跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.83) 您好!臺灣時間:2024/12/06 12:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李華山
研究生(外文):Hua-Shan Lee
論文名稱:使用銅電極之低介電常數(碳摻雜矽氧化物)薄膜之電性研究
論文名稱(外文):Investigation of Electrical Characteristics of KF Low-k Dielectric Material
指導教授:蘇炎坤蘇炎坤引用關係
指導教授(外文):Yan-Kuin Su
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:56
中文關鍵詞:低介電常數碳摻雜矽氧化物
外文關鍵詞:CDOlow-k
相關次數:
  • 被引用被引用:0
  • 點閱點閱:134
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文將探討銅金屬電極與低介電常數碳摻雜矽氧化物( Carbon-Doped silicon Oxide, CDO )絕緣薄膜間之交互影響。由實驗結果發現,以銅電極製做之Metal
金屬-絕緣層-半導體( MIS )結構,在偏壓、溫度老化(Bias Temperature Stress, BTS ) 的嚴苛條件下時( 1MV/cm, 170C, 1000sec ),其崩潰電場仍可維持在8.3 MV/cm。在本研究中,利用探討漏電流及電場變化之闗係,分析推論出主導的傳輸機制。
此外,藉由電容-電壓特性量測法所得到的銅離子在CDO薄膜中的漂移率,則可驗證CDO薄膜對銅擴散具有不錯的抵抗能力。
In this thesis, interaction between copper electrode and low dielectric constant KF ( Carbon-Doped silicon Oxide, CDO ) film was demonstrated.
The Metal-Insulation-Semiconductor (MIS) capacitors were fabricated with a copper electrode. The breakdown electrical field was as high as 8.3 MV/cm under strict Bias Temperature Stress ( BTS ) conditions ( at 1 MV/cm and 170oC for 1000 sec ).
In this work, we have investigated the relationship between leakage current and electrical field. We also have analyzed which transport mechanism is dominated.
Finally, the resistant capability of Cu diffusion in KF film was verified with Cu diffusion rate measured by C-V characteristics.
ABSTRACT IN CHINESE -I-
ABSTRACT -II-
CONTENTS -IV-
LIST OF TABLES -VI-
LIST OF FIGURES -VII-
CHAPTER 1 INTRODUCTION -1-
1.1 General Background -1-
1.2 Cu Metallization -3-
1.3 Low Dielectric Constant Materials -4-
1.4 Low-k Developed Method -5-
1.4.1 Spin-on Deposition of Low Dielectric Constant Materials -5-
1.4.2 Chemical Vapor Deposition of Low Dielectric Constant Materials -6-
1.5 Motivation and Organization of this Thesis -7-
Chapter 2 Fabrication of Metal-Insulator-Semiconductor(MIS) with Copper -11-
2.1 Current-Voltage(I-V) Measurement -11-
2.1.1 Tunneling -11-
2.1.2 Space-Charge-Limited Currents(SCLC) -11-
2.1.3 Thermionic or Schottky-Richardson Emission -12-
2.1.4 Pool-Frenkel Effect -12-
2.1.5 Distinction between Pool-Frenkel and Schottkey -13-
2.2 Capacitance-Voltage(C-V) Measurement -15-
2.3 Experimental Procedure and Analyses -16-
Chapter 3 Experimental Results and Discussion - 29-
3.1 Experimental Results -29-
3.2 Copper Drift Rates in Low-k CDO Film -31-
Chapter 4 Conclusion and Prospects -51-
4.1 Conclusion -51-
4.2 Prospects -51-
Bibliography -53-
[1] G. E. Moore, “Cramming more components onto integrated circuits”, Electronics, vol. 38, No. 8, pp.114-118, 1965.
[2] S. P. Jeng, M. C. Chang, and R. H. Havemann, “Process integration and manufacturing issues for high performance interconnect”, MRS Symp. Proc. Adv. Metallization for Devices and circuits, pp.25-30, 1994.
[3] J. Ida, M. Yoshimaru, T. Usami, A. Ohtomo, K. Shimokawa, A. Kita, M. Ino, “Reduction of wiring capacitance with new low dielectric SiOF interlayer film for high speed/low power sub-half micron CMOS”, IEEE Symp. VLSI Technol. Digest, pp. 59-60, 1994.
[4] T. Sakurai, “Closed-form expressions for interconnection delay, coupling, and crosstalk in VLSIs”, IEEE Trans. on Electron Devices, vol. 40, No.1, pp. 118-124, 1993.
[5] T. Takewaki, R. Kaihara, T. Ohmi, and T. Nitta, “Excellent electro/stress-migration-resistance surface-silicide passivated giant-grain Cu-Mg alloy interconnect technology for giga scale integration (GSI)”, IEEE International Electron Devices Meeting, pp253-256, 1995.
[6] P. Singer, Semiconductor International, pp. 52-56, November, 1994.
[7] J. Torres, “Cu dual damascene for advanced metallisation (0.18 µm and beyond)”, IEEE Int. Interconnect Tech. Conf., pp. 253-255, 1999.
[8] T. Ritzodorf, L. Graham, S. Jin, c. Mu, and D. Fraser, “Self-annealing of electrochemically deposited copper films in advanced interconnect applications ”, IEEE Int. Interconnect Tech. Conf., pp.166-168, 1998.
[9] C. H. Lee, K. H. Shen, T. K. Ku, c. H. Luo, C. C. Tso, H. W. Chou, and C. Hsia, “CVD Cu technology development for advanced Cu interconnect applications”, IEEE Int. Interconnect Tech. Conf., pp. 242-244, 2000.
[10] J. Zhang, D. Denning, G. Braeckelmann, R. Venkatraman, R. Fiordalice, and E. Weitzman, “CVD Cu process integration for sub-0.25 µm technologies ” IEEE Int. Interconnect Tech. Conf., pp.163-165, 1998.
[11] D. Edelstein, J. Heidenreich, R. Goldblatt, W. Cote, C. Uzoh, N. Lustig, P. Roper, T. McDevitt, W. Motsiff, J. Dukovic, R. Wachnik, H. Rathore, R. Schultz, L. Su, S. Luce, and J. Slattery, “Full Copper Wiring in a Sub-0.25um CMOS VLSI Technology”, International Electron Devices Meeting, pp.773-776, 1997.
[12] A. Cros, and K. N. Tu, “Formation, Oxidation, Electronic, and Electrical Properties of Copper Silicides”, J. Applied Physics, vol. 67, No. 7, pp. 3328-3336, 1990.
[13] L. Stolt and F. D’Heurle, “The Formation of Cu3Si: Marker Experiments”,Thin Solid Films, vol. 189, No.2, pp. 269-274, 1990.
[14] J. Echigoya, H. Enoki, T. Satoh, T. Waki, M. Otsuki, and T. Shibata, “Thin Film Reaction and Interface Structure of Cu on Si”, Applied Surface Science, vol. 56-58, Part 1, pp 463-468, 1992.
[15] T. H. Lee, “Nitridation Effect on the Barrier Property of Mo and Cr Layer in Cu/Barrier/SiO2/Si MOS Structures”, Master Thesis, National Chiao-Tung University, Hsinch, Taiwan, 1997.
[16] X. W. Lin and D. Pramanik, Solid State Technology, pp. 63-79, Oct. 1998.
[17] R. A. Donaton, B. Coenegrachts, K. Maex, H. Struyf, S. Vanhaelemeersch, G. Beyer, E. Richard, I. Vervoort, W. Fyen, J. Grillaert, S. V. Groen, M. Stucchi, and D. D. Roest, IEEE International Interconnect Techology Conference, pp. 262-264, 1999.
[18] C. H. Ting and T. E. Seidel, Mater. Res. Soc. Symp. Proc., vol. 381, pp. 3-17. 1995.
[19] L. Peters, Semiconductor International, pp. 64-74, Sept. 1998.
[20] D. Pramanik, Solid State Technology, pp. 69-78, Sept. 1995.
[21] The International Technology Roadmap for Semiconductors, Section: Interconnect, 1997.
[22] S. Wolf and R. N. Tauber, Silicon Processing for the VLSI Era: Vol. 4, Deep-submicron process technology (Lattice Press, Sunset Beach, 2002), p. 639-670.
[23] Miyajima, H.; Watanabe, K.; Fujita, K.; Ito, S.; Tabuchi, K.; Shimayama, T.; Akiyama, K.; Hachiya, T.; Higashi, K.; Nakamura, N.; Kajita, A.; Matsunaga, N.; Enomoto, Y.; Kanamura, R.; Inohara, M.; Honda, K.; Kamijo, H.; Nakata, R.; Yano, H.; Hayasaka, N.; Hasegawa, T.; Kadomura, S.; Shibata, H.; Yoda, T., Challenge of low-k materials for 130, 90, 65 nm node interconnect technology and beyond Source,Technical Digest - International Electron Devices Meeting, IEDM, Technical Digest - IEEE International Electron Devices Meeting, 2004 IEDM (50th Annual Meeting), p 329-332, 2004.
[24] R. K. Laxman, N. H. Hendricks, B. Arkles, and T. A. Tabler, Semiconductor International., pp. 95-102, Nov. 2000.
[25] R. P. Mandal, V. Rana, M. Naik, D. Yost, D. Cheung, and W. F. Yau, 1999 Int. VLSI Multilevel Interconnection Conference Process, Santa Clara, CA, pp. 585-590, Sept. 1999.
[26] B. K. Hwang, M. J. Loboda, G. A. Cerny, R. F. Schneider, J. A. Seifferly, and T. Washer, IEEE International Interconnect Technology Conference, pp. 52-54, 2000.
[27] A. Grill and V. Patel, Journal Apply Physics, vol. 85, no. 6, pp. 3314-3318, 1999.
[28] L. Peters, Semiconductor International, pp. 108-124, June 2000.
[29] J.G. Simmons, in L.I. Maissel and R. Glang, Handbook of Thin Film Technology, McGraw-hill, New York, Chap.14, pp. 25, 1970.
[30] S. M. Sze, Physics of Semiconductor Devices, John Wiley & Sons, New York, Ch. 7, pp. 402, 1981.
[31] Techniques and Applications of Plasma Chemistry; Hollahan, J. R.; Bell, A. T., EDS. Wiley, New York, 1974.
[32] Dieter K. Schroder, Semiconductor Material and Device Characterization, 2nd ed, Wiley, New York, 1998.
[33] Agilent Technologies, 4284A Precision LCR Meter Operation Manual, January 2000.
[34] A. S. Grove, Physics and Technology of Semiconductor Devices, Wiley, New York, 1967.
[35] P. T. Liu, S. T. Yan, C. H. Li, T. C. Chang, S. M. Sze, Electrical transport phenomena in aromatic hydrocarbon polymer, Journal of the Electrochemical Society, v 150, n 2, p F7-F10, February, 2003.
[36] A. L. S. Loke, C. Ryu, C. P. Yue, J. S. H. Cho, and S. S. Wong, “Kinetics of copper drift in PECVD dielectrics,” IEEE Electron Device Lett., vol..17, pp. 549–551, Dec. 1996.
[37] Loke ALS, Wetzel JT, Townsend PH, Tanabe T, Vrtis RN, Zussman MP, Kumar D, Ryu C, Wong SS, Kinetics of copper drift in low-kappa polymer interlevel dielectrics, IEEE TRANSACTIONS ON ELECTRON DEVICES 46 (11): 2178-2187, Nov. 1999.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文