magnetic simulation,” in IEDM Tech. Dig., pp. 15.5.1 - 15.5.4, Dec. 2003.
[7]K. T. Chan, A. Chin, M. F. Li, D. L. Kwong, S. P. McAlister, D. S. Duh, W. J. Lin, and C. Y. Chang, “High-performance microwave coplanar bandpass and bandstop filters on Si substrates,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 9, pp. 2036–2040, Sept. 2003.
[8]K. Hettak, N. Dib, A.-F. Sheta, S. Toutain, “A class of novel uniplanar series resonators and their implementation in original applications,” IEEE Trans. Microw. Theory Tech., vol. 46, no. 9, pp. 1270 – 1276, Sept. 1998.
[9]Http://www.zeland.com, Zeland Software, Inc., IE3D Simulator, 1997.
[10]S. Khireddine, M. Drissi, R. Soares, "Flat group delay low pass filters using two cpw topologies," 2005 IEEE MTT-S Int. Microw. Symp. pp. 2215-2218.
[11]R. Ian, P. M. Melinda, and P. K. Kelly, “Photonic bandgap structures used as filters in microstrip circuit,” IEEE Microw. and Guided Wave Lett., vol. 8, no. 10, pp. 336-338, Oct. 1998.
[12]R. Y. Yang, C. Y. Hung, Y. K. Su, M. H. Weng, and H. W. Wu, “Loss characteristics of silicon substrate with different resistivity,” Microw. Opt. Tech. Lett., vol. 48, no. 9, pp 1773-1776, Sep. 2006.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 吳清基(1988)。國內目前教師進修問題面面觀。國教之友,40(1),36-41。
2. 吳清山(1997)。學習型組織理論其對教育革新的啟示。國教月刊,23(2),60-68。
3. 方琇瑩(2002)。在職教師參與線上研習課程之研究-以嘉義縣為例。成人教育學刊,6,31-49。
4. 丁志權(1997)。教師在職進修辦法與獎勵辦法評析。教師之友,38(1),1-8。
5. 呂錘卿(1995)。國民小學實施以學校為中心的在職進修之探討。國教輔導,6(34),55-62。
6. 曾榮祥(民89)。學校本位教師專業發展可行做法之探討。研習資訊,17(2),44-50。
7. 陳惠萍(1993)。高雄市國小教師短期在職進修需求調查研究。高市鐸聲,4(1),69-75。
8. 張碧珊(2004)。國民小學學校本位教師在職進修理念與實施。教師之友,45(4),53-61。
9. 張清濱(1996)。教師進修邁向專業化途徑。研習資訊,13(6),2-9。
10. 楊思偉(1996)。在職進修教育的趨勢與做法。研習資訊,13(6),24-27。
11. 蔡明昌(2001)。中學教師自我導向學習準備度與其在職進修學習成效關係之研究。教育研究資訊,9(4),1-26。
12. 潘慧玲、王麗雲、簡茂發、孫志麟、張素貞、張錫勳、陳順和、陳淑敏、蔡濱如(2004)。國民中小學教師教學專業能力指標之發展。教育研究資訊,12(4),132-162。
13. 謝文英(1992)。我國國小教師在職進修教育之研究。國教學報,4,23-45。
14. 饒見維(2000)。如何培養教師之課程設計能力以因應九年一貫課程。教育資料與研究,34,1-17。