跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.175) 您好!臺灣時間:2024/12/06 21:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王金松
研究生(外文):Jin-Sung Wang
論文名稱:可預測板條箱內待產母豬分娩時間之自動化超音波量測系統
論文名稱(外文):Automated Ultrasonic MeasurementSystem for Quantitatively PredictingParturition Time in Crated Sows
指導教授:楊明興楊明興引用關係
指導教授(外文):Ming-Shing Young
學位類別:博士
校院名稱:國立成功大學
系所名稱:電機工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:76
中文關鍵詞:行為特徵基本臨界點法母豬同一時間法分娩動物行為超音波
外文關鍵詞:UltrasoundbehaviorPosturesSowscharacteristicsame hour method (SHM)ParturitionBasic parturition threshold value (BPTV)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:411
  • 評分評分:
  • 下載下載:49
  • 收藏至我的研究室書目清單書目收藏:1
本論文的主要目的是提出一項具有非影像攝影紀錄、非侵入待產母豬體內、自動裝置、現場遠端之低成本且適合產業使用的監測系統,以便在待產母豬的分娩時間數個小時之前可預測出分娩時間。沿著分娩欄上方裝設採用一排八個測量89C51單晶片系統搭配40k Hz超音波元件的發射/返(T/R)陣列電路,並以飛行時間技術(TOF)來測量母豬之四個設定部位之身高height:頭部Head-Part HP、頸部Neck-Part NP、脊背Spine-Part SP、臀部Buttock-Part BP。利用此八個獨立的偵測高度,可綜合建立出母豬的四種基本姿態: 站姿Standing posture (SDP),跪姿Kneeling posture (KP),坐姿Sitting posture (STP) and 臥姿Lateral lying posture (LLP)。本研究是以行政院農委會新化畜牧所與台南縣白河鎮水波種畜場(ISO-9001:2000)兩地場所及實驗待產母豬為實驗對象。統計待產母豬從站姿改變到臥姿的動物行為behavior轉換為預測分娩的行為特徵characteristic。瀕臨分娩之際,由於先天築巢習慣並且不時劇烈陣痛之因素,引起母豬站立次數(stand up sequence SUS)比起平常作息次數突然增加5 ~ 10倍。當站立次數(SUS)超過基本臨界點(basic parturition threshold value BPTV),表示母豬在幾小時即將要進入分娩狀態(P < 0.01),自動警報系統即能通知畜牧管理員及時趕到現場協助母豬分娩,減少仔豬死產stillbirth,提昇仔豬存活率。即便相同品種母豬分娩的行為特徵皆不一致,提前或延後都是危險。在本論文裡,運用站立次數(SUS)的行為特徵characteristic,我們提出基本臨界點法(BPTV)與同一時間法(same hour method SHM)兩種理論方式來預測母豬分娩時間。經由比較之後,同一時間法(SHM)比較能避除去每日定時餵食因素之干擾與誤判。經由本論文所建立的32頭實驗參數資料,同一時間法(SHM)可以準確在12小時之內,而基本臨界點法(BPTV)則可以準確在15小時之內。在預測母豬分娩時間方面,同一時間法(SHM)比起基本臨界點法(BPTV)有較準確度。在母豬即將進入分娩狀態前幾即能通知畜牧管理員及時趕到現場協助母豬分娩,提昇仔豬存活率,就活體大型哺乳生物分娩前、後的動物特徵動作實用性與畜牧成本方面來評估,提供簡便、正確、有效、低成本的方法,有明顯優於其他方式動物行為統計的表現。
This study presents a non-video, non-invasive, automatic, on-site monitoring system to provide low-cost and industrially applicable that to predict parturition time within hours before parturition of the crated sows. The system relies on ultrasonic transducers mounted from above along the length (one dimensional) of the crate with the transmitting/receiving (T/R) circuit of 40 kHz ultrasound elements in measuring the height of four predetermined locations: the head-part (HP), neck-part (NP), spine-part (SP), and buttock-part (BP). Using the time of flight (TOF) single envelope wave, the momentary distances between the sensors are measured. Therefore, the eight predetermined locations local momentary heights of the sow and the momentary posture, i.e. standing posture (SDP), kneeling posture (KP), sitting posture (STP) and lateral lying posture (LLP) are determined. This system of predicting parturition had been implemented and tested individually in Taiwan Livestock Research Institute and the Shui-Po Breeding Swine Farm (Tainan, Taiwan; ISO-9001:2000). Crated sows change their postures from standing to lying and vice versa at a rate which is followed by a characteristic pattern. As parturition approaches, cause of the nest-build or throes at labor pains, sows exhibit uneasiness, restlessness and the stand up sequence (SUS, the posture transition from LLP to SDP) rate increases being 5 to 10 times higher than observed on any other measurement day. Since different breeds of pigs may have different behavioral periods, early or late estimating parturition dates will put piglets and sows in danger. With algorithms for parturition prediction and generated suitable warning to human personnel, so they could timely attend the birth and protect mother and newborn piglets. In time series, the SUS rate demonstrates a peak and it happens approximately hours before parturition (P < 0.01). The SUS rate is virtually unaffected by maternal temperature, maternal weight (before and after parturition), fetal sex, or total fetal weight (P > 0.05). In this paper, the basic parturition threshold value method (BPTVM) and the same hour method (SHM) are proposed for predicting parturition, both of which are based on the SUS rate. The BPTVM mainly detects the peak of the SUS rate. As the SUS rate exceeds the threshold value, the parturition becomes predictable. Moreover, the SHM calculates the difference in the SUS rates between a particular time of day and the corresponding time of the preceding day. Compared to the BPTVM, the SHM can eliminate the circadian rhythm of the SUS rate influenced by feeding behavior. Using the SHM parturition can be approximately predicted within hours. In an attempt to define the critical condition of predicting parturition, a data set with 32 sows (samples) of the SUS rate are used to estimate assumable predicting probability. The results show the parturition occurs within 12 hours in the SHM and 15 hours in the BPTVM. We conclude that the SHM is more accurate and is more useful for parturition time prediction. The results of this study provide a good basis for enhancing automation and reducing costs in large-scale sow husbandry and have applications in the testing of various large mammals for the effects of medications, diets, genetic modifications and environmental factors.
ABSTRACT ……………………………...……………………….. III
LIST of FIGURES ………………………….…….…...…..…… VIII
LIST of TABLES …………………………………………...….. XIII
CHAPTER 1 INTRODUCTION ……………………...……..… 1
CHAPTER 2 MATERIALS and METHODS ………………. 4
2-1 Animals ……………………………………...……….……… 4
2-2 Time of Flight (TOF) signal of transmitter/receiver ….…… 5
2-3 Ultrasonic Calibration System ………………….………… 7
2-4 The Farrowing Crates ……………………………..………. 8
2-5 The Eight Height Positions for Hi-AV ……………..……….. 12
2-6 Postures measurement ……………………………..……. 17
2-6-1 Standing-Posture (SDP) ……….…………….…… 17
2-6-2 Kneeling-Posture (KP) ………………….……….. 18
2-6-3 Sitting-Posture (STP) ……………………………. 18
2-6-4 Lateral-Lying-Posture (LLP) …………...………. 18
CHAPTER 3 SYSTEM IMPLEMENTATION ….....… 20
3-1 Hardware System ………………………………………. 23
3-1-1 MASTER (On-site Monitoring System in the office ) 23
3-1-2 SLAVEs ………………………… ………..………. 23
3-2 Software System …………………………………………… 28
3-2-1 Determination of the frequency of Stand Up Sequence
(SUS) ………………………………………………. 28
Rule 1 ……………….…………..………………….... 30
Rule 2 ……………….…………..………………….... 30
Rule 3 …………….……………………..…………… 31
Rule 4 ………….………………………..…………… 31
3-2-2 Parturition Prediction Rule (Automatic Alarm
System) ………………………………………………..…. 32
CHAPTER 4 RESULTS ……………………………………..…… 34
4-1 The general behavior SUS counts of normal days …….… 34
4-2 Behavior of sows the day before parturition ……….…… 36
4-3 SUS Rate from Day-6 before to Day-4 after Parturition ... 37
4-4 SUS Rate from Day-1 before to Day-1 after Parturition .… 41
4-5 Parturition time Prediction ………………….….…..……. 46
4-6 Define BPTV Value ………………..…………………….. 51
CHAPTER 5 DISCUSSION ……………………….…….….. 55
CHAPTER 6 CONCLUSIONS ……………………..………. 59
CHAPTER 7 ACKNOWLEDGEMENTS ……………….. 61
REFERENCES ………………………………...…………… 62 ~ 64
APPENDIX-A. Specification of the ultrasonic transducer. 65 ~ 66
APPENDIX-B. The whole schematic diagrams. …….……. 67 ~ 70
APPENDIX-C. The PBC layouts circuit. …………..…… 71 ~ 74
Biographical Notes ………………………………………………… 75
Publication List (Jan. 2007) ……………………………….…….. 76
1. G. C. B ,Randall. 1972. Observations on parturition in the sow. I. Factors associated with the delivery of the piglets and their subsequent behavior. Vet. Rec. 90: 178.
2. J. S. Wang, Y. S. Huang, M. C. Wu, Y. Y. Lai , H. L. Chang, and M. S. Young. 2005. Quantification of Pre-parturition Restlessness in Crated Sows Using Ultrasonic Measurement. Asian-aust. J. Anim. Sci. Vol 18, No. 6: 780-786.
3. Breeveld-Dwarkasing, V. N. A., P. C. Struijk, F. Eijkoot, F. K. Lotgering, F. M. F. van Dissel-Emiliani, G. C. van der Weyden and M.A.M. Taverne. 2002. Ultrasonic cervimetry to study the dilatation of the caudal cervix of the cow at parturition. Theriogenology. 57: 1989-2002.
4. Singh, N. S. P. G. Gawande, O. P Mishra, R. K. Nema, U. K. Mishra and Mohan Singh. 2004. Accuracy of Ultrasonography in Early Pregnancy Diagnosis in Doe. Asian-aust. J. Anim. Sci. Vol 17, No. 6: 760-768.
5. Nagaoka, K., H. Yamaguchi, H. Aida, K. Yoshioka, M. Takahashi, R. K. Christenson, K. Imakawa and S. Sskai. 2000. Implantation in Ruminants: Changes in Pre-Implantation, Maternal Recognition of Pregnancy, Control of Attachment and Invasion. Asian-aust. J. Anim. Sci. Vol. 12, No. 6: 845-855.
6. Yang-Hwan Ryu, Jong-Yong Yang, Dong-Sam Seo and Yong Ko*. 2003. Effect of Serum IGF-I on Progesterone Concentration during Early Pregnancy in Korean Native Cattle (Hanwoo). Asian-aust. J. Anim. Sci. Vol. 16, No. 1: 176-179.
7. J. R. Khan and R. S. Ludri. 2002. Changes in Maternal Blood Glucose and Plasma Non-Esterified Fatty Acid during Pregnancy and around Parturition in Twin and Single Fetus Bearing Crossbred Goats. Asian-aust. J. Anim. Sci. Vol. 15, No. 4: 504-508.
8. Ramirez A., A. Quiles and M. Sotillo. 1995. Behavior of the Murciano-Granadina goat in the hour before parturition. Appl. Anim. Behav. Sci., 44: 29-35.
9. Gilbert C. L., A. B. Lawrence, M. L. Forsling, J. A. Goode, T. J. McGrath, K. A. McLean and J. C. Petherick. 1996. Maternal plasma vasopressin, oxytocin and cortisol concentrations following foetal ejection in the pig. Animal Reproduction Science. 43: 137-150.
10. Gilbert C. L., M. I. Boulton, J. A. Goode and T. J. McGrath. 2000. The timing of parturition in the pig is altered by intravenous naloxone. Theriogenology 53: 905-923.
11. Knight T. W., A. F. Death and T. K. Wyeth. 1995. Photoperiodic control of the time of parturition in alpacas (Lama pacos). Animal Reproduction Science. 39:259-265.
12. Pinheiro Machado F, L. C. J. F. Hurnik and G. J. King. 1997. Timing of the attraction towards the placenta and amniotic fluid by the parturient cow. Appl. Anim. Behav. Sci. 53: 183-192.
13. Wechsler B. and D. Hegglin. 1997. Individual differences in behaviour of sows at the nest-site and the crushing of piglets. Appl. Anim. Behav. Sci. 51: 39-49.
14. Pedersen L. J., M. Studnitz, K. H. Jensen and A. M. Giersing. 1998. Suckling behaviour of piglets in relation to accessibility to the sow and presence foreign litters. Appl. Anim. Behav. Sci. 58: 267-279.
15. Tette van der Lende; Egbert F. Knol. 1999. Analysis of stillbirth in different lines of pig. Livestock Production Science, 57: 243-253.
16. Thomaz Lucia Jr.; Marcio N. Correa; Joao C. Deschamps; Ivan Bianchi; Mauro A.Donin; Ana C. Machado; Werner Meincke; Jairo E. M. Matheus. 2002. Risk factors for stillbirth in two swine farms in the south of Brazil. Preventive Veterinary Medicine, 53: 285-292.
17. C. F. Huang and M. S. Young. 1999. Multiple-frequency continuous wave ultrasonic system for accurate distance measurement. Rev. Sci. Instru. 70: 1452-1458.
18. K. N. Huang; C. F. Huang; Y. C. Li 2002. High precision, fast ultrasonic thermometer based on measurement of the speed of sound in air. Rev. Sci. Instrum. 73: 4022–7
19. Alessio Carullo; Marco Parvis. 2001. An ultrasonic sensor for distance measurement in automotive applications. J. IEEE Sensors. 1: 143-147.
20. T. J. Liu and M. S. Young. 2002. Eliminating contaminant with a piezoelectric transducer in the design of low-cost smart kitchen range hoods. J. IEEE Sensor. 2: 314-321.
21. M. S Young.; Y. C. Li 1992. A high precision ultrasonic system for vibration measurements Rev. Sci. Instrum. 63: 5435–41
22. C. W. Young; M. S. Young; Y. C. Li; M. T. Lin. 1996. A new ultrasonic method for measuring minute motion activities on rats. J Neurosci. Methods. 70: 45-49.
23. M. S. Young, C. W. Young and Y. C. Li. 2000. A combined system for measuring motion activities. J. Neuroscience Methods. 95: 55-63.
24. Teh-Lu Liao; Wen-Yuan Tsai; Chih-Feng Huang. 2003. A new ultrasonic temperature measurement system for air conditioners in automobiles. Meas. Sci. Technol. 15: 413-419.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊