跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2025/01/13 14:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王之傑
研究生(外文):Chih-Chieh Wang
論文名稱:製作於軟性基板的高分子有機薄膜電晶體之研究
論文名稱(外文):The study of polymeric thin-film transistors fabricated on flexible substrate
指導教授:周維揚周維揚引用關係
指導教授(外文):Wei-Yang Chou
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:72
中文關鍵詞:拉曼光譜圖聚脲酯有機薄膜電晶體聚(3-己烷基噻吩)
外文關鍵詞:Organic thin film transistorsRaman spectrumPUP3HT
相關次數:
  • 被引用被引用:1
  • 點閱點閱:412
  • 評分評分:
  • 下載下載:81
  • 收藏至我的研究室書目清單書目收藏:1
  有機薄膜半導體(Organic thin-flim transistors, OTFTs)擁有容易製造的潛在優勢,結構簡單,製程溫度低,和可彎曲的特性,未來可取代矽電晶體應用於在驅動各式各樣的軟性顯示器。本研究以聚(3-己烷基噻吩) (Poly(3-hexythiophene), P3HT)作為有機半導體,製作有機薄膜電晶體,研究P3HT的薄膜電晶體在不同彎曲的狀態下,其光電特性在不同的彎曲曲率下變化的情形。
  本論文展示出使用水性聚脲酯(Polyurethane, PU)當作可彎曲式P3HT的有機薄膜電晶體之絕緣層,元件載子遷移率可達1.9×10^-2 cm^2/Vs,並在不同的彎曲曲率下量測電流特性與拉曼光譜圖。從研究結果中發現元件在不同的彎曲曲率下有良好的穩定特性,這個穩定的電流特性對一個驅動元件是很重要的條件;當一個可彎曲的顯示器面板,在被彎曲之後,薄膜電晶體的電性仍能保持,而不會去影響到映像點的區塊,可使顯示器保持原有的品質。
  Organic thin film transistors (OTFTs) with advantages of easy processing, simple structure, low process temperature, and flexibility can be a candidate as the driver in many kind flexible displays. In this thesis, poly(3-hexythiophene) (P3HT) was used as organic semiconductor to fabricate OTFT on the flexible substrate. The optoelectronic characteristics of OTFTs were studying under various bending conditions.
  This paper exhibits that the P3HT-based OTFT used polyurethane as gate dielectric layer has mobility of 1.9×10^-2 cm^2/Vs. The electrical characteristics and Raman spectrum were measured at different banding curves. P3HT-based OTFTs have good stability even if they were bended at different bending curves. The stability of electricity characteristics OTFTs is prerequisite for a flexible display to keep the characteristics of OTFs under bending condition High quality of OTFTs on flexible substrate will give rise to high performance quality.
摘要………………………………………………………………………Ⅰ
ABSTRACT………………………………………………………………Ⅱ
致謝………………………………………………………………………Ⅲ
目次………………………………………………………………………Ⅳ
表目錄……………………………………………………………………Ⅵ
圖目錄……………………………………………………………………Ⅶ
第一章 緒論……………………………………………………………1
1.1 有機半導體(organic semiconductor)………………………………1
1.2 水性光學塑膠材料…………………………………………………2
1.3 有機薄膜電晶體(Organic thin-film transistors)……………………3
1.3.1 元件結構…………………………………………………………4
1.3.2 原理………………………………………………………………5
1.3.3 描述有機薄膜電晶體電特性的基本公式………………………7
1.4 研究目的…………………………………………………………10
第二章 P3HT有機薄膜電晶體之元件設計…………………………19
2.1 前言…………………………………………………………………19
2.2 實驗方法……………………………………………………………19
2.2.1 有機材料…………………………………………………………19
2.2.2 樣品設計…………………………………………………………21
2.2.3 樣品製作…………………………………………………………22
2.3 實驗儀器……………………………………………………………23
第三章 P3HT有機薄膜電晶體元件電性分析…………………………44
3.1 前言…………………………………………………………………44
3.2 元件製作……………………………………………………………44
3.3 元件分析……………………………………………………………45
3.3.1 電性分析…………………………………………………………45
3.3.2 拉曼分析…………………………………………………………49
3.3.3 光激發光分析……………………………………………………50
第四章 結論與未來展望………………………………………………66
參考文獻…………………………………………………………………67

表目錄
表1-1 有機半導體與無機半導體間的比較……………………………11
表1-2 1984年到最近的p-type半導體的歷年最高載子移動率………12
表2-1 P3HT溶於二甲苯(Xylene)與甲苯(Toluene)之載子遷移率與
    臨界電壓比較表…………………………………………………32
表3-1 OTFT元件連續量測之電性比較…………………………………52

圖目錄
圖1-1 常見有機半導體的化學結構………………………………………13
圖1-2 (a) Top-contact (b) Bottom-contact OFET剖面結構圖……………14
圖1-3 底部接觸電極與頂部接觸電極的FET元件………………………14
圖1-4 (a) 理想p型半導體MOS場效電晶體的能帶圖…………………15
圖1-4 (b) 施加於金屬電極的偏壓V < 0,Accumulation mode…………15
圖1-4 (c) 施加於金屬電極的偏壓V > 0,Depletion mode………………16
圖1-4 (d) 施加於金屬電極的偏壓V >> 0,Inversion mode……………16
圖1-5 (a) 有機薄膜電晶體的VGS < 0 ,而VS = VD = 0………………17
圖1-5 (b) 薄膜電晶體之間閘極電壓VGS < 0且汲極電壓VD < 0,
    VS = 0………………………………………………………………17
圖1-5 (c) 閘極電壓VGS > 0,而VS = VD = 0…………………………18
圖1-6 典型OTFT之次臨界特性…………………………………………18
圖2-1 RR-P3HT化學結構…………………………………………………32
圖2-2 P3HT結晶結構示意圖……………………………………………33
圖2-3 一般聚塞吩衍生物的合成方法……………………………………34
圖2-4 PU結構化學式………………………………………………………35
圖2-5 電極與修飾層間孔洞之示意圖……………………………………35
圖2-6 改變PU塗佈轉速比較OTFT元件在VGS = -40 V時的VDS-ID
    特性圖………………………………………………………………36
圖2-7 P3HT溶於Xylene或Toluene之VDS-ID比較圖………………………36
圖2-8 P3HT溶於Xylene或Toluene之VGS-ID比較圖………………………37
圖2-9 數位定量點膠機之正反面示意圖…………………………………38
圖2-10 PVD蒸鍍狀況示意圖………………………………………………39
圖2-11 PVD機台示意圖……………………………………………………40
圖2-12 為單層弱吸收之光譜圖,虛線為光譜之包絡線,假設n >ns……41
圖2-13 拉曼散射原理圖……………………………………………………41
圖2-14 P3HT分子鍵結與振動模式的拉曼圖譜…………………………42
圖2-15 半導體載子基本躍遷模型…………………………………………42
圖2-16 光激螢光實驗架構…………………………………………………43
圖3-1 做在可彎曲基板上的OTFT元件結構……………………………53
圖3-2 將OTFT元件彎曲量測……………………………………………53
圖3-3 玻璃基板與塑膠基板上的OTFT元件之 VDS - ID比較圖………54
圖3-4 玻璃基板與塑膠基板上的OTFT元件之 VGS - ID比較圖………54
圖3-5 使用分光光度計量測PU薄膜的波長對應穿透率圖………………55
圖3-6 塑膠基板上的OTFT元件之VDS - ID 電性圖……………………55
圖3-7 塑膠基板上的OTFT元件之VGS - 電性圖………………………56
圖3-8 塑膠基板上的OTFT元件之VGS - log(ID)電性圖…………………56
圖3-9 重複量測OTFT元件之VDS - ID電性圖……………………………57
圖3-10 OTFT元件向外彎曲之載子遷移率比較圖…………………………58
圖3-11 OTFT元件向外彎曲之VDS -ID 比較圖…………………………58
圖3-12 OTFT元件向外彎曲之臨界電壓比較圖……………………………59
圖3-13 OTFT元件向外彎曲之 VGS -ID 比較圖…………………………59
圖3-14 OTFT元件向內彎曲之載子遷移率比較圖…………………………60
圖3-15 OTFT元件向內彎曲之VDS -ID 比較圖……………………………60
圖3-16 OTFT元件向內彎曲之臨界電壓比較圖……………………………61
圖3-17 OTFT元件向內彎曲之 VGS -ID 比較圖…………………………61
圖3-18 OTFT元件在向內彎曲1cm下的VDS - ID 圖……………………62
圖3-19 OTFT元件在向外彎曲1cm下的VDS - ID 圖……………………62
圖3-20 彎曲OTFT元件之拉曼比較圖—平行偏振…………………………63
圖3-21 彎曲OTFT元件之拉曼比較圖—垂直偏振…………………………63
圖3-22 基板彎曲而PU當做緩衝層示意圖…………………………………64
圖3-23 OTFT基板逐漸向內彎曲做光激螢光量測比較圖…………………64
圖3-24 OTFT基板逐漸向外彎曲做光激螢光量測比較圖…………………65
圖3-25 OTFT基板彎曲做光激螢光激光激發光譜量測比較圖……………65
[1] J. Bardeen, and W. H. Brattain, “The Transistor, A Semi-Conductor Triode” Phys. Rev. 74, 230 (1948).
[2] C. K. Chiang, C. R. Fincher, Y. W. park, A. J. Heeger, H.Shirakawa, E. J. Louis, S. C. Gan, and A. G. MacDiarmid, “Electrical Conductivity in Doped Polyacetylene” Phys. Rev. Lett. 39, 1098 (1977).
[3] D. Gamota, J. Zhang, P. Brazis, K. Kalyanasundaram, “Printed organic and molecular electronics” Kluwer Acadenmic Publishers, (2004).
[4] S. K. Park, Y. H. Kim, J. I. Han, D. G. Moon, W. K. Kim, and M. G. Kwak, “electrical characteristics of poly(3-hexylthiophene) thin film transistors printed and spin-coated on plastic substrates” Synth. Met, 139, 377 (2003).
[5] Y. Sun, Y. Liu and D. Zhu, “Advances in organic field-effect transistors”, J. Mater. Chem. 15, 53 (2005).
[6] 羅蕙蕙, 工業技術研究院, 水性PU原理講義.
[7] A. Tsumura, H. Koezuka and T. Ando, “Macromolecular electronic device: field-effect transistor with a polythiophene thin film”, Appl. Phys. Lett. 49, 1210 (1986).
[8] H. Koezuka, A. Tsumura, and T. Ando, “Soluble and processable regioregular poly(3-hexylthiophene) for thin film field-effect transistor applications with high mobility”, Synth. Met. 18, 699 (1987).
[9] C. D. Dimitrakopoulos, D. J. Mascaro, “Organic thin-film transistors:A review of recent advances”, IBM J. RES. & DEV. 45, (2001).
[10] H. Biederman, and D. Slavinska, “Plasma polymer film and their future prospects”, Surface and Coatings Technology, 125, 371 (2000).
[11] W. Ehrfeld, “Electrochemistry and Microsystems”, Electrochimica Acta, 48, 2857 (2003).
[12] H. Sato and S. Nishio, “Polymer laser photovhemistry, ablation, reconstruction, and polymerization”, Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2, 139 (2001).
[13] M. Jakoublova, Z. Bastl, R. Fajgar, and J. Pola, “Laser induced chemicalvapour deposistion of polymeric films from thiophene”, Applied Surface Science, 106, 67 (1996).
[14] R. V. Plank, Y. Wei, N. J. DiNardo, and J. M. Vohs, “Characterization of highly conducting, ultra-thin polyaniline films produced by evaporative deposition”, Chemical Physics Letters, 263, 33 (1996).
[15] J. Gonzalo, P. E. Dyer, and M. Hird, “Pulsed laser deposition of liquid crystals”, Appl. Phy. Lett. 71, 19 (1997).
[16] Y. Liu, T. Cui, and K. Varahramyan, “Fabrication and characteristics of polymeric thin-film capacitor”, Soild-State electronics, 47, 811 (2003).
[17] H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, and E. P. Woo, “High-Resolution Inkjet Printing of All-Polymer Transistor Circuits”, SCIENCE, 290, 15 (2000).
[18] M. Leufgen, A. Lebib, T. Muck, U. Bass, V. Wagner, T. Borzenko, G. Schmidt, J. Geurts, and L. W. Molenkamp, “Organic thin-film transistor fabricated by microcontact printing”, Appl. Phys. Lett. 84, (2004).
[19] C. D. Dimitrakopoulos, P. R. L. Malenfant, “Organic Thin Film Transistors for Large Area Electronics”, Adv. Mater. 14, 16 (2002).
[20] 孫允武, 中興物理系, 應用電子學講義.
[21] 施敏, “半導體元件物理與製造技術”, 高立出版社 , 223 (1997).
[22] H. Yang, T. J. Shin, L. Yang, K. Cho, C. Y. Ryu and Z. Bao, “Effect of mesoscale crystalline structure on the field-effect mobility of regioregular poly(3-hexyl thiophene) in thin-film transistors”, Adv. Funct. Mater. 15, 671 (2005).
[23] F. Xue, Y. Su and K. Varahramyan, “Modified PEDOT-PSS conducting polymer as S/D electrodes for device performance enhancement of P3HT TFTs”, IEEE Transactions on Electron Device, 52, 1982 (2005).
[24] S. K. Park, Y. H. Kim, J. I. Han, D. G. Moon and W. K. Kim, “High-performance polymer TFTs printed on a plastic substrate”, IEEE Transactions on Electron Device, 49, 2008 (2002).
[25] M. J. Deen, M. H. Kazemeini, Y. M. Haddara, J. Yu, G. Vamvounis, S. Holdcroft and W. Woods, “Electrical characterization of polymer-based FETs fabricated by spin-coating poly(3-alkylthiophene)s”, IEEE Transactions on Electron Device, 51, 1982 (2004).
[26] S. K. Park, Y. H. Kim, J. I. Ha, D. G. Moon and W. K. Kim, “Electrical and mechanical properties of low temperature evaporated silicon dioxide/polyimide dual-layer insulator for plastic-based polymer transistor”, Thin Solid Films, 429, 231 (2003).
[27] J. Veres, S. Ogier, G. Lloyd, “Gate Insulators in Organic Field-Effect Transistors”, Chem. Mater. 16, 4543 (2004).
[28] R. Osterbacka, C. P. An, X. M. Jiang, Z. V. Vardeny, “Two-Dimensional Electronic Excitations in Self-Assembled Conjugated Polymer Nanocrystals ”, SCIENCE, 287, (2000).
[29] http://en.wikipedia.org/wiki/Image:Polythiophenes_Crosscoupling.png
[30] K. E. Aasmundtveit, E. J. Samuelsen, M. Guldstein, C. Steinsland, O. Flornes, C. Fagermo, T. M. Seeberg, L. A. A. Pettersson, O. Ingana1 s, R. Feidenhans’l and S. Ferrer, “Structural anisotropy of poly(alkylthiophene) films”, Macromolecules, 33, 3120 (2000).
[31] J. H. Saunders and K. C. Frisch. Polyurethane; Chemistry and Technology, PartsⅠand Ⅱ﹐Interscience﹐New York, (1962).
[32] P. Wright and A. P. C. Cumming, Solid Polurethane Elastomers, Maclaren and Sons, London, (1969).
[33] J. Cho, S. Lee, Eur Polym, 40, 1343 (2004).
[34] http://www.techbank.com.tw/PVD-process-introduction.htm
[35] 李正中, “薄膜光學與鍍膜技術”, 藝軒出版社, 第四版, 385 (2004).
[36] J.C. Manifacier, J. Gasiot, and J. P. Filland “Simple method for determination of the optical constant n,k and the thickness of weekly absorbing thin films”, J. Phy. E. : Sci. Inst. 9, 1002 (1976).
[37] J. Ouyng, C. W. Chu, F. C. Chen, Q. Xu, Y. Yang, “High-Conductivity Poly(3,4-Ethylenedioxythiophene):Poly(strene sulfonate) Film and Its Application in Polymer Optoelectronic Devices”, Adv. Funct. Mater, 15, 2005.
[38] H. Kissel, U. Muller, C. Walther, W. T. Maselink, Phys. Rev. B 62, 7213 (2000).
[39] J. Wan, G. L. Jin, Z. M. Jiang, Y. H. Luo, J. L. Liu and Kang L. Wang, Appl. Phys. Lett. 78, 1763 (2001).
[40] S. M. Sze, Physics of Semiconductor Devices 2nd edition.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top