跳到主要內容

臺灣博碩士論文加值系統

(44.200.117.166) 您好!臺灣時間:2023/09/24 09:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄭國裕
研究生(外文):Kuo-yu Cheng
論文名稱:以金屬有機化學氣相沉積法成長氮砷化銦鎵1.3微米長波長雷射
論文名稱(外文):Fabrication and Characterization of GaAs-based InGaAsN 1.3μm QW Lasers Grown by MOVPE
指導教授:蘇炎坤蘇炎坤引用關係
指導教授(外文):Yan-kuin Su
學位類別:碩士
校院名稱:國立成功大學
系所名稱:微電子工程研究所碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:102
中文關鍵詞:氮砷化銦鎵雷射有機金屬氣相沉績砷化鎵
外文關鍵詞:InGaAsNlaserMOVPEGaAs
相關次數:
  • 被引用被引用:0
  • 點閱點閱:170
  • 評分評分:
  • 下載下載:21
  • 收藏至我的研究室書目清單書目收藏:0
在光纖通訊的系統中,一個發射端的元件,雷射有必須發光在1.31與1.55微米的限制,主要是因為不同波長的光在光纖中傳輸的色散與衰減有所不同,而在這兩個波長分別為最小。在過去,長波長雷射的基板為磷化銦,而在這篇論為所使用的則是砷化鎵,主要是因為砷化鎵有其先天上的優勢:(1) 有適合的材料成長布拉格反射鏡 (2) 溫度特性佳 (3) 散熱能力佳 (4) 價格便宜。而金屬有機化學氣相沉積法的成長速率與產能均十分快速,為目前市場上主流的方法。
本論文一開始著重在雷射主動層,量子井的研究。由於在主動層掺入氮會造成光特性的衰退,因此我們先成長了特性十分好的砷化銦鎵量子井,且波長拉長到其先天上的限制1.2微米,再掺入儘可能少量的氮,將波長拉長到1.3微米,我們成功的成長出氮砷化銦鎵的量子井,波長在1.23與1.28微米,並且將這兩量子井運用在雷射結構中。我們將雷射製作成寬面積邊射型雷射以去探討其特性,這兩個雷射的波長分別為1.26與1.31微米,臨界電流密度分別為795與1485.3 (A/cm2),特徵溫度則分別為241K(20~40oC)與140K(15~35oC)。
In the optical fiber communications, the emission wavelengths of lasers are selected to be 1.31 and 1.55μm. The attenuation and dispersion are at their minimum values in these two regions. The conventional long-wavelength lasers were made of InP-based materials. Instead, the GaAs-based materials are used as the active-media of long-wavelength lasers in this thesis. They have several inherent advantages compared with InP-based materials: (1) suitable material for DBR, which is a very essential part for VCSELs. (2) high characteristic temperature (3) good thermal conductivity (4) low cost and robust substrate.
The thesis focused on growing high quality active-media, InGaAsN QWs, starting from the optimization of InGaAs QWs. An excellent optical quality (FWHM ~ 20meV) InGaAs QWs were demonstrated and the peak-wavelength is 1.2μm, which is approaching its critical thickness limitation. However, adding nitrogen into QWs severely degrades the optical quality, so very little nitrogen composition was incorporated into the QWs, and InGaAsN QWs wavelength achieved 1.28 and 1.31μm are grown successfully. Two InGaAsN QWs broad area lasers were fabricated and the device characteristics were measured. The wavelength of the two lasers were 1.26 and 1.31μm,the threshold current density were 795 and 1485.3 A/cm2, and the characteristic temperature are 241K (20~40oC) and 140K (15~35oC), respectively.
Abstract..................................................I

Table and Figure Captions...........................VIII&IX

Chapter 1 Introduction....................................1
1-1 Motivation............................................1
1-2 Long Wavelength GaAs-based Lasers.................2
1-3 Organization of This Thesis.......................3

Chapter 2 MOVPE and Measurement Instrument................9
2-1 Metal Organic Vapor Phase Epitaxy Growth Syste....9
2-1.1 Mass Transport Limited Growth..............11
2-1.2 Surface Kinetics Limited Growth............11
2-1.3 Thermodynamically Limit Growth.............13
2-2 Measurement System...............................13
2-2.1 Photoluminescence Spectroscopy.............13
2-2.2 HR-XRD Characterization....................15
2-2.3 Atomic Force Microscopy....................17
2-2.4 Laser Measurement System...................18

Chapter 3 Theory and Epitaxy of the Active Region........24
3-1 Theory of Active Region..........................24
3-1.1 Critical Thickness.........................24
3-1.2 Band Anticrossing in III-N-V Alloys........25
3-1.3 N Penalty..................................27
3-1.4 Calculation of Nitride Composition.........29
3-2 Epitaxy of Active Region.........................30
3-2.1 Design Consideration of Active Region......30
3-2.2 InGaAs Quantum Well........................30
3-2.3 InGaAsN Quantum Well.......................32
3-2.4 Antimony Assistant.........................34

Chapter 4 Fabrication and Characterizations of Laser
Devices........................................48
4.1 Laser Structure..................................48
4-2 Fabrication of Broad Area Lasers.................49
4-3 Extraction of Laser Parameter....................50
4-4 Characterization of The Device...................52
4-5 Discussion .......................................54

Chapter 5 Quantum Dot Structure..........................66
5-1 Definition of Quantum Dot Structure..............66
5-2 Self-organization Quantum Dot....................66
5-3 Growth Interruption ..............................68
5-4 In0.5Ga0.5As Quantum Dot.........................69
5-5 InAs Quantum Dot.................................71
5-6 In0.5Ga0.5As PIN Photodetector...................72

Chapter 6 Conclusion and Future Work.....................84
6-1 Conclusion .......................................84
6-2 Future Work......................................85
6-2.1 InGaAsN:Sb QWs Toward 1.55μm...............85
6-2.2 1.3μm InGaAsN VCSEL........................86
6-2.3 1.3μm InGaAsN Oxide-confinement Edge
Emitting Laser.............................86

Appendix I...............................................90
Appendix II..............................................93
Reference ................................................94
Chapter 1:
[1] J S Harris Jr., “GaInNAs long-wavelength lasers: progress and challenges,” Semicond. Sci. Technol., Vol. 17, pp. 880-891, 2002
[2] J. Hecht, Understanding Fiber Optics. Upper Saddle River, NJ: Prentice Hall, 2002
[3] M. Hetterich, M. D. Dawson, A. Y. Egorov, D. BernKlau, and H.Riechert, “Electronic states and band alignment in GalnNAs/GaAs quantum-well structures with low nitrogen content,” Appl. Phys. Lett., vol. 76, no. 8, pp. 1030-1032, 2003
[4] G. A. Evans. J. P. Sih, T. M. Chou, J. B. Kirk, J. K. Butler, and L.Y. Pang, SPIE
In-Plane Semiconductor Lasers:from Ultraviolet to Mid-Infrared II, vol. 3284,
San Jose, CA, USA, pp.205-210, 1998
[5] J. Piprek, San Diego:Academic Press, 2003
[6] W. Nakwaski, “Thermal conductivity of binary, ternary, and quaternary III-V
compounds,” J. Appl. Phys., vol. 64, no. 1, pp. 159-166, 1988.
[7] M. Guden and J. Piprek, ” Material parameters of quaternary III–V
semiconductors for multilayer mirrors at 1.55 μm wavelength.” Model. Simul. Master. Sci. Eng., vol. 4, no. 4, pp. 349-357, 1996
[8] T. Takeuchi,a) Y.-L. Chang, A. Tandon, D. Bour, S. Corzine, R. Twist, M. Tan, and H.-C. Luan, “Low threshold 1.2 mm InGaAs quantum well lasers grown under low AsH3 ratio.” Appl. Phys. Lett., vol. 80, no. 14, pp. 2445-2447, 2002
[9] P. Sundgren, J. Berggren, P. Goldman, and M. Hammara, ” Highly strained InGaAs/GaAs multiple quantum-wells for laser applications in the 1200–1300 nm wavelength regime.” Appl. Phys. Lett., vol. 87, 071104, 2005
[10] Sebastian Mogg, Nicolae Chitica, Ulf Christiansson, Richard Schatz, Petrus Sundgren, Carl Asplund, and Mattias Hammar, “Temperature Sensitivity of the Threshold Current of Long-Wavelength InGaAs–GaAs VCSELs with Large Gain-Cavity Detuning.” IEEE Journal of Quantum Electronics, Vol. 40, No. 5, pp. 453-462, 2004
[11] H.C. Kuo, , H. H. Yao, Y.H. Chang, Y.A. Chang, M.Y. Tsai, J. Hsieh, E.Y. Chang,
S.C. Wang, “MOCVD growth of highly strained InGaAs:Sb–GaAs–GaAsP
quantum well vertical cavity surface-emitting lasers with 1.27 μm emission.” Journal of Crystal Growth 272, pp.538–542, 2004
[12] Masahiko Kondow, Takeshi Kitatani, Shin’ichi Nakatsuka, Michael C. Larson,
Kouji Nakahara, Yoshiaki Yazawa, Makoto Okai, and Kazuhisa Uomi, “GaInNAs: A Novel Material for Long-Wavelength Semiconductor Lasers.” IEEE J. Select. Topic Quantum Electronic., Vol. 3, NO. 3, pp. 719-730, 1997
[13] W. Shan, W. Walukiewicz, J. W. Ager III, E. E. Haller, J. F. Geisz, D. J. Friedman, J. M. Olson, and S. R. Kurtz, “Band Anticrossing in GaInNAs Alloys.” Phys. review letters, Vol. 82, Number 6, pp. 1221-1224, 1999
[14] J. S. Harris Jr, “GaInNAs long-wavelength lasers: progress and challenges.” Semicond. Sci. Technol., Vol. 17, pp. 880-891, 2002

Chapter 2:
[1] H. M. Manasevit and W. I. Simpson, J. Electrochem. Soc. Vol. 12, pp. 156, 1968
[2] H. M. Manasevit , Appl. Phys. Lett. Vol. 116, pp. 1725, 1969
[3] H. M. Manasevit, J. Cryst. Growth 13/14 306, 1972
[4] J.-T. Zettler, K. Haberland, M. Zorn, M. Pristovsek, W. Richter, P. Kurpas and M.
Weyers, J. Cryst. Growth Vol. 195, pp. 151, 1998
[5] Aixtron 200 User’s Manual, Aixtron AG.
[6] G.B. “Stringfellow, Organometallic Vapor-Phase Epitaxy: Theory and Practice”,
2nd Edition, Academic Press, San Diego, 1999
[7] D. Schlenker, T. Miyamoto, Z. B. Chen, M. Kawaguchi, T. Kondo, E. Gouardes, F.
Koyama and K. Iga , J. Cryst. Growth Vol. 221, pp. 503-508, 2000
[8] F. Salomonsson, C. Asplund, S. Mogg, G. Plaine, P. Sundgren, M. Hammar,
Electron. Lett. Vol. 37(15), 957-958, 2001
[9] C. Asplund, P. Sundgren, S. Mogg, M. Hammar, U. Christiansson, V. Oscarsson, C.
Runnstrom, E. Odling, J. Malmquist, Electron. Lett. Vol. 38(13), pp.635-636,
2002
[10] A. Ougazzaden, Y. Le Bellego, E. V. K. Rao, M. Juhel, L. Leprince, and G.
Patriarche , “Metal organic vapor phase epitaxy growth of GaAsN on GaAs using dimethylhydrazine and tertiarybutylarsine”, Appl. Phys. Lett. Vol. 70, pp. 2861- 2863, 1997
[11] G. Plaine, C. Asplund, P. Sundgren, S. Mogg, M. Hammar, “Low-temperature
Metal-organic Vapor-phase Epitaxy Growth and Performance of 1.3µm GaInNAs/GaAs Single Quantum Well Lasers”, Jpn. J. Appl. Phys. Vol. 41 Part 1, No 2B, pp. 1040-1042, 2002
[12] C. Asplund, P. Sundgren, M. Hammar, Proceedings of the 14th Indium Phosphide
and Related Materials Conference, Stockholm, May 12-16, 2002, pp. 619-621
[13] T. F. Kuech, D. J. Wolford, E. Veuhoff, V. Deline, P. M. Mooney, R. Potemski,
and J. Bradley, J. Appl. Phys. Vol. 62, pp. 632-643, 1987
[14] A. C. Jones, J. Cryst. Growth Vol. 129, pp. 728-773, 1993
[15] C. Asplund, A. Fujioka, M. Hammar, G. Landgren, EW-MOVPE VIII, Prague,
June 8-11, 1999, pp. 437-440
[16] Carl Asplund’s thesis, KTH, 2003
[17] Dieter K. Schroder, Semiconductor material and device characterization, 2005


Chapter 3:
[1] J.W. Matthews and A.E. Blakeslee, “Defects in epitaxial multilayers,” J. Crystal Growth, Vol. 27, pp. 118-125, 1974
[2] R. People and J.C. Bean, “Calculation of critical layer thickness versus lattice mismatch for GeSi/Si strain-layer hetrostructure.” Appl. Phys. Lett. Vol.47, pp.322-324, 1985
[3] Keunjoo Kim and Young Hee Lee, “Temperature-dependent critical thickness for strained-layer hetrostructures.” Appl. Phys. Lett. Vol. 67, pp.2212-2214, 1995
[4] T. Taleuchi, Y. L. Chane, A. Tandon, D. Bour, S. Corzine, R. Twist, and M. Tan, “Low threshold 1.2 um InGaAs quantum well lasers grown under low As/III ratio.” Appl. Phys. Lett. Vol. 80, pp. 2445-2447, 2002
[5] Nelson Tansu, Jeng-Ya Yeh, and Luke J. Mawst, “Extremely low threshold-current-density InGaAs quantum-well lasers with emission wavelength of 1215–1233 nm.” Appl. Phys. Lett. Vol. 82, pp. 4038-4040, 2003
[6] S. Mogg, N. Chitica, R. Schatz and M. Hammar, “Properties of highly strained InGaAs/GaAs quantum wells for 1.2-mm laser diodes.” Appl. Phys. Lett. Vol. 81, pp. 2334-2336, 2002
[7] Markus Weyers, Michio Sato and Hiroaki Ando, “Red Shift of Photoluminescence and Absorption in Dilute GaAsN Alloy Layers.” Jpn. J. Appl. Phys. Vol. 31, pp. L853-L855, 1992
[8] Bi, W. G.., and Tu, C. W,, “Bowing parameter of the band-gap energy of GaNxAs1 – x.” Appl. Phys. Lett. Vol. 70, pp. 1608-1610, 1997
[9] Ager III, J. W., and Walukiewicz, W., eds., “III-N-V Semiconductor alloys,” Semicond. Sci. Technol. 17, pp. 741-906, 2002
[10] Buyanova, I. A., Chen, W. M., and Monemar, B., “Electronic properties of Ga(In)NAs alloys,” MRS Internet J. Nitride Semicond. Res. 6(2), pp 1-19, 2001
[11] HP Hjalmarson, P Vogl, DJ Wolford, JD Dow, “Theory of Substitutional Deep Traps in Covalent Semiconductors.” Phys. Rev. Lett., Vol. 44, pp. 810-813, 1980
[12] W. Shan, W. Walukiewicz, and J. W. Ager III, E. E. Haller, J. F. Geisz, D. J. Friedman, J. M. Olson, and S. R. Kurtz, “Band Anticrossing in GaInNAs Alloys.” Phys. Rev. Lett., Vol. 82, pp. 1221-1224, 1999
[13] J Wu, W Shan and W Walukiewicz, “Band anticrossing in highly mismatched III–V semiconductor alloys.” Semicond. Sci. Technol, Vol. 17, pp. 860-869, 2002
[14] J. S. Harris Jr, “GaInNAs long-wavelength lasers: progress and challenges.” Semicond. Sci. Technol., Vol. 17, pp. 880-891, 2002
[15] S. G. Spruytte, M. C. Larson, W. Wampler, C. W. Coldren, H. E. Petersen and J. S. Harris, “Nitrogen incorporation in group III–nitride–arsenide materials grown by elemental source molecular beam epitaxy.” J. Crystal. Growth, Vol. 227-228, pp. 506-515, 2001
[16] J. C. Harmand, G. Ungaro, L. Largeau, and G. Le Roux, “Comparison of nitrogen incorporation in molecular-beam epitaxy of GaAsN, GaInAsN, and GaAsSbN.” Appl. Phys. Lett. Vol. 77, pp. 2482-2484, 2000
[17] C. Jin, Y. Qiu, S. A. Nikishin, and H. Temkin, “Nitrogen incorporation kinetics in metalorganic molecular beam epitaxy of GaAsN.” Appl. Phys. Lett. Vol. 74, pp. 3516-3518, 1999
[18] Shunichi Sato, Shiro Satoh, “Metalorganic chemical vapor deposition of
GaInNAs lattice matched to GaAs for long-wavelength laser diodes.” J. Crystal. Growth, Vol. 192, pp. 381-385, 1998
[19] W. Shan, W. Walukiewicz, K. M. Yu, J. W. Ager III, E. E. Haller, J. F. Geisz, D. J. Friedman, J. M. Olson, S. R. Kurtz, H. P. Xin, C. W. Tu, “Band Anticrossing in III-N-V Alloys.” phys. stat. sol. (b), Vol. 223, pp. 75-85, 2001
[20] S. Niki, C. L. Lin, W. S. C. Chang, and H. H. Wieder, “Band-edge discontinuities of strained-layer InxGa1–xAs/GaAs heterojunctions and quantum wells.” Appl. Phys. Lett. Vol. 55, pp. 1339-1341, 1989
[21] S. L. Chuang, John Wiley & Sons, 1995
[22] S. H. Wei and A. Zunger, “Giant and Composition-Dependent Optical Bowing
Coefficient in GaAsN Alloys” Phys. Rev. Lett., vol. 76, pp. 664-667, 1996
[23] M. E. Sherwin, T. J. Drummond, “Predicted elastic constants and critical layer
thicknesses for cubic phase AlN, GaN, and InN on –SiC” J. Appl. Phys., vol. 69,
pp. 8423-8425, 1991
[24] J. J. Coleman, Academic Press, ISBN 0-12-781890-1, pp. 378, 1993
[25] C. Skierbiszewski, “Experimental studies of the conduction-band structure of
GaInNAs alloys.” Semicond. Sci. Technol., Vol.17, pp. 803-814 (2002)
[26] C. S. Peng, J. Konttinen, H. F. Liu and M. Pessa, ”Blue shift in InGaAsN/GaAs
quantum wells with different width.” IEE Proc. Optoelectron., Vol. 151, pp. 317-319, 2004
[27] Jeng-Ya Yeha, , Luke J. Mawsta, Nelson Tansu, “Characteristics of InGaAsN/GaAsN quantum well lasers emitting in the 1.4-mm regime.” J. Crystal. Growth, Vol. 272, pp. 719-725, 2004
[28] M. Copel, M. C. Reuter, E. Kaxiras, and R. M. Tromp, “Surfactants in epitaxial growth.” Phys. Rev. Lett., Vol.63, pp.632-635,1989
[29] J. K. Shurtleff, R. T. Lee, C. M. Fetzer, and G. B. Stringfellow, “Band-gap control of GaInP using Sb as a surfactant.” Appl. Phys. Lett., Vol.75, pp.1914-1916, 1999
[30] L. Zhang, H. F. Tang, and T. F. Kuech, “Effect of Sb as a surfactant during the lateral epitaxial overgrowth of GaN by metalorganic vapor phase epitaxy.”Appl. Phys. Lett., Vol.79, pp.3059-3061, 2001
[31] J. C. Harmand, L. H. Li, G. Patriarche, and L. Travers, “GaInAs/GaAs quantum-well growth assisted by Sb surfactant: Toward 1.3 mm emission.” Appl. Phys. Lett., Vol.84, pp.3981-3983, 2004
[32] Wonill Ha, Vincent Gambin, Seth Bank, Mark Wistey, Homan Yuen, Seongsin Kim, and James S. Harris, Jr., “Long-Wavelength GaInNAs(Sb) Lasers on GaAs.” IEEE J. Select. Topic Quantum Electronic., Vol. 38, pp. 1260-1267, 2002

Chapter 4:
[1] G. P. Agrawal and N. K. Dutta, Long-wavelength semiconductor lasers.
[2] Shunichi Sato, “Low threshold and high characteristic temperature1.3um range
GaInNAs lasers grown by Metalorganic Chemical Vapor Deposition.” Jpn. J. Appl.
Phys. Vol. 39, pp. 3403-3405, 2000
[3] F. Hohnsdorf, J. Koch, S. Leu, W. Stolz, B. Borchert and M. Druminsk, “Reduced
threshold current densities of (Galn)(NAs)/GaAs single quantum well lasers for emission wavelengths in the range 1.28-1.38um.” Electron. Lett., Vol.35, pp. 571-572, 1999
[4] Masao Kawaguchi, Tomoyuki Miyamoto, Eric Gouardes, Dietmar Schlenker,
Takashi Kondo, Fumio Koyama and Kenichi Iga, “Lasing characteristics of low threshold GaInNAs lasers grown by Metalorganic Chemical Vapor Deposition.” Jpn. J. Appl. Phys. Vol. 40, pp. 744-746, 2001
[5] Nelson Tansu and Luke J. Mawst, “Low-Threshold Strain-Compensated
InGaAs(N) (λ = 1.19–1.31 um) Quantum-Well Lasers.” IEEE Photon. Technol.
Lett., Vol. 14, pp. 444-446, 2002
[6] Nelson Tansu, Nicholas J. Kirsch, and Luke J. Mawst,
“Low-threshold-current-density 1300-nm dilute-nitride quantum well lasers.” Appl. Phys. Lett. Vol. 81, pp. 2523-2525, 2002
[7] Nelson Tansu, Andrew Quandt, Manoj Kanskar, William Mulhearn, and Luke J.
Mawst, “High-performance and high-temperature continuous-wave-operation
1300 nm InGaAsN quantum well lasers by organometallic vapor phase epitaxy.”
Appl. Phys. Lett. Vol. 83, pp. 18-20, 2003
[8] Shunichi Sato and Shiro Satoh, “Room-Temperature Continuous-Wave Operation
of 1.24um GaInNAs Lasers Grown by Metal–Organic Chemical Vapor
Deposition.” IEEE J. Select. Topic Quantum Electronic., Vol. 5, pp. 707-710, 1999
[9] M. Kawaguchi, E. Gouardes, D. Schlenker, T. Kondo, T. Miyamoto, F. Koyama
and K. Iga, “Low threshold current density operation of GalnNAs quantum well
lasers grown by metalorganic chemical vapour deposition.” Electron. Lett., Vol.36,
pp. 1776-1777, 2000

Chapter 5:
[1] Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett., Vol.40, pp. 939-941, 1982
[2] Nikolai N. Ledentsov, M. Grundmann, F. Heinrichsdorff, Dieter Bimberg, Member, IEEE, V. M. Ustinov, A. E. Zhukov, M. V. Maximov, Zh. I. Alferov, and J. A. Lott, “Quantum-Dot Heterostructure Lasers,” IEEE J. Select. Topic Quantum Electronic, VOL. 6, NO. 3, pp. 439-451, 2000
[3] Victor M. Ustinov, Alexey E. Zhukov, Anton Yu. Egorov, Nikolai A. Maleev, Quantum Dot lasers, Oxford science publications, 2003
[4] I.R. Sellers, H.Y. Liu, K.M. Groom, D.T. Childs, D. Robbins, T.J. Badcock, M. Hopkinson, D.J. Mowbray and M.S. Skolnick, “1.3 lm InAs/GaAs multilayer quantum-dot laser with extremely low room-temperature threshold current density,” Electron. Lett., Vol. 40, pp. 1412-1413, 2004
[5] Masahiro Asada, Yasuyuki Miyamoto, and Yasuharu Suematsu, “Gain and the Threshold of Three-Dimensional Quantum-Box Lasers,” IEEE J. Quantum Electron., Vol. 22, pp. 1915-1921, 1986
[6] O. B. Shchekin and D. G. Deppe, “The role of p-type doping and the density of states on the modulation response of quantum dot lasers.” Appl. Phys. Lett., Vol.80, pp. 2758-2760, 2002
[7] J. M. Gerard, J. B. Genin, J. Lefebvre, J. M. Moison, N. Lebouche and F. Barthe, “Optical investigation of the self-organized growth of InAs/GaAs quantum boxes.” Journal of Crystal Growth, Volume 150, pp. 351-356, 1995
[8] J. Bloch, J. Shaha, W. S. Hobson, J. Lopata, and S. N. G. Chu, “Room-temperature 1.3 mm emission from InAs quantum dots grown by metal organic chemical vapor deposition”, Appl. Phys. Lett., Vol.75, pp. 2199-2201, 1999

Chapter 6:
[1] Seth R. Bank, Mark A.Wistey, Lynford L. Goddard, Homan B. Yuen, Vincenzo Lordi, and James S. Harris, Jr., “Low-Threshold Continuous-Wave 1.5μm GaInNAsSb Lasers Grown on GaAs.” IEEE J. Select. Topic Quantum Electronic., Vol. 40, pp.656-664, 2004
[2] K. D. Choquette, H. Q. Hou, “Vertical-cavity surface emitting lasers: moving from
reach to manufacturing.”Proc. IEEE, Vol. 85, pp.1730-1739, 1997
[3] Sebastian Mogg, Nicolae Chitica, Ulf Christiansson, Richard Schatz, Petrus Sundgren, Carl Asplund, and Mattias Hammar, “Temperature Sensitivity of the Threshold Current of Long-Wavelength InGaAs–GaAs VCSELs With Large Gain-Cavity Detuning.” IEEE J. Select. Topic Quantum Electronic., Vol. 40, pp.453-462, 2004
[4] J¨org Heerlein, Stefan Gruber, Martin Grabherr, Roland J¨ager, and Peter Unger, “Highly Efficient Laterally Oxidized λ= 950nm InGaAs–AlGaAs Single-Mode Lasers.” IEEE J. Select. Topic Quantum Electronic., Vol. 5, pp. 701-706, 1999
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top