|
Chapter 1 [1]L. E. Larson, “Integrated circuit technology options for RFICs—Present status and future directions,” IEEE J. Solid-State Circuits, vol. 33, no. 3, pp. 387-399, Mar. 1998. [2]M. Pfost, H. M. Rein and T. Holzwarth, “Modeling substrate effects in the design of high-speed Si-bipolar IC’s,” IEEE J. Solid-State Circuits, vol. 31, no. 10, pp. 1493-1501, Oct. 1996. [3]C. Schollhorn, W. Zhao, M. Morschbach and E. Kasper, “Attenuation mechanisms of aluminum millimeter-wave coplanar waveguides on silicon,” IEEE Trans. Electron Devices, vol. 50, no. 3, pp. 740-746, Mar. 2003. [4]K. T. Chan, A. Chin, S. P. McAlister, C. Y. Chang, J. Liu, S. C. Chien, D. S. Duh and W. J. Lin, “Low RF noise and power loss for ion-implanted Si having an improved implantation process,” IEEE Electron Device Lett., vol. 24, no. 1, pp. 28-30, Jan. 2003. [5]A. Chin, K. T. Chan, C. H Huang, C. Chen, V. Liang, J. K. Chen, S. C. Chien, S. W. Sun, D. S. Duh, W. J. Lin, C. Zhu, M. F. Li, S. P. McAlister and D. L. Kwong, “RF passive devices on Si with excellent performance close to ideal devices designed by electro-magnetic simulation,” in IEDM Tech. Dig., pp. 15.5.1-15.5.4, Dec. 2003. [6]K. T. Chan, A. Chin, M. F. Li, D. L. Kwong, S. P. McAlister, D. S. Duh, W. J. Lin and C. Y. Chang, “High-performance microwave coplanar bandpass and bandstop filters on si substrates,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 9, pp. 2036-2040, Sep. 2003. [7]H. S. Gamble, B. M. Armstrong, S. J. N. Mitchell, Y. Wu, V. F. Fusco and J. A. C. Stewart, “Low-loss CPW lines on surface stabilized high-resistivity silicon,” IEEE Microw. Guided Wave Lett., vol. 9, no. 10, pp. 395-397, Oct. 1999. [8]K. Wakino, K. Minai and H. Tamura, “Microwave Characteristics of (Zr,Sn)TiO4 and BaO-PbO-Nd2O3-TiO2 Dielectric Resonators,” J. Am. Ceram. Soc. vol. 67, no. 4, pp. 278-281. Apr. 1984. [9]W. S. Kim, T. H. Hong, E. S. Kim and K. H. Yoon, “Microwave Dielectric Properties and Far Infrared Reflectively Spectra of the (Zr0.8,Sn0.2)TiO4 Ceramics with Additives,“ Jpn. J. Appl. Phys., vol. 37, pp. 5367-5371, 1998. [10]R. Kudesia, A. E. Mchale and R. L. Snyder, “Effect of LaO2/ZnO Additives on Microstructure and Microwave Dielectric Properties of Zr0.8Sn0.2TiO4 Ceramics,“ J. Am. Ceram. Soc., vol. 77, no. 12, pp. 3215-3220, 1994. [11]H. Ikawa, A. Iwai, Kazayuki, H. Shimojima, K. Urabe and S. Udagawa, “Phase Transformation and Thermal Expansion of Zirconium and Hafnium Titinates and Their Solid Solutions,” J. Am. Ceram. Soc., vol. 71, no. 11, pp. 120-127, 1988. [12]S. I. Hirano, T. Hayashi and A. Hattori, “Chemical Processing and Microwave Characteristicss of (Zr,Sn)TiO4 Microwave Dielectric,“ J. Am. Ceram. Soc., 74, no.6, pp.1320-1324, Jun. 1991. [13]N. Michiura, T. Tatekawa, Y. Higuchi and H. Tamara, “Role of Donor and Acceptor Ions in the Dielectric Loss Tangent of (Zr0.8Sn0.2)TiO4 Dielectric Resonator Material,“ J. Am. Ceram. Soc., vol. 78, no. 3, pp. 793-796, Mar. 1995. [14]K. R. Han, J. W. Jang, S. Y. Cho, D. Y. Jeong and K. S. Hong, “Preparation and dielectric Properties of Low–Temperature-Sinterable (Zr0.8Sn0.2)TiO4 Powder,” J. Am. Ceram. Soc., vol. 81, no. 5, pp. 1209-1214, 1998. [15]Y. Kobayashi and M. Katoh, “Microwave Measurement of Dielectric Properties of Low-Loss Materials by the Dielectric Rod Resonator Method,” IEEE Trans. Microw. Theory and Tech, vol. 33, no. 7, pp. 586-592, Jul. 1985. [16]R. L. Peterson and R. F. Drayton, ”A CPW T-resonator technique for electrical characterization of microwave substrates,” IEEE Microwave and Guided Wave Lett., vol. 12, no. 3, pp. 90-92, Mar. 2002. [17]S. A. Ivanov and V. N. Peshlov, ”Ring-resonator method - effective procedure for investigation of microstrip line,” IEEE Microw. and Guided Wave Lett., vol. 13, no. 6, pp. 244-246, Jun. 2003. [18]Lung-Hwa H. and K. Chang, “Equivalent lumped elements G, L, C, and unloaded Q's of closed- and open-loop ring resonators,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 2, pp. 453-460, Feb. 2002. [19]F. Xiangyi, L. David, W. Chris, C. Brian, “Dielectric constant characterization using a numerical method for the microstrip ring resonator,” Microw. and Optical Tech. Lett., vol 41, no. 1, pp. 14-17, Apr. 2004. [20]M. D. Janezic and J. A. Jargon, ”Complex permittivity determination from propagation constant measurements,” IEEE Microw. and Wireless Components Lett. , vol. 9, no. 2, pp. 76-78,Feb. 1999. [21]W. R. Eisenstadt and Y. Eo, ”S-parameter-based IC interconnect transmission line characterization,” IEEE Trans. on Comp., Hybrids, Manufact. Technol., vol. 15 , no 4, pp. 483-490, Aug. 1992. [22]Y. Eo, and W. R. Eisenstadt, ”High-speed VLSI interconnect modeling based on S-parameter measurements,” IEEE Trans. on Comp., Hybrids, Manufact. Technol., vol. 16, no. 5, pp. 555-562, Aug. 1993. [23]G. L. Matthaei, L. Young and E. M. T. Jone, “Microwave Filters, Impedance-Maching Networks and Coupling Strustures,” New York, McGraw Hill, 1964. [24]K. Hettak, N. Dib, A. F. Shetab and S. Toutain, “A class of novel uniplanar series resonators and their implementation in original applications,” IEEE Trans. Microw. Theory Tech., vol. 46, no. 9, pp. 1270-1276, Sep. 1998. [25]Khireddine, M. Drissi and R. Soares, “Flat group delay low pass filters using two cpw topologies,” IEEE MTT-S Int. Microw. Symp. pp. 2215-2218, 2005. [26]R. Ian, P. M. Melinda, and P. K. Kelly, “Photonic bandgap structures used as filters in microstrip circuit,” IEEE Microw. and Guided Wave Lett., vol. 8, no. 10, pp. 336-338, Oct. 1998. Chapter 2 [1]S. M. Sze, Physics of Semiconductor Devices, John Wiley & Sons Inc., New York (1981). [2]The International Technology for Semiconductor, 2004, Semiconductor Industry Association, Tokyo, Japan (2004). [3]G. D. Wilk, R. M. Wallace, and J. M. Anthony, “High-k gate dielectrics: Current status and materials properties considerations,” J. Appl. Phys., vol. 89, no. 10, pp. 5243–5275, May, 2001. [4]Y. Kuo, J. Lu, and J.-Y. Tewg, “Tantalum Nitride Interface Layer Influence on Dielectric Properties of Hafnium Doped Tantalum Oxide High Dielectric Constant Thin Films,” Jpn. J. Appl. Phys., vol. 42, no. 7A, pp. L769-L771, July, 2003. [5]J. Y. Tewg, Y. Kuo, J. Lu, and B. Schueler, “Dielectric Permittivity and Intercalation Parameters of Li Ion Intercalated Atomic Layer Deposited ZrO2,” J. Electrochem. Soc., vol. 151, no. 3, pp. F54-F58, Jan, 2004. [6]R. F. Cava, W. F. Peck, and J. J. Krajewski, “Enhancement of the dielectric constant of Ta2O5through substitution with TiO2,” Nature., vol. 377, pp. 215 - 217, Sep. 1995. [7]H. Ikawa, A. Iwai, Kazayuki, H. Shimojima, K. Urabe and S. Udagawa, “Phase Transformation and Thermal Expansion of Zirconium and Hafnium Titanates and Their Solid Solutions,” J. Am. Ceram. Soc., vol. 71, no. 2, pp. 120–127, Feb. 1988. [8]C. L. Huang and M. H. Weng, “The Microwave Dielectric Properties and the Microstructures of Bi(Nb, Ta)O4 Ceramics,” Jpn. J. Appl. Phys., vol. 38, no. 10, pp. 5949-5952, Oct. 1999. [9]Y. Kim, J. Oh, T. G. Kim and B. Park, “Effect of microstructures on the microwave dielectric properties of ZrTiO4 thin films,” Appl. Phys. Lett., vol. 78, no. 16, pp. 2363-2365, Feb. 2001. [10]O. Nakagawara, Y. Toyota, M. Kobayashi, Y. Yoshino, Y. Katayama, H. Tabata and T. Kawai, “Electrical properties of (Zr,Sn)TiO4 dielectric thin film prepared by pulsed laser deposition,” J. Appl. Phys., vol. 80, no. 1, pp. 388-392, Mar. 1996. [11]C. L. Huang and C. H. Hsu, “Properties of reactively radio frequency-magnetron sputtered (Zr,Sn)TiO4 dielectric films,” J. Appl. Phys., vol. 96, no. 2, pp. 1186-1191, July, 2004. [12]R. B. van Dover, L. Schneemeyer, M. Fleming, “Discovery of a useful thin-film dielectric using a composition-spread approach,” Nature., vol. 392, pp. 162 - 164, Mar. 1998. [13]E. S. Ramakrishnan, K. D. Cornell, G. H. Shapiro, and W. Y. Howng, “Dielectric Properties of Radio Frequency Magnetron Sputter Deposited Zirconium Titanate-Based Thin Films,” J Electrochem. Soc., vol. 145, no. 1, pp. 358-362, Mar. 1998. [14]D. A. Chang, P. Lin, and T. Y. Tseng, “Growth of highly oriented ZrTiO4 thin films by radio-frequency magnetron sputtering,” Appl. Phys. Lett., vol. 64, no. 24, pp. 3252-3254, Apr. 1994. [15]F. J. Wu and T.Y. Tseng, “Highly Oriented (Zr0.7Sn0.3)TiO4 Thin Films Grown by rf Magnetron Sputtering,” J. Am. Ceram. Soc., vol. 81, no. 2, pp. 439–445, Feb. 1998. [16]R. B. van Dover, and L. F. Schneemeyer, “Deposition of uniform Zr-Sn-Ti-O films by on-axis reactive sputtering,” IEEE Electron Device Lett., vol. 19, no. 9, pp. 329-331, Sep. 1998. [17]W. X. Cheng, A. L. Ding, P. S. Qiu, X. Y. He and X. Sh. Zheng, “Optical and dielectric properties of (Zr0.8,Sn0.2)TiO4 thin films prepared by sol–gel process,” Mater. Sci. Eng., vol. 99, no. 1-3, pp. 382-385, May, 2003. [18]Y. Senzaki, G. Alers. A. Hochberg. D. Roberts, J. Norman, R. Fleming and H. Krautter, “CVD of Zr-Sn-Ti-O Thin Films by Direct Injection of Solventless Liquid Precursor Mixtures,” Electrochem. Solid –State Lett., vol. 3, no. 9, pp. 435-436, Sep. 2000. [19]E. L. Mays, D. Hessb, W. S. Rees Jr, “Deposition and characterization of zirconium tin titanate thin films as a potential high-k material for electronic devices,” J. of Cryst. Growth., vol. 261, no. 2-3, pp. 309-315, Jan. 2004. [20]Y. S. Ho, M-H Weng, S. S. Wang, “High Quality Microwave Zr0.8Sn0.2TiO4 Dielectric Thin Film Prepared by Sol–Gel Method,” Jpn. J. Appl. Phys., vol. 44, no. 7A, pp. 5125-5128, July, 2005. [21]M. Schultz, Diffraction for Materials Scientists, p. 226 Prentice–Hall Englewood Cliffs, N. J. (1982). [22]H. Kang, S. Park, K. Kim, M.Y. Sung, and H. Choi, “SrTiO3 Thin Films Deposited by CLCB in Combination with Sol-Gel Processing,” Electrochem. Solid –State Lett., vol. 7, no. 11, pp. F70- F72, July, 2004. Chapter 3 [1]S. M. Sze, Physics of Semiconductor Devices, John Wiley & Sons Inc., New York, 1981. [2]The International Technology for Semiconductor, Semiconductor Industry Association, Tokyo, Japan, 2004. [3]G. D. Wilk, R. M. Wallace, and J. M. Anthony, “High-k gate dielectrics: Current status and materials properties considerations,” J. Appl. Phys., vol. 89, no. 10, pp. 5243–5275, May, 2001. [4]J. Shappir, A. Anis, and I. Pinsky, “Investigation of MOS capacitors with thin ZrO2layers and various gate materials for advanced DRAM applications,” IEEE Electron Device., vol. ED-33, no. 4, pp. 442–449, Apr. 1986. [5]J. Y. Tewg, Y. Kuo, J. Lu, and B. Schueler, “Dielectric Permittivity and Intercalation Parameters of Li Ion Intercalated Atomic Layer Deposited ZrO2,” J. Electrochem. Soc., vol. 151, no. 3, pp. F54-F58, Jan. 2004. [6]R. F. Cava, W. F. Peck, and J. J. Krajewski, “Enhancement of the dielectric constant of Ta2O5through substitution with TiO2,” Nature., vol. 377, pp. 215 - 217, Sep. 1995. [7]C. Rastogi, and R. N. Sharma, “Structural and electrical characteristics of metal-insulator-semiconductor diodes based on Y2O3 dielectric thin films on silicon,” J. Appl. Phys., vol. 71, no. 10, pp. 5041 - 5052, Feb. 1992. [8]L. Huang and M. H. Weng, “The Microwave Dielectric Properties and the Microstructures of Bi(Nb, Ta)O4 Ceramics,” Jpn. J. Appl. Phys., vol. 38, no. 10, pp. 5949-5952, Oct. 1999. [9]Y. Kim, J. Oh, T. G. Kim and B. Park, “Effect of microstructures on the microwave dielectric properties of ZrTiO4 thin films,” Appl. Phys. Lett., vol. 78, no. 16, pp. 2363-2365, Feb. 2001. [10]Nakagawara, Y. Toyota, M. Kobayashi, Y. Yoshino, Y. Katayama, H. Tabata and T. Kawai, “Electrical properties of (Zr,Sn)TiO4 dielectric thin film prepared by pulsed laser deposition,” J. Appl. Phys., vol. 80, no. 1, pp. 388-392, Mar. 1996. [11]L. Huang and C. H. Hsu, “Properties of reactively radio frequency-magnetron sputtered (Zr,Sn)TiO4 dielectric films,” J. Appl. Phys., vol. 96, no. 2, pp. 1186-1191, July, 2004. [12]R. B. van Dover, L. Schneemeyer, M. Fleming, “Discovery of a useful thin-film dielectric using a composition-spread approach,” Nature., vol. 392, pp. 162 - 164, Mar. 1998. [13]E. S. Ramakrishnan, K. D. Cornell, G. H. Shapiro, and W. Y. Howng, “Dielectric Properties of Radio Frequency Magnetron Sputter Deposited Zirconium Titanate-Based Thin Films,” J Electrochem. Soc., vol. 145, no. 1, pp. 358-362, Mar. 1998. [14]D. A. Chang, P. Lin, and T. Y. Tseng, “Growth of highly oriented ZrTiO4 thin films by radio-frequency magnetron sputtering,” Appl. Phys. Lett., vol. 64, no. 24, pp. 3252-3254, Apr. 1994. [15]F. J. Wu and T.Y. Tseng, “Highly Oriented (Zr0.7Sn0.3)TiO4 Thin Films Grown by rf Magnetron Sputtering,” J. Am. Ceram. Soc., vol. 81, no. 2, pp. 439–445, Feb. 1998. [16]R. B. van Dover, and L. F. Schneemeyer, “Deposition of uniform Zr-Sn-Ti-O films by on-axis reactive sputtering,” IEEE Electron Device Lett., vol. 19, no. 9, pp. 329-331, Sep. 1998. [17]W. X. Cheng, A. L. Ding, P. S. Qiu, X. Y. He and X. Sh. Zheng, “Optical and dielectric properties of (Zr0.8,Sn0.2)TiO4 thin films prepared by sol–gel process,” Mater. Sci. Eng., vol. 99, no. 1-3, pp. 382-385, May, 2003. [18]Y. Senzaki, G. Alers. A. Hochberg. D. Roberts, J. Norman, R. Fleming and H. Krautter, “CVD of Zr-Sn-Ti-O Thin Films by Direct Injection of Solventless Liquid Precursor Mixtures,” Electrochem. Solid –State Lett., vol. 3, no. 9, pp. 435-436, Sep. 2000. [19]E. L. Mays, D. Hessb, W. S. Rees Jr, “Deposition and characterization of zirconium tin titanate thin films as a potential high-k material for electronic devices,” J. of Cryst. Growth., vol. 261, no. 2-3, pp. 309-315, Jan. 2004. [20]Y. S. Ho, M-H Weng, S. S. Wang, “High Quality Microwave Zr0.8Sn0.2TiO4 Dielectric Thin Film Prepared by Sol–Gel Method,” Jpn. J. Appl. Phys., vol. 44, no. 7A, pp. 5125-5128, July, 2005. [21]D. A. Chang, P. Lin, and T. Y. Tseng, “Effects of oxygen-argon mixing on the electrical and physical properties of ZrTiO4 films sputtered on silicon at low temperature,” J. Appl. Phys., vol. 78, no. 12, pp. 7103-7108, Dec. 1995. [22]S. Hofmann, “Effects of oxygen-argon mixing on the electrical and physical properties of ZrTiO4 films sputtered on silicon at low temperature,” J. Vac. Sci. Technol., vol. A4, no. 6, pp. 2789-2796, Nov. 1986. [23]D. K. Sarkar, E. Desbiens, and M. A. El Khakani, “High-k titanium silicate dielectric thin films grown by pulsed-laser deposition,” Appl. Phys. Lett., vol. 80, no. 2, pp. 294-296, Jan. 2002. [24]M. J. Guittet, J. P. Crocombette, and M. Gautier-Soyer, “Bonding and XPS chemical shifts in ZrSiO4 versus SiO2 and ZrO2Charge transfer and electrostatic: effects,” Phys. Rev., vol. B63, no. 12, pp. 125117-1-125117-7, Mar. 2001. [25]H. Ikawa, T. Yamada, K. Kojima, and S. Matsumoto, “X-ray Photoelectron Spectroscopy Study of High- and Low-Temperature Forms of Zirconium Titanate,” J. Am. Ceram. Soc., vol. 74, no. 6, pp. 1459-1462, June, 1991. [26]E. Mchale, and R. S. Roth, “Investigation of the Phase Transition in ZrTiO4 and ZrTiO4-SnO2 Solid Solutions,” J. Am. Ceram. Soc., vol. 66, no. 6, pp. c-18-c-20, Feb. 1983. [27]M. Schultz, Diffraction for Materials Scientists, Prentice–Hall Englewood Cliffs, N. J., pp. 226, 1982. [28]H. Kang, S. Park, K. Kim, M.Y. Sung, and H. Choi, “SrTiO3 Thin Films Deposited by CLCB in Combination with Sol-Gel Processing,” Electrochem. Solid –State Lett., vol. 7, no. 11, pp. F70- F72, July, 2004. Chapter 4 [1].B. Mathias, and J. P. Remeika, “Dielectric Properties of Sodium and Potassium Niobates,” Phys. Rev. vol. 82, no. 5, pp. 727 - 72, June. 1951. [2].K. Nassau, H. J. Levinstein, and G. M. Loiacomo, “Ferroelectric Behavior Of Lithium Niobate,” Appl. Phys. Lett., vol. 7, no. 3, pp. 69-70, Aug. 1965.. [3].K. Nassau, H. J. Levinstein, and G. M. Loiacomo, “Ferroelectric lithium niobate. 2. Preparation of single domain crystals,” J. Phys. Chem. Solids, vol. 27, no. 6-7, pp. 989-996, June-July 1966. [4].K. Noguchi, O. Mitomi, and H. Miyazawa, “J. Millimeter-Wave Ti:LiNbO3 Optical Modulators,” Lightwave Technol. vol. 16,no. 4, pp. 615, April 1998. [5].K. Noguchi, H. Miyazawa, and O. Mitomi, “Frequency-dependent propagation characteristics of coplanar waveguide electrode on 100 GHz Ti:LiNbO3 optical modulator,” Electron. Lett. vol. 34, no. 7, pp. 661-663, April 1998. [6].G. Ghione, M. Goano, G. L. Madonna, G. Omegna, M. Pirola, S. Bosso, D. Frassati, and Aldo Perasso, “Microwave modeling and characterization of thick coplanar waveguides on oxide-coated lithium niobate substrates for electrooptical application,” IEEE Trans. Microwave Theory Tech., vol. 47, no. 9, pp. 2287-2293, Dec. 1999. [7].B. H. Ahn, “Measurement of the indices of refraction and the absorption coefficients of dielectric materials in the millimeter wave region,” J. Appl. Phys. vol. 54, no. 4, pp. 2123-2124, April.1983. [8].M. Lee, “Dielectric constant and loss tangent in LiNbO3 crystals from 90 to 147 GHz,” Appl. Phys. Lett., vol. 79, no. 9, pp. 1342-1344, Aug. 2001. [9].T. Tang, J. H. Horng, M. P. Houng, and Y. H. Wang, “A Novel Microwave Microstrip Surface Acoustic Wave Filter with Gigahertz Band Low-Loss Wide Bandwidth for Broad Spectrum Communication System,” Jpn. J. Appl. Phys., vol. 41, Part 1, no. 5A, pp. 2974-2977, May 2002. [10].R. E. Collin, Foundations for Microwave Engineering (Wiley, New York, 2000), pp. 164–173. [11].http://www.teraxtal.com/eng/manufacturing.htm [12].H. T. Lue, and T. Y. Tseng, G. W, Huang, “A method to characterize the dielectric and interfacial properties of metal–insulator-semiconductor structures by microwave measurement,” J. Appl. Phys., vol. 91, no. 8, pp. 5275-5282, April 2002. [13].M. Kobayashi, and R. Terakado, “Accurately Approximate Formula of Effective Filling Fraction for Microstrip Line with Isotropic Substrate and its Application to the Case with Anisotropic Substrate,” IEEE Trans. Microwave Theory Tech. vol. 27, no. 9, pp. 769-775, sep.1979. [14].R. L. Peterson, and R. F. Drayton, “A CPW T-resonator technique for electrical characterization of microwave substrates,” IEEE Microw. Wireless Compon. Lett., vol. 12, no. 3, pp. 90-92, Mar. 2002. [15].S. S. Bedair, and .I. Wolff, “Fast, accurate and simple approximate analytic formulas for calculating the parameters of supported coplanar waveguides for MMIC's,” IEEE Trans. Microwave Theory Tech. vol. 40, no. 1, pp. 41-48, Jan. 1992. [16].Tomeno and S. Matsumura, Properties of Lithium Niobate (INPSEC, New York, 1989), Chap. 5.5, and references therein. [17].M. E. Lines and A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Oxford University Press, New York, 1977), Chap. 16. [18].Http://www.zeland.com, Zeland Software, Inc., IE3D Simulator, 1997. [19].R. Guo, A. S. Shalla, and L. E. Cross, “Ba(Mg1/3Ta2/3)O3 single crystal fiber grown by the laser heated pedestal growth technique,” J. Appl. Phys., vol. 75, no. 9, pp. 4704-4708, May 1994. [20].M. H. Weng, T. J. Liang, and C. L. Huang, “Lowering of sintering temperature and microwave dielectric properties of BaTi4O9 ceramics prepared by the polymeric precursor method,” J. Eur. Ceram. Soc., vol. 22, no. 9-10, pp. 1693-1698, Sep. 2002. Chapter 5 [1]L. E. Larson, “Integrated circuit technology options for RFICs—Present status and future directions,” IEEE J. Solid-State Circuits, vol. 33, no. 3, pp. 387–399, Mar. 1998. [2]J. Papapolymerou, G. E. Ponchak, E. Dalton, A. Bacon, and M. M. Tentzeris, “Crosstalk between finite ground coplanar waveguides over polyimide layers for 3-D MMICs on Si substrates,” IEEE Trans. Microw. Theory Tech., vol. MTT-52, no. 4, pp. 1292 - 1301, Apr. 2004. [3]G. Six, G. Prigent, G. Dambrine, and H. Happy, “Fabrication and characterization of low-loss TFMS on silicon substrate up to 220 GHz,” IEEE Trans. Microwave Theory Tech., vol. MTT-53, pp. 301-305, Jan. 2005. [4]B. Rong, J. N. Burghartz, L. K. Nanver, B. Rejaei, M. van der Zwan, “Surface-passivated high-resistivity silicon substrates for RFICs,” IEEE Electron Device Lett., vol. 25, no. 4, pp. 176 - 178, Apr. 2004. [5]H. S. Gamble, B. M. Armstrong, S. J. N. Mitchell, Y. Wu, V. F. Fusco, and J. A. C. Stewart, “Low-loss CPW lines on surface stabilized high-resistivity silicon,” IEEE Microwave Guided Wave Lett., vol. 9, no. 10, pp. 395–397, Oct. 1999. [6]A. Chin, K. T. Chan, C. H Huang, C. Chen, V. Liang, J. K. Chen, S. C. Chien, S. W. Sun, D. S. Duh, W. J. Lin, C. Zhu, M. F. Li, S. P. McAlister, and D. L. Kwong, “RF passive devices on Si with excellent performance close to ideal devices designed by electro-magnetic simulation,” in IEDM Tech. Dig., pp. 15.5.1 - 15.5.4, Dec. 2003. [7]K. T. Chan, A. Chin, S. P. McAlister, C. Y. Chang, J. Liu, S. C. Chien, D. S. Duh, and W. J. Lin, “Low RF noise and power loss for ion-implanted Si having an improved implantation process,” IEEE Electron Device Lett., vol. 24, no. 1, pp. 28 - 30, Jan. 2003. [8]J. Büchler, E. Kasper, P. Russer, and K. M. Strohm, “Silicon high-resistivity- substrate millimeter-wave technology,” IEEE Trans. Microwave Theory Tech., vol. MTT-34, pp. 1516–1521, Dec. 1986. [9]C. Schollhorn, W. Zhao; M. Morschbach, E. Kasper, “Attenuation mechanisms of aluminum millimeter-wave coplanar waveguides on silicon,” IEEE Trans. Electron Devices, vol. 50, no. 3, pp. 740 - 746, Mar. 2003. [10]C. Kittel, Introduction to Solid State Physics. John Wiley & Sons, 1996. [11]R. E. Collin, Foundations for microwave engineering, McGraw-Hill, Inc., 1992. [12]J. Lee, W. Ryu, J. Kim, J. Lee, N. Kim, J. Pak, J. M. Kim, and J. Kim, “Microwave frequency interconnection line model of a wafer level package,” IEEE Trans. Adv. Packag., vol. 25, no. 3, pp. 356 - 364, Aug. 2002. [13]Http://www.zeland.com, Zeland Software, Inc., IE3D Simulator, 1997. [14]K. Benaissa, J. Y. Yang, D. Crenshaw, B. Williams, S. Sridhar, J. Ai, G. Boselli, S. Zhao, S. Tang, S. Ashburn, P. Madhani, T. Blythe, N. Mahalingam, and H. Shichijo, “RF CMOS on high-resistivity substrates for system-on-Chip applications,” IEEE Trans. Electron Devices, vol. 50, pp. 567-576, Mar. 2003. [15]M. Pfost, H. M. Rein, and T. Holzwarth, “Modeling substrate effects in the design of high-speed Si-bipolar IC’s,” IEEE J. Solid-State Circuits, vol. 31, pp. 1493–1501, Oct. 1996. [16]A. M. Niknejad, and R. G. Meyer, “Analysis of eddy-current losses over conductive substrate with applications to monolithic inductors and transformers,” IEEE Trans. Microwave Theory Tech., vol. 49, pp. 166–176, Jan. 2001. Chapter 6 [1]G. G. Roberto, and I. A. José, “Design of sharp-rejection and low-loss wide-band planar filters using signal-interference techniques,” IEEE Trans. Microwave Theory Tech. vol.15, no. 8, pp. 530-532, Aug. 2005. [2]W. Menzel, L. Zhu, K. Wu, and F. Bögelsack, “On the design of novel compact broad-band planar filters,” IEEE Trans. Trans. Microwave Theory Tech. vol. 51, no. 2, pp. 364-370, Feb. 2003. [3]C. C. Chen, J. T. Kuo, M. Jiang and A. Chin, “Study of parallel coupled-line microstrip filter in broadband,” Microw. Opt. Tech. Lett. vol. 48, no. 2, pp. 373-375, Feb. 2006. [4]G. L. Matthaei, “Interdigital band-pass filters,” IEEE Trans. Microwave Theory Tech., vol. 10, no. 6, pp. 479-491, Nov. 1962. [5]J. S. Hong and M. J. Lancaster, “Development of new microstrip pseudo-interdigital bandpass filters,” IEEE Microwave and Guided Wave Lett., vol. 5, no. 8, pp. 261-263, Aug. 1995. [6]M. H. Weng, W. N. Chen, T. H. Huang, “C. Y. Hung, H. W. Wu, Stepped impedance resonator bandpass filters using tapped-line for controlling spurious response,” Microw. Opt. Tech. Lett., vol. 40, no. 6, pp. 481-484, March 2004. [7]C. Y. Hung, M. H. Weng, Y. K. Su, R. Y. Yang, H. W. Wu, “Design of UWB filter using interdigital resonators,” Microw. Opt. Tech. Lett., vol. 48, no. 10, pp. 2093-2096, Oct. 2006. [8]Federal Communications Commission, Revision of part 15 of the commission’s rules regarding ultra-wideband transmission systems, Tech. Rep., ET-Docket FCC 02–48 (2002), 12. [9]IEEE P802.15 Working Group for Wireless Personal Area Networks, Detailed DS-UWB simulation results IEEE 802.15-04-0483r4 (2004), 11-12. [10]Zeland Software, Inc., IE3D Simulator, 1997. [11]J. R. Lee, J. H. Cho, and S. W. Yun, New compact bandpass filter using microstrip λ/4 resonators with open stub inverter, IEEE Microwave and Guided Wave Lett., vol. 10, no. 12, pp. 526-527, Dec. 2000. Chapter 7 [1]L. E. Larson, “Integrated circuit technology options for RFICs—Present status and future directions,” IEEE J. Solid-State Circuits, vol. 33, no. 3, pp. 387–399, Mar. 1998. [2]M. Pfost, H. M. Rein, and T. Holzwarth, “Modeling substrate effects in the design of high-speed Si-bipolar IC’s,” IEEE J. Solid-State Circuits, vol. 31, no. 10, pp. 1493–1501, Oct. 1996. [3]C. Schollhorn, W. Zhao; M. Morschbach, E. Kasper, “Attenuation mechanisms of aluminum millimeter-wave coplanar waveguides on silicon,” IEEE Trans. Electron Devices, vol. 50, no. 3, pp. 740 - 746, Mar. 2003. [4]K. T. Chan, A. Chin, S. P. McAlister, C. Y. Chang, J. Liu, S. C. Chien, D. S. Duh, and W. J. Lin, “Low RF noise and power loss for ion-implanted Si having an improved implantation process,” IEEE Electron Device Lett., vol. 24, no. 1, pp. 28 - 30, Jan. 2003. [5]H. S. Gamble, B. M. Armstrong, S. J. N. Mitchell, Y. Wu, V. F. Fusco, and J. A. C. Stewart, “Low-loss CPW lines on surface stabilized high-resistivity silicon,” IEEE Microwave Guided Wave Lett., vol. 9, no. 10, pp. 395–397, Oct. 1999. [6]A. Chin, K. T. Chan, C. H Huang, C. Chen, V. Liang, J. K. Chen, S. C. Chien, S. W. Sun, D. S. Duh, W. J. Lin, C. Zhu, M. F. Li, S. P. McAlister, and D. L. Kwong, “RF passive devices on Si with excellent performance close to ideal devices designed by electro-magnetic simulation,” in IEDM Tech. Dig., pp. 15.5.1 - 15.5.4, Dec. 2003. [7]K. T. Chan, A. Chin, M. F. Li, D. L. Kwong, S. P. McAlister, D. S. Duh, W. J. Lin, and C. Y. Chang, “High-performance microwave coplanar bandpass and bandstop filters on Si substrates,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 9, pp. 2036–2040, Sept. 2003. [8]K. Hettak, N. Dib, A.-F. Sheta, S. Toutain, “A class of novel uniplanar series resonators and their implementation in original applications,” IEEE Trans. Microw. Theory Tech., vol. 46, no. 9, pp. 1270 – 1276, Sept. 1998. [9]Http://www.zeland.com, Zeland Software, Inc., IE3D Simulator, 1997. [10]S. Khireddine, M. Drissi, R. Soares, "Flat group delay low pass filters using two cpw topologies," 2005 IEEE MTT-S Int. Microw. Symp. pp. 2215-2218. [11]R. Ian, P. M. Melinda, and P. K. Kelly, “Photonic bandgap structures used as filters in microstrip circuit,” IEEE Microw. and Guided Wave Lett., vol. 8, no. 10, pp. 336-338, Oct. 1998. [12]R. Y. Yang, C. Y. Hung, Y. K. Su, M. H. Weng, and H. W. Wu, “Loss characteristics of silicon substrate with different resistivity,” Microw. Opt. Tech. Lett., vol. 48, no. 9, pp 1773-1776, Sep. 2006.
|