跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2025/01/25 20:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄭啟明
研究生(外文):Chi-Ming Cheng
論文名稱:主動式有機發光二極體顯示器溫度效應與參數調制之研究
論文名稱(外文):Investigation of Temperature Effect and Parameters Modulation on Active Matrix Organic Light-EmittingDiode Display
指導教授:洪茂峰洪茂峰引用關係
指導教授(外文):Mau-Phon Houng
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:95
語文別:英文
論文頁數:109
中文關鍵詞:非晶矽複晶矽有機發光二極體薄膜電晶體主動式
外文關鍵詞:organic light-emitting diodeamorphous siliconactive matrixthin film transistorpolycrystalline silicon
相關次數:
  • 被引用被引用:0
  • 點閱點閱:263
  • 評分評分:
  • 下載下載:74
  • 收藏至我的研究室書目清單書目收藏:0
本論文係探討主動式有機發光二極體 (AMOLED) 顯示器驅動電路分別使用非晶矽薄膜電晶體與複晶矽薄膜電晶體對溫度的效應。模擬的結果顯現使用非晶矽材料之電路傾向正溫度相關然而使用複晶矽材料之電路傾向負溫度相關與單晶矽材料有相同特性。儲存電容和資料電壓調制,門檻電壓和載子遷移率變異對電路的影響亦討論之。
我們使用數值方法及模擬結果的資料作曲線擬合,並得到一個相對方程式。經由此方程式可方便地估計出驅動電路的各種特性及量化電路的各種特性。此論文用HSPICE模擬電路,用MATLAB作曲線擬合。
雖然模擬的結果指出有機發光二極體驅動電路使用複晶矽薄膜電晶體有較優良的表現,但因準分子雷射製程所造成的電性不均勻,對製造大面積低成本的顯示面板是個嚴正的課題。
In this thesis, the temperature effect on driving circuits of active matrix organic light emitting diode display with both materials of amorphous and polycrystalline silicon TFT is investigated. The results of simulation manifest that circuit with amorphous silicon thin-film transistor tends to be positive temperature dependence, whereas circuit with polycrystalline silicon thin-film transistor tends to be negative temperature dependence which is the same behavior as single crystal material. The modulated parameters of storage capacitor and data voltage, the variation of threshold voltage and carrier field effect mobility are also studied.
We utilize the numerical method to obtain the equations fitting the curves from simulation data and successfully quantify the circuit behaviors except qualitative description. It is convenient to evaluate various characteristics of the driving circuits via these equations we develop. The simulator tool, HSPICE, for circuit simulation and MATLAB for curve fitting to obtain the equations are performed in this thesis.
The simulation results strongly indicate that poly-Si TFT applied in AM-OLED is more superior than a-Si TFT, although the non-uniformity of electrical characteristics caused by excimer laser crystallization (ELC) facility is a severe problem to fabricate large size and low cost panels.
Chinese Abstract……………………I
English Abstract……………………II
Acknowledgements…………………IV
Contents………………………V
List of Tables……VIII
List of Figures……IX
Chapter 1 Introduction……1
1.1 Overview of AMOLED ……1
1.2 Flat panel displays……2
1.3 Motivation and objectives of this thesis..4
1.4 Organization of this thesis……5
Chapter 2 Operation principles of OLED, a-Si:H TFT and poly-Si TFT…6
2.1 Principle of OLED…6
2.1.1 History of Organic Light-Emitting Diodes....6
2.1.2 Physics of Organic Light-Emitting Diodes……………………………………8
2.1.3 Operating Principle…………………………………………………………10
2.1.4 Applications of Organic Light-Emitting Diodes………………………14
2.2 Operation principle of a-Si:H TFT………………………………………………15
2.2.1 Physics of a-Si:H…………………………………………………………15
2.2.2 Applications………………………………………………………………19
2.3 Operation principle of poly-Si TFT…………………………………………20
2.3.1 Physics of poly-Si TFT………………………………………………………20
2.3.2 Methods of forming poly-Si………………………………………………23
2.3.3 Applications…………………………………………………………………24
2.4 Temperature effect on device performance…………………………………24
Chapter 3 Driving circuits with a-Si:H-based pixel………………28
3.1 Characteristics of NMOS device……………………………………………………28
3.2 Conventional 2T1C pixel circuit……………………………………………………30
3.2.1 2T1C working principle………………………………………………………30
3.2.2 Simulation results and Discussion………………………………………30
3.3 Current programming circuit………………………………………32
3.3.1 Current copy pixel circuit…………………………………32
3.3.2 Current mirror pixel circuit………………………………33
Chapter 4 Driving circuits with poly-Si-based pixel……………36
4.1 Characteristics of PMOS device………………………………………………36
4.2 Conventional 2T1C pixel circuit………………………………………………37
4.2.1 2T1C working principle……………………………………………………37
4.2.2 Simulation results and Discussion……………………………38
4.3 Current programming circuit………………………………………………………39
4.3.1 Current mirror pixel circuit………………………………………………39
4.3.2 Simulation results and Discussion………………………………………40
4.4 Voltage programming circuit………………………………………42
4.4.1 Voltage modulated pixel circuit…………………………………………42
4.4.2 Simulation results and Discussion………………………………………43
Chapter 5 Conclusions and Future work……………45
5.1 Conclusions…………………………………………………………45
5.2 Future work………………………………………………………46
References………………………………………………………………………47
Tables…………………………………………………………………………………52
Figures…………………………………………………………………………58
[1] Jae-Hoon Lee, ji-Hoon Kim, and Min-Koo Han, “A new a-Si:H TFT pixel circuit compensating the threshold voltage shift of a-Si:H TFT and OLED for active matrix OLED”, IEEE Electron Device Lett., vol.26, no.12, pp. 897-899 (2005)
[2] Wouter F. Aerts, Stijn Verlaak, and Paul Heremans, “Design of an organic pixel addressing circuit for an active-matrix OLED display”, IEEE Transactions on Electron Devices, vol. 49, no.12, pp. 2124-2129, (2002)
[3] D. Pribat, F. Plais, “Matrix addressing for organic electroluminescent displays”, Thin Solid Films, 383, pp. 25-30 (2001)
[4] Gary B. Levy, William Evans, John Ebner, Patrick Farrell, Mike Hufford, Bryan H. Allison, David Wheeler, Haiqing Lin, Olivier Prache, and Eric Naviasky, “An 852x600 pixel OLED-on-silicon color microdisplay using CMOS subthreshold-voltage-scaling current drivers”, IEEE Journal of Solid-State Circuits, vol. 37, no. 12, pp. 1879-1887 (2002)
[5] M. Pope, H. Kallmann, and P. Magnante, “Electroluminescence in organic crystals”, J. Chem. Phys. 38 (8), pp. 2042-2043 (1963)
[6] W. Helfrich and W. G. Schneider, “Recombination radiation in anthracene crystals”, Phys. Rev. Lett. 14 (7), pp. 229-231 (1965)
[7] C. W. Tang and S. A. VanSlyke, “Organic electroluminescent diodes”, Appl. Phys. Lett. 51 (12), pp. 913-915 (1987)
[8] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, R. H. Friend, P. L. Burns, and A. B. Holmes, “Light-emitting diodes based on conjugated polymers, Nature 347 (11), pp. 539-541 (1990)
[9] D. Braun and A. J. Heeger, “Visible light emission from semiconducting polymer diodes”, Appl. Phys. Lett. 58 (18), pp. 1982-1984 (1991)
[10] I. Bergenti, V. Dediu, E. Arisi, T. Mertelj, M. Murgia, A. Riminnucci, G. Ruani, M. Solzi, C. Taliani, “Spin polarized electrodes for organic light emitting diodes”, Organic Electronics, 5, pp. 309-314 (2004)
[11] M. P. de Jong, V. A. Dediu, C. Taliani, W. R. Salaneck, “Electronic structure of LaSrMnO3 thin films for hybrid organic/inorganic spintronics applications”, Journal of Applied Physics, vol. 94, pp.7292-7295 (2003)
[12] J. H. Park, E. Vescovo, H. J. Kim, C. Kwon, R. Ramesh, T. Venkatesan, “Direct evidence for a half-metallic ferromagnet”, Nature, 392 (23), pp. 794-796 (1998)
[13] H. Kim. A. Pique, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, D. B. Chrisey, “Indium Tin Oxide thin films for organic light-emitting devices”, Appl. Phys. Lett. 74 (23), pp. 3444-3446 (1999)
[14] I. D. Parker, “Carrier tunneling and device characteristics in polymer light-emitting diodes”, J. Appl. Phys. 75 (3), pp. 1656-1666 (1994)
[15] N. Hanai, M. Sumitomo, Hisao Yanagi, “Vapor-deposited poly(N-vinylcarbazole) films for hole transport layer in organic electroluminescent devices”, Thin Solid Films, 331, pp. 106-112 (1998)
[16]N. F. Mott and E. A. Davis, Electronic processes in non-crystalline materials, Oxford university press, Oxford, (1979)
[17] G. GU, D. Z. Garbuzov, P. E. Burrows, S. Venkatesh, S. R. Forrest, “High- external- quantum- efficiency organic light-emitting devices”, Optics Letters, vol. 22, no. 6, pp. 396- 398 (1997)
[18] W. B. Jackson, J. M. Marshall, M. D. Moyer, “Role of hydrogen in the formation of metastable defects in hydrogenated amorphous silicon”, Physical review B, vol. 39, no. 2, pp. 1164-1179 (1989)
[19] M. J. Powell, C. van Berkel, J. R. Hughes, “Time and temperature dependence of instability mechanisms in amorphous silicon thin-film transistors”, Appl. Phys .Lett. 54 (14), pp. 1323-1325 (1989)
[20] John Y. W. Seto, “The electrical properties of polycrystalline silicon films”, Journal of applied physics, vol. 46, no. 12, pp. 5247-5254 (1975)
[21] A. Valletta, L. Mariucci, G. Fortunato, S. D. Brotherton, “Surface-scattering effects in polycrystalline silicon thin-film transistors”, Appl. Phys. Lett. 82 (18), pp. 3119-3121 (2003)
[22] C. Lombardi, S. Manzini, A. Saporito, M. Vanzi, “A physically based mobility model for numerical simulation of nonplanar devices”, IEEE Transactions on Computer- Aided Design, vol. 7, no. 11, pp. 1164-1170 (1988)
[23] A. Valletta, P. Gaucci, L. Mariucci, G. Fortunato, S.D. Brotherton, “Kink effect in short-channel polycrystalline silicon thin-film transistors”, Appl. Phys. Lett. 85 (15), pp. 3113-3115 (2004)
[24] Man Young Sung, Dae-Yeon Lee, Jang Woo Ryu, Ey Goo Kang, “Electrical characteristics of single-silicon TFT structure with symmetric dual-gate for Kink-effext suppression”, Solid-State Electronics 50, pp. 795-799 (2006)
[25] Man Wong, Hoi S. Kwok, “High-performance polycrystalline silicon thin-film transistor technology using low-temperature metal-induced unilateral crystallization”, Microelectronics Journal 35, pp. 337-341 (2004)
[26] In-Hyuk Song, Min-Koo Han, “Low temperature poly-Si TFTs for display application”, Current Applied Physics 3, pp. 363-366 (2003)
[27] R. Paetzel, L. Herbst, F. Simon, “Laser annealing of LTPS”, Proc. of SPIE vol. 6106, 61060A (2006)
[28] R. Stratton, “Semiconductor current-flow equations (diffusion and degeneracy)”, IEEE T. Electron Dev., ED-19, pp. 1288-1300 (1972)
[29] G. Wachutka, “Rigorous thermodynamic treatment of heat generation and conduction in semiconductor device modeling”, IEEE T. Comput. Aid. D., CAD-9, pp. 1141-1149 (1990)
[30] S. Selberherr, Analysis and Simulation of Semiconductor Devices, Springer-Verlag, New York, (1984)
[31] K. Kanda, K. Nose, H. Kawaguchi, T. Sakurai, “Design impact of positive temperature dependence on drain current in sub-1-V CMOS VLSIs”, IEEE Journal of Solid-State Circuits, vol. 36, no. 10 (2001)
[32] R. Jacob Baker, CMOS Circuit Design, Layout and Simulation, second edition, Wiley-Interscience (2005)
[33] Star- Hspice, Release 2001.2, June (2001)
[34] A. Kumar, K. Sakariya, P. Servati, S. Alexander, D. Striakhilev, K. S. Karim,A. Nathan, M. Hack, E. Williams, G.. E. Jabbour, “Design consideration for active matrix organic light-emitting diode arrays”, IEE Proc.-Circuits Devices Syst., vol. 150, no. 4, pp.322-328 (2003)
[35] Yi He, Reiji Hattori, Jerzy Kanicki, “Four-thin film transistor pixel electrode circuits for active matrix organic light-emitting displays”, Jpn. J. Appl. Phys. vol. 40, pp. 1199-1208 (2001)
[36] M. S. Shur, H. C. Slade, M. D. Jacunski, A. Owusu, T. Ytterdal, “SPICE models for amorphous silicon and polysilicon thin film transistors”, J. Electrochem. Soc., vol. 144, no. 8, pp. 2833-2839 (1997)
[37] A. Nathan, G. R. Chaji, S. J. Ashtiani, “Driving schemes for a-Si and LTPS AMOLED displays”, Journal of display technology, vol. 1, no. 2, pp. 267-277 (2005)
[38] Si Yujuan, Zhao Yi, Chen Xinfa, Liu Shiyong, “A simple and effective ac pixel driving circuit for active matrix OLED”, IEEE Transactions on Electron Devices, vol. 50, no. 4, pp. 1137-1140 (2003)
[39] R. M. A. Dawson, Z. Shen, D. A. Furst, S. Connor, J. Hsu, M. G. Kane, R. G. Stewart, A. Ipri, C. N. King, P. J. Green, R. T. Flegal, S. Pearson, W. A. Barrow, E. Dickey, K. Ping, S. Robinson, “The impact of the transient response of organic light emitting diodes on the design of active matrix OLED displays”, IEDM Tech. Dig., pp. 875-878 (1998)
[40] Sang-Hoon Jung, Woo-Jin Nam, Min-Koo Han, “A new voltage-modulated AMOLED pixel design compensating for threshold voltage variation in poly-Si TFTs”, IEEE Electron Device Letters, vol. 25, no. 10, pp. 690-692 (2004)
[41] A. Kumar, A. Nathan, G. E. Jabbour, “Does TFT mobility impact pixel size in AMOLED backplanes?”, IEEE Transactions on Electron Devices, vol. 52, no. 11, pp. 2386- 2394 (2005)
[42] Y. C. Lin, H. P. Shieh, J. Kanicki, “A novel current-scaling a-Si:H TFTs pixel electrode circuit for AMOLEDs”, IEEE Transactions on Electron Devices, vol. 52, no. 6, pp. 1123-1131 (2005)
[43] Y. Tanada, M. Osame, R. Fukumoto, K. Saito, J. Sakata, S. Yamazaki, “A 4.3 in. VGA (188 ppi) AMOLED display with a new driving method “, SID 04 Digest, pp. 1398-1401 (2004)
[44] Jae-Hoon Lee, Woo-Jin Nam, Byeong-Koo Kim, Hong-Seok Choi, Yong-Min Ha, Min-Koo Han, “A New Poly-Si TFT Current-Mirror Pixel for Active Matrix Organic Light Emitting Diode”, IEEE Electron Device Letters, vol. 27, no. 10, pp. 830-833 (2006)
[45] Hau-Yan Lu, Po-Tsun Liu, Ting-Chang Chang, Sien Chi,” Enhancement of Brightness Uniformity by a New Voltage-Modulated Pixel design for AMOLED Displays”, IEEE Electron Device Letters, vol. 27, no.9, pp. 743-745 (2006)
[46] Lisong Zhou, Alfred Wanga, Sheng-Chu Wu, Jie Sun, Sungkyu Park, Thomas N. Jackson, “ All-organic active matrix flexible display”, Appl.Phys.Lett. 88, 083502 (2006)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊