|
Chapter 1 [1] N. Narendran, J. Bullough, N. Maliyagoda, and A. Bierman, “What is useful life for white light LEDs”, J. Illum. Eng. Soc., 30, pp. 57-67 (2001). [2] N. Narendrn, N. Maliyagoda, L. Deng, and R. Pysar, “Characterizing LEDs for General Illumination Applications: Mixed-color and phosphor-based white source”, Proc. SPIE, 4445, pp.137-147 (2001). [3] Y. Narukawa, I. Niki, K. Izuno, M. Yamada, Y. Murazki, and T. Mukai, “Phosphor-conversion white light-emitting diodes using InGaN near-ultraviolet chip”, Jpn. J. Appl. Phys., 41, pp. 371-373 (2002). [4] W. Schmid, F. Eberhard, R. Jager, R. King, J. Joos, and K. Ebeling, “45% quantum-efficiency light-emitting diodes with radial outcoupling taper”, Proc. SPIE, 3938, pp. 90-97 (2000). [5] R. Windisch, C. Rooma, M. Kuijk, G. Borghs, G. H. Doehler, and P. Hremans, “Impact of texture-enhanced transmission on high-efficiency furgace-textured light-emitting diodes”, Appl. Phys. Lett., 79, pp. 2315-2317 (2001). [6] H. Sugawara, M. Ishakawa, and G. Hatakoshi, “High-efficiency InGaAlP/GaAs visible light-emitting diodes”, Appl. Phys. Lett., 58, pp. 1010-1012 (1991). [7] C. Huh, J. M. Lee, D. J. Kim, and S. J. Park, “Current blocking layer in GaN light-emitting diode”, Proc. SPIE - Int. Soc. Opt. Eng., 4445, pp. 165-171 (2001). [8] C. Huh, J. M. Lee, D. J. Kim, and S. J. Park, “Improvement in light-output efficiency of InGaN/GaN multiple-quantum well light-emitting diodes by current blocking layer”, J. Appl. Phys., 92, pp. 2248-2250 (2002). Chapter 2 [1] Z. X. Qin , Z. Z. Chen, H. X. Zhang, X. M. Ding, X. D. Hu, T. J. Yu, and G. Y. Zhang, “The role of Ni and Au on transparent film of blue LEDs”, Solid State Electronic., 47, pp.1741-1743 (2003). [2] C. T. Lee, and H. W. Kao, “Long-term thermal stability of Ti/Al/Pt/Au Ohmic contacts to n-type GaN”, Appl. Phys. Lett., 76, pp. 2364-2366 (2000). [3] H. Kim, J. M. Lee, C. Huh, S. W. Kim, D. J. Kim, S. J. Park, and Hyunsang Hwang, “Modeling of a GaN-based light-emitting diode for uniform current spreading”, Appl. Phys. Lett., 77, pp. 1903-1904 (2000). [4] H. Kim, S. J. Park, and H. Hwang, “Effects of Current Spreading on the Performance of GaN-Based Light-Emitting Diodes”, IEEE T. Electron Dev., 48, pp. 1065-1069 (2001). Chapter 3 [1] A. Ebong, S. Arthur, E. Doweny, X. A. Cao, S. LeBoeuf, and D. W. Merfeld, “Device and circuit modeling of GaN/InGaN light emitting diodes (LEDs) for optimum current spreading”, Solid State Electronic., 47, pp. 1817-1823 (2003). Chapter 4 [1] S. X. Jin, J. Li, J. Y. Lin, and H. X. Jiang, “ InGaN/GaN quantum well inrerconnected microdisk light emitting diodes”, Appl. Phys. Lett., 77, pp. 3236-3238 (2000). [2] H. C. Wang, Y. K. Su, C. L. Lin, W. B. Chen, and S. M. Chen “InGaN/GaN Light Emitting Diodes with a Lateral Current Blocking Structure”, Jpn. J. Appl. Phys., 43, pp. 2006-2008 (2004). [3] Y. K. Su, S. J. Chang, S. C. Wei, R. W. Chuang, S. M. Chen, and W. L. Li, “Niride-based LEDs With n--GaN Current Spreading Layers”, IEEE Electron. Dev. Lett., 26, pp. 891-893 (2005). [4] M. Nakaji, T. Egawa, H. Ishikawawa, S. Arulkumaran, and T. Jimbo, “Characteristics of BCl3 plasma-etched GaN Schottky diodes”, Jpn. J. Appl. Phys., 41, pp. 493 (2002). [5] S. Tripathy, A. Ramam, S. J. Chua, J. S. Pan, and Alfred Huan, “Characterization of inductively coupled plasma etched surface of GaN using Cl2/BCl3 chemistry”, J. Vac. Sci. Technol. A, 19, pp. 2522-2532 (2001). [6] A. P. Zhang, G. Dang, F. Ren, X. A. Cao, H. Cho, E. S. Lambers, S. J. Pearton, R. J. Shul, L. Zhang, A. G. Baca, R. Hickman, and J. M. Van Hove, “Cl2/Ar high-density-plasma damage in GaN Schottky diodes”, J. Elecrochem. Soc., 147, pp. 719-722 (2000). [7] D. G. Kent, K. P. Lee, A. P. Zhang, B. Luo, M. E. Overberg, C. R. Abernathy, F. Ren, K. D. Mackenzie, S. J. Pearton, and Y. Nakagawa, “Effect of N2 plasma treatments on dry etch damage in n- and p-type GaN”, Solid State Electronic., 45 , pp. 467-470 (2001). [8] X. A. Cao, S. J. Pearton, A. P. Zhang, G. T. Dang, F. Ren, R. J Shul, L. Zhang, R. Hickman, and J. M. Van Hove, “Electrical effects of plasma damage in p-GaN”, Appl. Phys. Lett., 75, pp. 2569-2571 (1999). [9] G. Parish, L. M. Watson, G Umana Membreno, and B. D. Nener, “Investigations of ohmic contacts to reactive-ion-etched p-type GaN”, Proc. SPIE - Int. Soc. Opt. Eng., 5276, pp. 47-56 (2004). [10] H. F. Hong, C. K. Chao, J. I. Chyi, and Y. C. Tzeng, “Reactive ion etching of GaN/InGaN using BCl3 plasma”, Mater. Chem. Phys., 77, pp. 411-415 (2002). [11] Q. Fan, S. Chevtchenko, X. Ni, S. J. Cho, and H. Morkoc, “Recovery of GaN surface after reactive ion etching”, Gallium Nitride Materials and Devices, 6121, pp. 221-235 (2006). [12] X. A. Cao, A. P. Zhang, G. T. Dang, and F. Ren, “Schottky diode measurement of dry etch damage in n- and p-type GaN”, J. Vac. Sci. Technol. A, 18, pp. 1144-1148 (2000). [13] R. Cheung, R. J. Reeves, B. Rong, S. A. Brown, E. J. M. Fakkeldij, E. van der Drift, and M. Kamp, “High resolution reactive ion etching of GaN and etch-induced effects”, J. Vac. Sci. Technol. B, 17, pp. 2759-2763 (1999). [14] D. S. Li, H. Chen, H. B. Yu, H. Q. Jia, Q. Huang, and J. M. Zhou, “Dependence of leakage current on dislocations in GaN-based light-emitting diodes”, J. Appl. Phys., 96, pp. 1111-1114 (2004). [15] S. Hashimoto, Y. Yoshizumi, T. Tanabe, and M. Kiyama, “High-purity GaN epitaxial layers for power devices on low-dislocation-density GaN substrates”, J. Cryst. Growth, 298, pp. 871-874 (2007). [16] X. A. Cao, J. A. Teetsov, F. Shanhedipour-Sandvik, and S. D. Arthur, “Microstructural origin of leakage current in GaN/InGaN light-emitting diodes”, J. Cryst. Growth, 264, pp. 172-177 (2004). [17] E. G. Brazel, M. A. Chin, and V. Narayanamurti, “Direct observation of localized high current densities in GaN films”, Appl. Phys. Lett., 74, pp. 2367-2369 (1999). [18] A. A Pomarico, D. Huang, J. Dickinson, A. A. Baski, R. Cingolani, H. Morkoc, and R. Molnar, “Current mapping of GaN films by conductive atomic force microscopy”, Appl. Phys. Lett., 82, pp. 1890-1892 (2003). [19] B. S. Simpkins, E. T. Yu, P. Waltereit, and J. S. Speck, “Corelated scanning Kelvin probe and conductive atomic force microscopy studies of dislocations in gallium nitride”, J. Appl. Phys., 94, pp. 1448-1453 (2003). [20] H. C. Wang, Y. K. Su, Y. H. Chung, C. L. Lin, W. B. Chen, and S. M. Chen, “AlGaInP light emitting diode with a current-blocking structure”, Solid State Electronic., 49, pp. 37-41 (2005). [21] C. Huh, J. M. Lee, D. J. Kim, and S. J. Park, “Current blocking layer in GaN light-emitting diode”, Proc. SPIE - Int. Soc. Opt. Eng., 4445, pp. 165-171 (2001). [22] Y. B. Lee, R. Takaki, H. Sato, Y. Naoi, and S. Sakai, “High efficiency GaN-based LEDs using plasma selective treatment of p-GaN surface”, Phys. Stat. Sol. (a), 200, pp. 87-90 (2003). [23] C. C. Liu, Y. H. Chen, M. P. Houng, Y. H. Wang, Y. K. Su, W. B. Chen, and S. M. Chen, “Improved Light-Output Power of GaN LEDs by Selective Region Activation”, IEEE Photonic. Tech. L., 16, pp.1444-1446 (2004). [24] C. M. Lee, C. C. Chuo, Y. C. Liu, I. L. Chen, and J. I. Chyi, “InGaN-GaN MQW LEDs With Current Blocking Layer Formed by Selective Activation”, IEEE Electron. Dev. Lett., 25, pp.384-386 (2004). [25] C. Huh, J. M. Lee, D. J. Kim, and S. J. Park, “Improvement in light-output efficiency of InGaN/GaN multiple-quantum well light-emitting diodes by current blocking layer”, J. Appl. Phys., 92, pp.2248-2250 (2002).
|