|
[1] Peter J. Collings and Michael Hird, “Introduction to Liquid Crystals," Taylor & Francis (1997). [2] Iam-Choon Khoo and Shin-Tson Wu, “Optics and Nonlinear Optics of Liquid Crystal,” World Scientific (1997). [3] Shin-Tson Wu and Deng-Ke Yang, “Reflective Liquid Crystal Displays,” Wiley (2002). [4] A. Yariv, “Quantum Electronics,” John Wiley & Sons Press, New York (1989). [5] I. Haller, “Thermodynamics and static properties of liquid crystals,” Prog. Solid State Chem. 10, 103 (1975). [6] Iam-Choon Khoo, “Liquid Crystals-Physical Properties and Nonlinear Optical Phenomena,” John Wiley �t Sons Press, New York (1995). [7] P. G. de Gennes, “The Physics of of Liquid Crystals,” Clarendon, Oxford (1974). [8] L. M. Blinov and V. G. Chigrinov, “Electrooptic Effects in Liquid Crystal Materials,” Springer-Verlag Publishing Co., New York (1994). [9] Kohki Takatoh, Masaki Hasegawa, Mitsuhiro Koden, Nobuyuki Itoh, Ray Hasegawa, Masanori Sakamoto, “Alignment Technologies and Applications of Liquid Crystal Devices,” Taylor & Francis (2005). [10] Wayne M. Gibbons, Paul J. Shannon, Shao-Tang Sun, and Brian J. Swetlin, Nature 351, 49-50, 1991. [11] M. Hasegawa and Y. Taira, J. Photopolymer Science and Technology, 8, 703, 1995. [12] Michinon Nishikawa, Tamas Kosa and John L. West., Jpn. J. Appl. Phys., 38 334, 1999. [13] Martin Schadt, Klaus Schmitt, Vladimir Kozinkov andVladimir Chigrnov, Jpn. J. Appl. Phys., 31, 2155, 1992. [14] O. Yaroshchuk, L. G. Cada, M. Sonpatki, and L.-C. Chien, Apl, 79, 30, 2001. [15] Eugene Hecht, “Optics,” Addison Wesley, Berlin, 1998. [16] Dennis Gabor, Nature, 161, 777, 1948. [17] H. J. Eichler, P. Gunter and D. W. Pohl, “Laser-Induced Dynamic Gratings,” Pringer-Verlag, Berlin, 1985. [18] P. Yeh, “Introduction of Photorefractive Nonlinear Optics,” John Wiley & Sons, New York, 1993. [19] N. K. Viswanathan, S. Balasubramanian, L. Li, S. K. Tripathy and J. Kumar, Jpn. J. Appl. Phys. 38, 5928 (1999). [20] Joseph W. Goodman, “Introduction to Fourier Analysis,” The Mcgraw-Hill Companies, Inc. Singapore (1996). [21] 游漢輝,“傅氏光學,”滄海書局 (2006). [22] Michael J. Escuti and W. Michael Jones, “Polarization-Independent Switching With High Contrast From A Liquid Crystal Polarization Grating,” 39.4, pp. 1443-1446, SID 06 DIGEST. [23] Suraj P. Gorkhali, Sylvain G. Cloutier, and Gregory P. Crawford, “Stable polarization gratings recorded in azo-dye-doped liquid crystals,” Appl. Phys. Lett. 88, 2551113 (2006). [24] Hakob Sarkissian, Svetlana V. Serak, Nelson V. Tabiryan, Leon B. Glebov, Vasile Rotar, and Boris Ya. Zeldovich, “Polarization-controlled switching between diffraction orders in transverse-periodically aligned nematic liquid crystals,” OPTICS LETTERS, Vol. 31, No. 15, August 1, 2006. [25] C. Provenzano, P. Pagliusi, and G. Cipparrone, “Highly efficient liquid crystals based diffraction grating induced by polarization holograms at the aligning surfaces,” Appl. Phys. Lett. 89, 121105 (2006). [26] Grant R. Fowles, “Introduction to Modern Optics,” 2nd edition, Holt, Rinehart and Winston, Inc. [27] A. Lien, “Extended Jones matrix representation for the twisted nematic liquid-crystal display at oblique incidence,” Appl. Phys. Lett. 57 (26), 24 December 1990. [28] D. W. Berreman, J. Opt. Soc. Am. 62, 502 (1972). [29] A. Taflove, “Computational Electromagnetic: The Finite-Difference Time-Domain Method,” Artech House,1995. [30] Dennis M. Sullivan, “Electromagnetic Simulation Using the FDTD Method,” Wiley-IEEE Press. [31] 丁啟倫, “運用二維時域有限差分法分析液晶元件光學性質,”光電科學與工程研究所,成功大學 (2005). [32] Pochi Yeh, Claire Gu, “Optics of Liquid Crystal Displays”, Wiley Interscience, New York (1999). [33] Bayliss, A., M. Gunzburger, and E. Turkel, “Boundary conditions for wave-like equations,” Comm. Pure Appl. Math., Vol. 23, 1980, pp. 707-725. [34] Bayliss, A., M. Gunzburger, and E. Turkel, “Boundary conditions for the numerical solution of elliptic equations in exterior regions, “ SIAM J. Applied Math., Vol. 42, 1982, pp. 430-451. [35] Enquist, B., and A. Majda, “Absorbing boundary conditions for the numerical simulation of waves,” Mathematics of Computation, Vol. 31, 1977, pp. 629-651. [36] Higdon, R. L., “Absorbing boundary conditions for difference approximations to the multi-dimensional wave equations,” Mathematics of Computation, Vol. 47, 1986, pp. 437-459. [37] Higdon, R. L., “Numerical absorbing boundary conditions for the wave equation,” Mathematics of Computation, Vol. 49, 1987, pp. 65-90. [38] Liao, Z. P., H. L. Wong, B. P. Yang, and Y. F. Yuan, “A transmitting boundary for the transient wave analyses,” Scientia Sinica (series A), Vol. XXVII, 1984, pp. 1063-1076. [39] Ramahi, O. M., “The complementary operators method in FDTD simulations,” IEEE Antennas Propagat. Magazine, Vol. 39, No. 6, Dec. 1997, pp. 33-45. [40] Ramahi, O. M., “The concurrent complementary operators method for FDTD mesh truncation,” IEEE Trans. Antennas Propagat., Vol. 46, 1998, pp. 1475-1482. [41] Berenger, J. P., J., “Computational Physics,” 141. 185. (1994). [42] Chulwoo Oh, Ravi Komanduri, and Michael J. Escuti, “FDTD and Elastic Continuum Analysis of the Liquid Crystal Polarization Grating,” P-167, SID 2006 DIGEST. [43] Chulwoo Oh, Ravi Komanduri, and Michael J. Escuti, “FDTD analysis of 100%-Efficient Polarization-Independent Liquid Crystal Polarization Gratings,” Proc. Of SPIE Vol. 6332 633212-1. [44] S. T. Wu, Yi Shin Chen, Jian Hong Guo, and Andy Ying-Guey Fuh, “Fabrication of Twist Nematic Gratings Using Polarization Hologram Based on Azo-Dye-Doped Liquid Crystals,” Jpn. J. Appl. Phys., Vol. 45, No. 12, 2006, pp. 9146-9151.
|