跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2024/12/10 06:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡榮正
研究生(外文):Jung-Cheng Tsai
論文名稱:光聚合高分子網狀結構對於液晶盒配向性質之研究
論文名稱(外文):Studies of Photocurable Polymer-network Effects on Liquid Crystal Alignment of Cells
指導教授:許家榮許家榮引用關係
指導教授(外文):Chia-Rong Sheu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:102
中文關鍵詞:高分子聚合物網狀結構光聚合單體液晶配向
外文關鍵詞:polymer-networkliquid crystal molecules alignmentphotocurable monomer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:390
  • 評分評分:
  • 下載下載:57
  • 收藏至我的研究室書目清單書目收藏:3
本論文研究目的是針對光聚合單體(photocurable monomer)與液晶混合製成液晶盒(liquid crystal cells)樣品,進行紫外光聚合反應以觀察所形成高分子聚合物網狀結構(polymer-network)對液晶分子配向之影響。在實驗液晶盒中光聚合單體之濃度比例為1至8 wt.%範圍的變化條件;而在光聚合的實驗條件,我們進行曝照固定紫外光強度與改變時間參數的變化,觀察實驗條件對液晶配向之影響。
實驗製程中所使用量測儀器,包括橢圓儀(ellipsometer)、原子力顯微鏡(atomic force microscope, AFM)、偏光顯微鏡(polarized optical microscope, POM)、掃描式電子顯微鏡(scanning electron microscope, SEM)及光穿透率-外加電壓系統量測光電的特性。
實驗結果發現,當NOA-65濃度比例提高時光穿透率呈現降低,當含量5 wt.%以上時,容易形成高分子聚合物的薄膜而且薄膜上纖維狀的高分子聚合物是無序性的方向與液晶分子之間引力後,致於液晶分子失去整齊性之配向目的。
In this thesis, we studied the influence of liquid crystal alignment effected by photocured polymer-network in the monomer mixed liquid crystal cells. The monomer concentration of liquid crystal cells were various in range of 1~8 wt.%. For ultraviolet light exposure processes, we variously controlled the exposure time in condition of same exposure intensity for all experimental cells in order to observe the correlation between polymer-network and liquid crystal molecules alignment.

We used many instruments to measure and observe the experimental results including ellipsometer, atomic force microscope (AFM), polarized optical microscope (POM), scanning electron microscope (SEM) and the laboratory setup for electro-optical measurement.

Meanwhile, rising the NOA-65 concentration induces lower light transmission. When the concentration is higher than 5 wt.%, photocured
monomer forms a composite film and disorder direction morphology of polymer-network. It’s disadvantageous to improve the liquid crystal molecules alignment .
第一章 緒論 1
1-1 前言 1
1-2 研究動機與目的  2
1-3 研究方法 3
第二章 材料特性介紹 6
2-1 液晶的物性與光電特性 6
2-1-1 常用液晶之三種型態 6
2-1-2 液晶分子的方位秩序參數 6
2-1-3 液晶的雙折射性 8
2-1-4 液晶盒之臨界電壓 11
2-1-5 液晶盒之反應時間 16
2-2 聚亞醯胺高分子的特性 18
2-3 光聚合高分子的特性 19
第三章 實驗方法及量測設備 21
3-1 液晶盒製作步驟與方法 21
3-1-1 ITO玻璃基板清洗 22
3-1-2 塗佈配向膜層 23
3-1-3 摩擦配向製程(rubbing alignment process) 25
3-1-4 液晶混合物注入與組合及封膠 27
3-1-5 紫外光曝照液晶盒 29
3-2 樣品的微觀量測設備 31
3-2-1 橢圓儀(ellipsometer) 31
3-2-2 原子力顯微鏡(atomic force microscope, AFM) 35
3-2-3 偏光顯微鏡(polarized optical microscope, POM) 36
3-2-4 光穿透率-外加電壓的量測系統 37
3-2-5 掃描式電子顯微鏡(scanning electron microscope, SEM) 38
第四章 實驗結果與分析 39
4-1 橢圓儀的量測結果與分析 39
4-2 原子力顯微鏡的量測結果與分析 46
4-3 偏光顯微鏡的量測結果與分析 52
4-4 光穿透率-外加電壓的量測結果與分析 64
4-5 掃描式電子顯微鏡的量測結果與分析 70
第五章 總結與展望 95
5-1 總結 95
5-2 展望 98
參考文獻 99
[1] D. S. Seo, “Odd-even effects of the surface anchoring strength in NLC on polyimide Langmuir-Blodgett surfaces with alkyl chain lengths”, J. Kor. Phys. Soc. 43. 359 (1999).
[2] J. J. Ge, C. Y. Li, G. Xue, I. K. Mann, D. Zhang, S.Y. Wang, F. W. Harris, S. Z. D. Cheng, S. C. Hong, X. Zhuang and Y. R. Shen, “Rubbing-induced molecular reorientation on an alignment surface of an aromatic polyimide containing cyanobiphenyl side chains”, J. Am. Chem. Soc. 123, 5678 (2001).
[3] T. Ito, K. Nakanishi, M Nishikawa, Y Yokoyama, and Y Takeuchi, “Regularity and narrowness of the intervals of the microgrooves on the rubbed polymer surfaces for liquid crystal alignment”, J. Poly. 27, 240 (1995).
[4] J. A. Castellano, “Surface anchoring of liquid crystal molecules on various substrates”, Mol. Cryst. Liq. Cryst. 94, 33 (1983).
[5] J. M. Geary, J. W. Goodby, A. R. Kmetz, and J. S. Patel, “The mechanism of polymer
alignment of liquid-crystal materials”, J. Appl. Phys. 62, 4100 (1987).
[6] H. Kikuchi, J.A. Logan, and D.Y. Yoon, “Study of local stress, morphology, and liquid-
crystal alignment on buffed polyimide surfaces”, J. Appl. Phys. 79, 6811 (1996).
[7] I. Dierking, “Polymer network-stabilized liquid crystal”, Adv. Mater. 12, 167 (2000).
[8] T. Murashige, H. Fujikake, S. Ikehata, and F. Sato, “ Anchoring strength of thin aligned
-polymer films formed by liquid crystalline monomer”, Jpn. J. Appl. Phys. 42. 1614 (2003).
[9] V. Vorflusev, J. H. Kim, and S. Kumar, “Phase separated composite films of liquid crystals”, Pramana – J. Phys. 53, 121 (1999).
[10]V. V. Krongauz, E. R. Schmelzer, and R. M.Yohannan, “kinetics of anisotropic
photopolymerization in polymer matrix”, Polymer. 32, 1654 (1991).
[11]V. vorflusev, and S. Kumar, “Phase-separated composite films for liquid crystal displays”, Science. 283, 1903 (1999).
[12]P. A. Kossyrev, J. Qi, N. V. Priezjev, R. A. Pelcovits, “Virtual surfaces,director
domains,and the Freedericksz transition in polymer-stabilized nematic liquid crystals, Appl. Phys. Lett. 81, 2986 (2002).
[13]G. P. Crawford and S. Zumer, eds., “Liquid crystal in complex Geometries Formed by Polymer and Porous Networks”, Taylor & Francis (1996).
[14]Y. H. Fan, Y. H. Lin, H. Ren, S. Gauza, and S. T. Wu, “Fast-response and scattering-free polymer network liquid crystals for infrared light modulators”, Appl. Phys. Lett. 84, 1233 (2004).
[15]R. A. M. Hikmet, “Electrically induced light scattering from anisotropic gels”, J. Appl. Phys. 68,4406 (1990).
[16]R. A. M. Hikmet, and H. M. J. Boots, “Domain structure and switching behavior of anisotropic gels”, Phys. Rev. E. 51, 5824 (1995).
[17]Y. H. Fan, H. Ren, and S. T. Wu, “Normal-mode anisotropic liquid-crystal gels”, Appl. Phys. Lett. 82, 2945 (2003).
[18]Y. H. Fan, H. Ren, X. Liang, Y. H. Lin, and S. T. Wu, “Dual-frequency liquid crystal gels with submillisecond response time”, Appl. Phys. Lett. 85, 2451 (2004).
[19]B. Li, T. He, M. Ding, “A comparative study of insoluble and soluble polyimide thin films”, Polymer, 40, 789 (1999).
[20]吳欣璁,“奈米液晶聚合物的研究與應用”, 國立成功大學, 物理研究所博士論
文 (2005).
[21]顧鴻壽,“光電液晶平面顯示器技術基礎及應用”, 新文京開發 (2004).
[22]G. R. Fowles, 2nd et., “Introduction to Modern Optics”, University of Utah, New York (1975).
[23]A. Yariv, “Optical Electronics in Modern Communications”, 5th et., Oxford, New York (1997).
[24]陳郁壬, “向列型液晶中光弧子交互作用的研究”, 國立中山大學, 物理研究所碩士論文 (2003).
[25]F. C. Frank. “On the theory of liquid crystals”, Discuss Faraday Soc. 25.19 (1958).
[26]P. J. Collings and M. Hird, “Introduction to Liquid Crystals Chemistry and Physics”,
Taylor & Francis (1997).
[27]高迦翔, “含奈米雜質之水平排列液晶元件的光電特性”, 私立中原大學, 應用物理研究所碩士論文 (2005).
[28]H. Wang, T. X. Wu, X. Zhu, and S. T. Wu, “Correlations between liquid crystal director reorientation and optical response time of a homeotropic cell”, J. Appl. Phys. 95, 5502 (2004).
[29]M. L. Bessonov, M. M. Koton, V. V. Kudryavtsev, and L.A. Laius, “Polyimides : Thermally Stable polymers”, Consultants Bureau, New York and London (1987).
[30]M. K. Ghosh and K. L. Mittal, “Polyimides”, Marcel Dekker, New York (1996).
[31]D. Wilson, H. D. Stenzenberger, and P. M. Hergenrother, “Polyimides”, Chapman and Hall, New York (1990).
[32]劉光耀,“光聚合高分子在微流體管道上的設計與製作”, 國立成功大學, 化學所碩士論文 (2004).
[33]D. Nwabunma, T. Kyu, “Phase behavior, photopolymerization, and morphology development in mixtures of eutectic nematic liquid crystal and photocurable monomer”, Polymer. 42, 801 (2001).
[34]Y. Sato, K Sato, and T Uchida, “Relationship between rubbing strength and surface
anchoring of nematic liquid crystal”, Jpn. J. Appl. Phys. 31, 579 (1992).
[35]陳人豪,“類鑽薄膜在液晶配向層上的應用”, 國立成功大學, 光電工程與科學研究所碩士論文 (2004).
[36]S. Kuniyasu, H. Fukuro, S. Maeda, K. Nakaya, M. Nitta, N. Ozaki, “The strength of rubbing worked on polyimide films for aligning nematic and chiral smectic liquid crystal: controlling pretilt angles and some electrooptic performances of LCDs”, Jpn. J. Appl. Phys. 27. 827 (1999).
[37]N. Kawatsuki, H. Ono, H. Takatsuka,T. Yamamoto, and O Sangen, “Liquid crystal alignment on photoreactive side-chain liquid rystalline polymer generated by linearly polarized UV light”, Macromolecules. 30, 6680 (1997).
[38]I. Dierking, L. L. Kosbar, A. Afzali-Ardakani, A. C. Lowe, and G. A. Held, “Network morphology of polymer stabilized liquid crystals”, Appl. Phys. Lett. 71, 2454 (1997).
[39]Y. Zhao, and Y. Chenard, “Liquid crystalline anisotropic gels prepared from optical alignment : polymer network formed in the isotropic phase”, Macromolecules. 33, 5891 (2000).
[40]S. H. Kim, “Fast switching polymer stabilized liquid crystal devices: morphology and
electro-optical properties”, Kent State University, Doctor of Philosophy (2004).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top