|
Chapter 1: [1] J S Harris Jr., “GaInNAs long-wavelength lasers: progress and challenges,” Semicond. Sci. Technol., Vol. 17, pp. 880-891, 2002 [2] J. Hecht, Understanding Fiber Optics. Upper Saddle River, NJ: Prentice Hall, 2002 [3] M. Hetterich, M. D. Dawson, A. Y. Egorov, D. BernKlau, and H.Riechert, “Electronic states and band alignment in GalnNAs/GaAs quantum-well structures with low nitrogen content,” Appl. Phys. Lett., vol. 76, no. 8, pp. 1030-1032, 2003 [4] G. A. Evans. J. P. Sih, T. M. Chou, J. B. Kirk, J. K. Butler, and L.Y. Pang, SPIE In-Plane Semiconductor Lasers:from Ultraviolet to Mid-Infrared II, vol. 3284, San Jose, CA, USA, pp.205-210, 1998 [5] J. Piprek, San Diego:Academic Press, 2003 [6] W. Nakwaski, “Thermal conductivity of binary, ternary, and quaternary III-V compounds,” J. Appl. Phys., vol. 64, no. 1, pp. 159-166, 1988. [7] M. Guden and J. Piprek, ” Material parameters of quaternary III–V semiconductors for multilayer mirrors at 1.55 μm wavelength.” Model. Simul. Master. Sci. Eng., vol. 4, no. 4, pp. 349-357, 1996 [8] T. Takeuchi,a) Y.-L. Chang, A. Tandon, D. Bour, S. Corzine, R. Twist, M. Tan, and H.-C. Luan, “Low threshold 1.2 mm InGaAs quantum well lasers grown under low AsH3 ratio.” Appl. Phys. Lett., vol. 80, no. 14, pp. 2445-2447, 2002 [9] P. Sundgren, J. Berggren, P. Goldman, and M. Hammara, ” Highly strained InGaAs/GaAs multiple quantum-wells for laser applications in the 1200–1300 nm wavelength regime.” Appl. Phys. Lett., vol. 87, 071104, 2005 [10] Sebastian Mogg, Nicolae Chitica, Ulf Christiansson, Richard Schatz, Petrus Sundgren, Carl Asplund, and Mattias Hammar, “Temperature Sensitivity of the Threshold Current of Long-Wavelength InGaAs–GaAs VCSELs with Large Gain-Cavity Detuning.” IEEE Journal of Quantum Electronics, Vol. 40, No. 5, pp. 453-462, 2004 [11] H.C. Kuo, , H. H. Yao, Y.H. Chang, Y.A. Chang, M.Y. Tsai, J. Hsieh, E.Y. Chang, S.C. Wang, “MOCVD growth of highly strained InGaAs:Sb–GaAs–GaAsP quantum well vertical cavity surface-emitting lasers with 1.27 μm emission.” Journal of Crystal Growth 272, pp.538–542, 2004 [12] Masahiko Kondow, Takeshi Kitatani, Shin’ichi Nakatsuka, Michael C. Larson, Kouji Nakahara, Yoshiaki Yazawa, Makoto Okai, and Kazuhisa Uomi, “GaInNAs: A Novel Material for Long-Wavelength Semiconductor Lasers.” IEEE J. Select. Topic Quantum Electronic., Vol. 3, NO. 3, pp. 719-730, 1997 [13] W. Shan, W. Walukiewicz, J. W. Ager III, E. E. Haller, J. F. Geisz, D. J. Friedman, J. M. Olson, and S. R. Kurtz, “Band Anticrossing in GaInNAs Alloys.” Phys. review letters, Vol. 82, Number 6, pp. 1221-1224, 1999 [14] J. S. Harris Jr, “GaInNAs long-wavelength lasers: progress and challenges.” Semicond. Sci. Technol., Vol. 17, pp. 880-891, 2002
Chapter 2: [1] H. M. Manasevit and W. I. Simpson, J. Electrochem. Soc. Vol. 12, pp. 156, 1968 [2] H. M. Manasevit , Appl. Phys. Lett. Vol. 116, pp. 1725, 1969 [3] H. M. Manasevit, J. Cryst. Growth 13/14 306, 1972 [4] J.-T. Zettler, K. Haberland, M. Zorn, M. Pristovsek, W. Richter, P. Kurpas and M. Weyers, J. Cryst. Growth Vol. 195, pp. 151, 1998 [5] Aixtron 200 User’s Manual, Aixtron AG. [6] G.B. “Stringfellow, Organometallic Vapor-Phase Epitaxy: Theory and Practice”, 2nd Edition, Academic Press, San Diego, 1999 [7] D. Schlenker, T. Miyamoto, Z. B. Chen, M. Kawaguchi, T. Kondo, E. Gouardes, F. Koyama and K. Iga , J. Cryst. Growth Vol. 221, pp. 503-508, 2000 [8] F. Salomonsson, C. Asplund, S. Mogg, G. Plaine, P. Sundgren, M. Hammar, Electron. Lett. Vol. 37(15), 957-958, 2001 [9] C. Asplund, P. Sundgren, S. Mogg, M. Hammar, U. Christiansson, V. Oscarsson, C. Runnstrom, E. Odling, J. Malmquist, Electron. Lett. Vol. 38(13), pp.635-636, 2002 [10] A. Ougazzaden, Y. Le Bellego, E. V. K. Rao, M. Juhel, L. Leprince, and G. Patriarche , “Metal organic vapor phase epitaxy growth of GaAsN on GaAs using dimethylhydrazine and tertiarybutylarsine”, Appl. Phys. Lett. Vol. 70, pp. 2861- 2863, 1997 [11] G. Plaine, C. Asplund, P. Sundgren, S. Mogg, M. Hammar, “Low-temperature Metal-organic Vapor-phase Epitaxy Growth and Performance of 1.3µm GaInNAs/GaAs Single Quantum Well Lasers”, Jpn. J. Appl. Phys. Vol. 41 Part 1, No 2B, pp. 1040-1042, 2002 [12] C. Asplund, P. Sundgren, M. Hammar, Proceedings of the 14th Indium Phosphide and Related Materials Conference, Stockholm, May 12-16, 2002, pp. 619-621 [13] T. F. Kuech, D. J. Wolford, E. Veuhoff, V. Deline, P. M. Mooney, R. Potemski, and J. Bradley, J. Appl. Phys. Vol. 62, pp. 632-643, 1987 [14] A. C. Jones, J. Cryst. Growth Vol. 129, pp. 728-773, 1993 [15] C. Asplund, A. Fujioka, M. Hammar, G. Landgren, EW-MOVPE VIII, Prague, June 8-11, 1999, pp. 437-440 [16] Carl Asplund’s thesis, KTH, 2003 [17] Dieter K. Schroder, Semiconductor material and device characterization, 2005
Chapter 3: [1] J.W. Matthews and A.E. Blakeslee, “Defects in epitaxial multilayers,” J. Crystal Growth, Vol. 27, pp. 118-125, 1974 [2] R. People and J.C. Bean, “Calculation of critical layer thickness versus lattice mismatch for GeSi/Si strain-layer hetrostructure.” Appl. Phys. Lett. Vol.47, pp.322-324, 1985 [3] Keunjoo Kim and Young Hee Lee, “Temperature-dependent critical thickness for strained-layer hetrostructures.” Appl. Phys. Lett. Vol. 67, pp.2212-2214, 1995 [4] T. Taleuchi, Y. L. Chane, A. Tandon, D. Bour, S. Corzine, R. Twist, and M. Tan, “Low threshold 1.2 um InGaAs quantum well lasers grown under low As/III ratio.” Appl. Phys. Lett. Vol. 80, pp. 2445-2447, 2002 [5] Nelson Tansu, Jeng-Ya Yeh, and Luke J. Mawst, “Extremely low threshold-current-density InGaAs quantum-well lasers with emission wavelength of 1215–1233 nm.” Appl. Phys. Lett. Vol. 82, pp. 4038-4040, 2003 [6] S. Mogg, N. Chitica, R. Schatz and M. Hammar, “Properties of highly strained InGaAs/GaAs quantum wells for 1.2-mm laser diodes.” Appl. Phys. Lett. Vol. 81, pp. 2334-2336, 2002 [7] Markus Weyers, Michio Sato and Hiroaki Ando, “Red Shift of Photoluminescence and Absorption in Dilute GaAsN Alloy Layers.” Jpn. J. Appl. Phys. Vol. 31, pp. L853-L855, 1992 [8] Bi, W. G.., and Tu, C. W,, “Bowing parameter of the band-gap energy of GaNxAs1 – x.” Appl. Phys. Lett. Vol. 70, pp. 1608-1610, 1997 [9] Ager III, J. W., and Walukiewicz, W., eds., “III-N-V Semiconductor alloys,” Semicond. Sci. Technol. 17, pp. 741-906, 2002 [10] Buyanova, I. A., Chen, W. M., and Monemar, B., “Electronic properties of Ga(In)NAs alloys,” MRS Internet J. Nitride Semicond. Res. 6(2), pp 1-19, 2001 [11] HP Hjalmarson, P Vogl, DJ Wolford, JD Dow, “Theory of Substitutional Deep Traps in Covalent Semiconductors.” Phys. Rev. Lett., Vol. 44, pp. 810-813, 1980 [12] W. Shan, W. Walukiewicz, and J. W. Ager III, E. E. Haller, J. F. Geisz, D. J. Friedman, J. M. Olson, and S. R. Kurtz, “Band Anticrossing in GaInNAs Alloys.” Phys. Rev. Lett., Vol. 82, pp. 1221-1224, 1999 [13] J Wu, W Shan and W Walukiewicz, “Band anticrossing in highly mismatched III–V semiconductor alloys.” Semicond. Sci. Technol, Vol. 17, pp. 860-869, 2002 [14] J. S. Harris Jr, “GaInNAs long-wavelength lasers: progress and challenges.” Semicond. Sci. Technol., Vol. 17, pp. 880-891, 2002 [15] S. G. Spruytte, M. C. Larson, W. Wampler, C. W. Coldren, H. E. Petersen and J. S. Harris, “Nitrogen incorporation in group III–nitride–arsenide materials grown by elemental source molecular beam epitaxy.” J. Crystal. Growth, Vol. 227-228, pp. 506-515, 2001 [16] J. C. Harmand, G. Ungaro, L. Largeau, and G. Le Roux, “Comparison of nitrogen incorporation in molecular-beam epitaxy of GaAsN, GaInAsN, and GaAsSbN.” Appl. Phys. Lett. Vol. 77, pp. 2482-2484, 2000 [17] C. Jin, Y. Qiu, S. A. Nikishin, and H. Temkin, “Nitrogen incorporation kinetics in metalorganic molecular beam epitaxy of GaAsN.” Appl. Phys. Lett. Vol. 74, pp. 3516-3518, 1999 [18] Shunichi Sato, Shiro Satoh, “Metalorganic chemical vapor deposition of GaInNAs lattice matched to GaAs for long-wavelength laser diodes.” J. Crystal. Growth, Vol. 192, pp. 381-385, 1998 [19] W. Shan, W. Walukiewicz, K. M. Yu, J. W. Ager III, E. E. Haller, J. F. Geisz, D. J. Friedman, J. M. Olson, S. R. Kurtz, H. P. Xin, C. W. Tu, “Band Anticrossing in III-N-V Alloys.” phys. stat. sol. (b), Vol. 223, pp. 75-85, 2001 [20] S. Niki, C. L. Lin, W. S. C. Chang, and H. H. Wieder, “Band-edge discontinuities of strained-layer InxGa1–xAs/GaAs heterojunctions and quantum wells.” Appl. Phys. Lett. Vol. 55, pp. 1339-1341, 1989 [21] S. L. Chuang, John Wiley & Sons, 1995 [22] S. H. Wei and A. Zunger, “Giant and Composition-Dependent Optical Bowing Coefficient in GaAsN Alloys” Phys. Rev. Lett., vol. 76, pp. 664-667, 1996 [23] M. E. Sherwin, T. J. Drummond, “Predicted elastic constants and critical layer thicknesses for cubic phase AlN, GaN, and InN on –SiC” J. Appl. Phys., vol. 69, pp. 8423-8425, 1991 [24] J. J. Coleman, Academic Press, ISBN 0-12-781890-1, pp. 378, 1993 [25] C. Skierbiszewski, “Experimental studies of the conduction-band structure of GaInNAs alloys.” Semicond. Sci. Technol., Vol.17, pp. 803-814 (2002) [26] C. S. Peng, J. Konttinen, H. F. Liu and M. Pessa, ”Blue shift in InGaAsN/GaAs quantum wells with different width.” IEE Proc. Optoelectron., Vol. 151, pp. 317-319, 2004 [27] Jeng-Ya Yeha, , Luke J. Mawsta, Nelson Tansu, “Characteristics of InGaAsN/GaAsN quantum well lasers emitting in the 1.4-mm regime.” J. Crystal. Growth, Vol. 272, pp. 719-725, 2004 [28] M. Copel, M. C. Reuter, E. Kaxiras, and R. M. Tromp, “Surfactants in epitaxial growth.” Phys. Rev. Lett., Vol.63, pp.632-635,1989 [29] J. K. Shurtleff, R. T. Lee, C. M. Fetzer, and G. B. Stringfellow, “Band-gap control of GaInP using Sb as a surfactant.” Appl. Phys. Lett., Vol.75, pp.1914-1916, 1999 [30] L. Zhang, H. F. Tang, and T. F. Kuech, “Effect of Sb as a surfactant during the lateral epitaxial overgrowth of GaN by metalorganic vapor phase epitaxy.”Appl. Phys. Lett., Vol.79, pp.3059-3061, 2001 [31] J. C. Harmand, L. H. Li, G. Patriarche, and L. Travers, “GaInAs/GaAs quantum-well growth assisted by Sb surfactant: Toward 1.3 mm emission.” Appl. Phys. Lett., Vol.84, pp.3981-3983, 2004 [32] Wonill Ha, Vincent Gambin, Seth Bank, Mark Wistey, Homan Yuen, Seongsin Kim, and James S. Harris, Jr., “Long-Wavelength GaInNAs(Sb) Lasers on GaAs.” IEEE J. Select. Topic Quantum Electronic., Vol. 38, pp. 1260-1267, 2002
Chapter 4: [1] G. P. Agrawal and N. K. Dutta, Long-wavelength semiconductor lasers. [2] Shunichi Sato, “Low threshold and high characteristic temperature1.3um range GaInNAs lasers grown by Metalorganic Chemical Vapor Deposition.” Jpn. J. Appl. Phys. Vol. 39, pp. 3403-3405, 2000 [3] F. Hohnsdorf, J. Koch, S. Leu, W. Stolz, B. Borchert and M. Druminsk, “Reduced threshold current densities of (Galn)(NAs)/GaAs single quantum well lasers for emission wavelengths in the range 1.28-1.38um.” Electron. Lett., Vol.35, pp. 571-572, 1999 [4] Masao Kawaguchi, Tomoyuki Miyamoto, Eric Gouardes, Dietmar Schlenker, Takashi Kondo, Fumio Koyama and Kenichi Iga, “Lasing characteristics of low threshold GaInNAs lasers grown by Metalorganic Chemical Vapor Deposition.” Jpn. J. Appl. Phys. Vol. 40, pp. 744-746, 2001 [5] Nelson Tansu and Luke J. Mawst, “Low-Threshold Strain-Compensated InGaAs(N) (λ = 1.19–1.31 um) Quantum-Well Lasers.” IEEE Photon. Technol. Lett., Vol. 14, pp. 444-446, 2002 [6] Nelson Tansu, Nicholas J. Kirsch, and Luke J. Mawst, “Low-threshold-current-density 1300-nm dilute-nitride quantum well lasers.” Appl. Phys. Lett. Vol. 81, pp. 2523-2525, 2002 [7] Nelson Tansu, Andrew Quandt, Manoj Kanskar, William Mulhearn, and Luke J. Mawst, “High-performance and high-temperature continuous-wave-operation 1300 nm InGaAsN quantum well lasers by organometallic vapor phase epitaxy.” Appl. Phys. Lett. Vol. 83, pp. 18-20, 2003 [8] Shunichi Sato and Shiro Satoh, “Room-Temperature Continuous-Wave Operation of 1.24um GaInNAs Lasers Grown by Metal–Organic Chemical Vapor Deposition.” IEEE J. Select. Topic Quantum Electronic., Vol. 5, pp. 707-710, 1999 [9] M. Kawaguchi, E. Gouardes, D. Schlenker, T. Kondo, T. Miyamoto, F. Koyama and K. Iga, “Low threshold current density operation of GalnNAs quantum well lasers grown by metalorganic chemical vapour deposition.” Electron. Lett., Vol.36, pp. 1776-1777, 2000
Chapter 5: [1] Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett., Vol.40, pp. 939-941, 1982 [2] Nikolai N. Ledentsov, M. Grundmann, F. Heinrichsdorff, Dieter Bimberg, Member, IEEE, V. M. Ustinov, A. E. Zhukov, M. V. Maximov, Zh. I. Alferov, and J. A. Lott, “Quantum-Dot Heterostructure Lasers,” IEEE J. Select. Topic Quantum Electronic, VOL. 6, NO. 3, pp. 439-451, 2000 [3] Victor M. Ustinov, Alexey E. Zhukov, Anton Yu. Egorov, Nikolai A. Maleev, Quantum Dot lasers, Oxford science publications, 2003 [4] I.R. Sellers, H.Y. Liu, K.M. Groom, D.T. Childs, D. Robbins, T.J. Badcock, M. Hopkinson, D.J. Mowbray and M.S. Skolnick, “1.3 lm InAs/GaAs multilayer quantum-dot laser with extremely low room-temperature threshold current density,” Electron. Lett., Vol. 40, pp. 1412-1413, 2004 [5] Masahiro Asada, Yasuyuki Miyamoto, and Yasuharu Suematsu, “Gain and the Threshold of Three-Dimensional Quantum-Box Lasers,” IEEE J. Quantum Electron., Vol. 22, pp. 1915-1921, 1986 [6] O. B. Shchekin and D. G. Deppe, “The role of p-type doping and the density of states on the modulation response of quantum dot lasers.” Appl. Phys. Lett., Vol.80, pp. 2758-2760, 2002 [7] J. M. Gerard, J. B. Genin, J. Lefebvre, J. M. Moison, N. Lebouche and F. Barthe, “Optical investigation of the self-organized growth of InAs/GaAs quantum boxes.” Journal of Crystal Growth, Volume 150, pp. 351-356, 1995 [8] J. Bloch, J. Shaha, W. S. Hobson, J. Lopata, and S. N. G. Chu, “Room-temperature 1.3 mm emission from InAs quantum dots grown by metal organic chemical vapor deposition”, Appl. Phys. Lett., Vol.75, pp. 2199-2201, 1999
Chapter 6: [1] Seth R. Bank, Mark A.Wistey, Lynford L. Goddard, Homan B. Yuen, Vincenzo Lordi, and James S. Harris, Jr., “Low-Threshold Continuous-Wave 1.5μm GaInNAsSb Lasers Grown on GaAs.” IEEE J. Select. Topic Quantum Electronic., Vol. 40, pp.656-664, 2004 [2] K. D. Choquette, H. Q. Hou, “Vertical-cavity surface emitting lasers: moving from reach to manufacturing.”Proc. IEEE, Vol. 85, pp.1730-1739, 1997 [3] Sebastian Mogg, Nicolae Chitica, Ulf Christiansson, Richard Schatz, Petrus Sundgren, Carl Asplund, and Mattias Hammar, “Temperature Sensitivity of the Threshold Current of Long-Wavelength InGaAs–GaAs VCSELs With Large Gain-Cavity Detuning.” IEEE J. Select. Topic Quantum Electronic., Vol. 40, pp.453-462, 2004 [4] J¨org Heerlein, Stefan Gruber, Martin Grabherr, Roland J¨ager, and Peter Unger, “Highly Efficient Laterally Oxidized λ= 950nm InGaAs–AlGaAs Single-Mode Lasers.” IEEE J. Select. Topic Quantum Electronic., Vol. 5, pp. 701-706, 1999
|