跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/07 02:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:錢增旭
研究生(外文):Tseng-Hsu Chien
論文名稱:隨機整數/分數階渾沌系統的低階狀態空間自調式控制及其容錯控制
論文名稱(外文):Low-Order State-Space Self-Tuning Control for Stochastic Integer/Fractional Order Chaotic Systems and Fault Tolerant Control
指導教授:蔡聖鴻
指導教授(外文):Jason Sheng-Horng Tsai
學位類別:博士
校院名稱:國立成功大學
系所名稱:電機工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:95
語文別:英文
論文頁數:99
中文關鍵詞:渾沌系統低階狀態空間自調式控制容錯控制
外文關鍵詞:Self-Tuning ControlChaotic SystemsFault Tolerance
相關次數:
  • 被引用被引用:0
  • 點閱點閱:115
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文探討一個新型且有效的隨機整數/分數階渾沌系統的低階狀態空間自調式控制及其容錯控制之研究。本文包括以下三個方向﹕首先,針對隨機渾沌混合系統,利用觀測/卡爾曼濾波器識別法,設計一個有效的低階自調式控制器,這個系統狀態係經由一般座標形式轉換至另一觀測形式。因此,它提供了線上 “自回歸-移動平均-輸入變數模式” 識別的一個實質有效的初始化數值,並提出一個低階狀態空間自調式追蹤器的設計法則。其次,針對隨機分數階渾沌系統,基於所提出的修正型自調式控制法則,一個相對於觀測/卡爾曼濾波器識別的低階自調式控制器被提出。為了在自調式控制機制中能更有效地估測時變參數,本文採用新型的卡爾曼濾波器參數估測法,以取代慣用的識別演算法。除此之外,利用數位再設計方法的優點,基於即時輸出的觀測器也一併被提出。最後,將慣用的自調式控制法則加以修改,並發展出一套適用於方程式未知多變數隨機系統的低階自調式容錯控制架構。當被控系統有故障發生時,經由比較卡爾曼濾波器參數估測演算法的更新過程誤差,可以在自調式控制器結構中進行故障檢測。此方法可以有效地復原當系統有突發性或逐漸性部份故障,以及控制輸入有突發性或逐漸性部份故障時的容錯控制。
A study of a new effective low-order state-space self-tuning control for stochastic integer/fractional order chaotic systems and fault tolerant control is presented in this dissertation. This dissertation includes three aspects: First of all, an effective lower-order tuner for a stochastic chaotic hybrid system is designed using the observer/Kalman filter identification method, in which the system state in a general coordinate form is transformed to one in an observer form. Moreover, it provides a lower-order realization of the tracker, with computationally effective initialization, for on-line “auto-regressive moving average process with exogenous model-based” identification and a lower-order state-space self-tuning control technique. Secondly, based on the modified state-space self-tuning control, a novel low-order tuner via the observer/Kalman filter identification is proposed for stochastic fractional-order chaotic systems. Then, in stead of using the conventional identification algorithm used in self-tuning control, the Kalman filter as a parameter estimator with the state-space innovation form is presented for effectively estimating the time-varying parameters. Besides, taking the advantage of the digital redesign approach, the current-output-based observer is proposed for the modified self-tuning control. Finally, a new low-order self-tuning fault-tolerant control scheme for unknown multivariable stochastic systems by modifying the conventional self-tuning control is also developed. For the detection of fault occurrence, a quantitative criterion is developed by comparing the innovation process errors occurring in the Kalman filter estimation algorithm. The proposed method can effectively cope with partially abrupt and/or gradual system faults and/or input failures with fault detection.
Abstract ii
Acknowledgement iii
Contents iv
List of Figures vi
List of Table viii
Symbols and Abbreviations ix
Chapter 1 Introduction 1
1.1 Observer/Kalman filter Identification for stochastic systems 1
1.2 Self-tuning control for stochastic integer/fractional order chaotic systems 2
1.3 Self-tuning fault-tolerant control 5
1.4 Organization of the dissertation 6
Chapter 2 Observer/Kalman filter Identification for Stochastic Systems 7
2.1 OKID formulation 7
2.2 Digital redesign of observer 18
2.3 An illustrative example 23
2.4 Summary 32
Chapter 3 Lower-Order State-Space Self-Tuning Control for a Stochastic Chaotic Hybrid System 33
3.1 Introduction 33
3.2 State-space innovation models for linear/nonlinear stochastic systems 35
3.3 Prediction-based digital redesign method 39
3.4 Effective state-space self-tuner for stochastic chaotic hybrid systems 42
3.5 Illustrative examples 44
3.6 Summary 60
Chapter 4 State-Space Self-Tuning Control for Stochastic Fractional Order Chaotic Systems 61
4.1 Introduction 61
4.2 Fractional derivative and its approximation 62
4.3 Self-tuning control with fractional-order chaotic systems 63
4.4 Effective state-space self-tuner for stochastic chaotic systems 65
4.5 Illustrative examples 68
4.6 Summary 75
Chapter 5 Low-Order State-Space Self-Tuning Control for Fault Tolerance 76
5.1 Introduction 76
5.2 Problem statement 77
5.3 State-space self-tuning control with fault tolerance 79
5.4 The design procedure of self-tuning control with fault tolerance 82
5.5 An illustrative example 83
5.6 Summary 91
Chapter 6 Conclusions 92
References 94
Biography 99
[1]Ahmad, W. M. and Sprott, J. C., “Chaos in fractional-order autonomous nonlinear systems, ” Chaos, Solitons & Fractals, vol. 16, pp. 339-351, 2003.
[2]Anderson, B. D. O. and Moore, J. B., Optimal Filtering, Englewood Cliffs. New Jersey: Prentice-Hall 1979.
[3]Arena, P., Caponetto, R., Fortuna, L. and Porto, D., Nonlinear Noninteger Order Circuits and System-An Introduction, Singapore: World Scientific, 2000.
[4]Arena, P., Caponetto, R., Fortuna, L. and Porto D.,“Chaos in fractional order Duffing system, ” In: Proceedings ECCTD, Budapest, September, pp.1259-1262, 1997.
[5]Astrom, K. J. and Wittenmark, B., Adaptive Control, Addison Wesley, 1995.
[6]Bodson, M. and Groszkiewicz, J. E., “Multivariable adaptive algorithms for reconfigurable flight control,” IEEE Transactions on Control System Technology, vol. 5, no. 2, pp. 217-229, 1997.
[7]Chen, G., Controlling Chaos and Bifurcations in Engineering Systems, Boca Raton, FL: CRC Press 1999.
[8]Chen, G. and Dong, X., From Chaos to Order: Perspectives, Methodologies, and Applications, Singapore: World Scientific, 1998.
[9]Chen, G. and Ogorzalek, M. J., “Theme issue on chaos control and synchronization,” International Journal of Bifurcation Chaos, vol. 10, pp. 128-130, 2000.
[10]Chen, G. and Ueta, T., “Yet another chaotic attractor,” International Journal of Bifurcation Chaos, vol. 9, pp. 1465-1466, 1999.
[11]Chowdhury, F. N., “Input-output modeling of nonlinear systems with time-varying linear models,” IEEE Transactions on Automatic Control, vol. 45, pp. 1355-1358, 2000.
[12]Fortescure, T. R., Kershenbaum, L. S. and Tdstie, B. E., “Implementation of self-tuning regulators with variable forgetting factors,” Automatica, vol. 17, pp. 831-835, 1981.
[13]Fujita, M. and Shimemura, E., “Integrity against arbitrary feedback-loop failure in linear multivariable control system,” Automatica, vol. 24, pp. 765-772, 1988.
[14]Gao, Z. and Antsaklis, P. J., “Stability of the pseudo-inverse method for reconfigurable control systems,” International Journal of Control, vol. 53, pp. 717-729, 1991.
[15]Gao, Z. and Antsaklis, P. J., “Reconfigurable control system and design via perfect model following,” International Journal of Control, vol. 56 pp. 783-798, 1992.
[16]Guo, S. M., Shieh, L. S., Chen, G. and Lin, C. F., “Effective chaotic orbit tracker: A prediction-based digital redesign approach, ” IEEE Transations Circuits Systems—I Fundamental Theory and Applications, vol. 47, pp. 1557-1570, 2000.
[17]Guo, S. M., Shieh, L. S., Chen, G., Lin, C. F. and Chandra, J., “State-space self-tuning control for nonlinear stochastic and chaotic hybrid system,” International Journal of Bifurcation Chaos, vol. 11, pp. 1079-1113, 2001.
[18]Hilfer, R. editor, Applications of fractional calculus in physics, New York: World Scientific, 2001.
[19]Hirsch, M. W. and Smale, S., Differential equations: dynamical systems and linear algebra, New York: Academic Press; [chapter 11, pp. 238-254], 1974.
[20]Hartley, T. T., Lorenzo, C. F. and Qammer, H. K.,“Chaos in a fractional order Chua’s system, ” IEEE Transations Circuits Systems—I, Fundamental Theory and Applications, vol. 42, pp. 485-490, 1995.
[21]Ho, B. L. and Kalman, R. E.,“Effective construction of linear state-variable models from input-output data, ” Proceedings of the 3rd Annual Allerton Conference on Circuit and System Theory, Monticello, IL: University of Illinois, pp. 449-459, 1965.
[22]Jiang, J., “Design of reconfigurable control systems using eigenstructure assignment,” International Journal of Control, vol. 59(2), pp. 395-410, 1994.
[23]Juang, J. N., Applied System Identification, Englewood Cliffs. NJ, Prentice-Hall, 1994.
[24]Juang, J. N. and Pappa, R. S.,“Effects of noise on modal parameters identified by the eigensystem realization algorithm, ” Journal Guidance, Control and Dynamics, vol. 3, pp. 294-303, 1986.
[25]Juang, J. N., Phan, M. Q., Horta, L. G. and Longman, R. W.,“Identification of observer/Kalman filter Markov parameters: theory and experiments,"Journal Guidance, Control and Dynamics, vol. 16, pp. 320-329, 1993.
[26]Kailath, T.,“An innovation approach to least-squares estimation. Part I: linear filtering in additive white noise, ” IEEE Transactions on Automatic Control, vol. 13, pp. 646-655, 1968.
[27]Khosrowjerdi, M. J., Nikoukhah, R. and Safari-shad, N., “A mixed approach to simultaneous fault detection and control,” Automatica, vol. 40, pp. 261-267, 2004.
[28]Lewis, F. L. and Syrmos, V. L., Optimal Control, Wiley, N.Y., 1995.
[29]Li, C. and Chen, G.,“Chaos and hyperchaos in fractional order Rössler equations, ” Physica A, vol. 341, pp. 55-61, 2004.
[30]Li, C. and Chen, G.,“Chaos in the fractional order Chen system and its control, ” Chaos, Solitons & Fractals, vol. 22, pp. 549-554, 2004.
[31]Ljung, L., “Convergence analysis of parameter identification methods,” IEEE Transactions on Automatic Control, vol. 23, pp. 770-783, 1978.
[32]Ljung, L., System Identification Theory for the User, Prentice-Hall, New Jersey, 1987.
[33]Lu, J. G. and Chen, G., “A note on the fractional-order Chen system, ” Chaos, Solitons & Fractals, vol. 27, pp. 685-688, 2006.
[34]Moseler, O. and Isermann, R., “Application of model-based fault detection to a brushless DC motor,” IEEE Transactions on Industrial Electronics, vol. 47, no. 5, pp. 1015-1020, 2000.
[35]Noura, H., Theilliol, D. and Sauter, D., “Actuator fault-tolerant control design: demonstration on a three-tank-system,” International Journal of System Science, vol. 31 pp. 1143-1155, 2000.
[36]Oldham, K. and Spainer, J., Fractional calculus, New York: Academic Press, 1974.
[37]Omerdic, E. and Roberts, G., “Thruster fault diagnosis and accommodation for open-frame underwater vehicles,” Control Engineering Practice, vol. 12, pp. 1575-1598, 2004.
[38]Phan, M., Horta, L.G., Juang, J. N. and Longman, R. W., “Linear system identification via an asymptotically stable observer,” Technical Report NASA TP 3164, Virginia: National Research Council, NASA Langley Research Center 1992.
[39]Podlubny, I., Fractional differential equations, New York: Academic Press, 1999.
[40]Podlubny, I., Petras, I., Vinager, B. M., O’leary, P. and Dorcak, L.,“Analogue realizations of fractional-order controllers, ” Nonlinear Dynamic, vol. 29, pp. 281-296, 2002.
[41]Shieh, L. S. and Tsay, Y. T., “Transformations of a class of multivariable control system to block companion forms,” IEEE Transactions on Automatic Control, vol. 27, pp. 199-203, 1982.
[42]Shieh, L. S., Bao, Y. L. and Chang, F. R.,“State-space self-tuning regulators for general multivariable stochastic system, ” IEE Proceedings Part D Control Theory and Applications, vol. 136, pp. 17-27, 1989.
[43]Shieh, L. S., Zhao, X. M. and Sunkei, J. W.,“Hybrid state-space self-tuning control using dual-rate sampling, ” IEE Proceedings Part D Control Theory and Applications, vol. 138, pp. 50-58, 1991.
[44]Soderstorm, T. and Stoica, P., System Identification, Prentice-Hall, N.Y., 1989.
[45]Teixeria, M. C. M. and Zak, S. H., “Stabilizing controller design for uncertain nonlinear system using fuzzy models,” IEEE Transactions on Fuzzy Systems, 7, vol. 7 pp.133-142, 1999.
[46]Visinsky, M. L., Cavallaro, J. R. and Walker, I. D., “A dynamic fault tolerance framework for remote robots,” IEEE Transactions on Robotics and Automation, vol. 11, pp. 477-490, 1995.
[47]Wang, H. and Wang, Y., “Neural-network-based fault-tolerant control of unknown nonlinear systems,” IEE Proceedings Control Theory and Applications, vol. 146 (5), pp. 389-398, 1999.
[48]Wang, H. P., Tsai, J. S. H., Yi, Y. I. and Shieh, L. S., “Lifted digital redesign of observer-based tracker for a sampled-data system,” International Journal of system Science, vol. 35, pp. 255-271, 2004.
[49]Yang, Y., Yang, G. H. and Soh, Y. C., “Reliable control of discrete-time systems with actuator failure,” IEE Proceedings Control Theory and Applications, vol. 147, pp. 428-432, 2000.
[50]Yen, G. and Ho, L. W., “Online multiple-model-based fault diagnosis and accommodation,” IEEE Transactions on Industrial Electronics, vol. 50, pp. 296-312, 2003.
[51]Yu, Ding-Li, Chang, T. K. and Yu, Ding-Wen, “Fault tolerant control of multivariable processes using auto-tuning PID controller,” IEEE Transactions on System, Man., and Cybernetics-Part B: Cybernetics, vol. 35, pp. 32-43, 2005.
[52]Yu, X. and Xia, Y., “Detecting unstable periodic orbits in Chen’s chaotic attractor,” International Journal of Bifurcation and Chaos, vol. 10, pp. 1987-1991, 2000.
[53]Zhang, X. D., Parisini, T. and Marios, M. P., “Adaptive fault-tolerant control of nonlinear uncertain systems: an information-based diagnostic approach,” IEEE Transactions on Automatic Control, vol. 49, pp. 1259-1274, 2004.
[54]Zhang, Y. M. and Jiang, J., “Active fault-tolerant control system against partial actuator failures,” IEE Proceedings Control Theory and Applications, vol. 146, pp. 95-104, 2002.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top