跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/01/19 02:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:高柏青
研究生(外文):Po-Ching Kao
論文名稱:壓印微影技術應用於高效率有機發光元件
論文名稱(外文):Applications of Imprint Lithography for High-EfficiencyOrganic Light-Emitting Devices
指導教授:朱聖緣朱聖緣引用關係
指導教授(外文):Sheng-Yuan Chu
學位類別:博士
校院名稱:國立成功大學
系所名稱:電機工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:133
中文關鍵詞:有機發光二極體電致發光白光可撓曲壓印微影技術
外文關鍵詞:flexibleimprint lithographywhite emissionOLEDElectroluminescence
相關次數:
  • 被引用被引用:0
  • 點閱點閱:220
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
有機發光二極體被認為是目前有機會作為大面積、全彩,平面化顯示器之元件,由於它具有一些優點如:製程簡易、高應答速度、高對比、輕、薄及應用便利等。因此,許多研究探討改善其元件結構之及了解其操作機制。
  在本研究中,首先,我們系統化探討電洞注入材料metal-phthalocyanines (MPcs)的物理特性以及此材料在ITO/MPc/NPB/Alq3/LiF/Al 元件中對電致發光特性的影響。改變此材料膜厚在室溫下進行元件特性量測。結果顯示MPcs 之最高佔有軌域能階及最低未佔有軌域能階和此分子之中間金屬原子種類相關;元件驅動電壓因電洞注入層而降低,其驅動電壓之降低和此分子之最高佔有軌域能階相關。此結果說明在電洞注入過程中,MPc/NPB 界面能障大小(而非ITO/MPc 界面能障)
扮演主要角色。
  其次, 我們描述一新型發紅光銥金屬錯合物bis(2-Naphthalen-1-yl-5-trifluoromethyl-pyridine-N,C2΄)iridium(III) acetylacetonate [(5-fnapy)2Ir(acac)] 之磷光特性以及使用此分子作為紅光摻雜物探討其OLED 元件之電致發光機制。結果發現使用結構為ITO/NPB/CBP:(5-fnapy)2Ir(acac)/BAlq3/LiF/Al 之元件,在適當調整摻雜(5-fnapy)2Ir(acac)分子濃度於CBP 主體分子下,可發出高亮度、高純度之紅光(0.65, 0.34)及白光(0.33, 0.32)。其元件白光光譜包含一支(5-fnapy)2Ir(acac)之紅光及兩支分別來自NPB 及Alq3 之藍光;在操作電壓9 V 到18 V 改變下,CIE 座標皆落於白光區域。
  第三部份,本論文使用兩種圖案化技術製作大面積圖案化OLED 元件,元件結構為ITO/NPB/Alq3/LiF/Al。一種是低壓壓印微影技術;另一種是結合滾輪壓印微影及黃光微影技術(CRIP)。畫素陣列之圖案定義為交叉直線形式,ITO 陽極使用微影技術圖案化製程配合濕式化學蝕刻製程;陰極則利用金屬遮罩進行鍍膜。由於所使用基板相對硬基板,具有薄和可撓曲特性,因此可在低壓力下獲得高圖案轉移良率。結果發現其最佳壓印壓力及溫度分別為3 kg/cm2 及140 °C。其次,比較傳統壓印微影及黃光微影製程,CRIP 技術具有許多優點如:圖案均勻性佳、壓印壓力小、製程時間短、花費少及圖案深寬比高。此技術所獲得之圖案化OLED 元件和一般傳統黃光微影圖案化元件之光電特性相同。
 Organic light-emitting diodes (OLEDs) are currently considered as promising candidates for large-area, full-color and flat-panel displays due to their prominent advantages such as ease in fabrication, faster switching speed, higher contrast, lighter, thinner and convenience of use in applications. A lot of effort has, therefore, been made to improve device structures and to understand their operating mechanisms.
In this research, first, we systematically investigated the physical characteristics of the various metal-phthalocyanines (MPcs) and the influence of the MPcs hole-injection layer (HIL) on the EL performance of ITO/MPc/NPB/Alq3/LiF/Al
devices. The characteristics were measured at room temperature with a thickness variation of the MPc layer. The results showed that the individual molecular orbital (HOMO and LUMO) level energies of MPcs are dependent on their central metal atoms. The turn-on voltage for the devices is lowered by inserting MPc layers. In
addition, the turn-on voltage decreases significantly with the increase of the HOMO levels of the MPc films, which demonstrates that the MPc/NPB interface instead of the ITO/MPc interface plays an important role in the hole-injection.
Second, we describe the phosphorescent characteristics of a new red-emitting iridium complex, bis(2-Naphthalen-1-yl-5-trifluoromethyl-pyridine-N,C2΄)iridium(III) acetylacetonate [(5-fnapy)2Ir(acac)], together with investigating the
electroluminescence (EL) mechanisms of organic light-emitting diodes (OLEDs) by using this complex as a red dopant. A bright red and white light emission with CIE coordinates (0.65, 0.34) and (0.33, 0.32) can be realized using the ITO/NPB/CBP:(5-fnapy)2Ir(acac)/BAlq3/LiF/Al structure with different the properly doping concentrations of (5-fnapy)2Ir(acac) in CBP host. The white-emission spectrum of this device is composed of a red band from (5-fnapy)2Ir(acac) and two blue emissions from NPB and BAlq3. The CIE coordinates were well within the white zone when applied voltage is varied from 9 V to 18 V.
Third, we fabricate large-scaled patterned organic light-emitting devices with ITO/NPB/ Alq3/LiF/Al structure on flexible polyethylene terephthalate (PET) substrates using two patterning techniques. One is a low-pressure imprinting lithography and the other is a combination of roller-type imprinting lithography and photolithography (CRIP). The patterns of the pixel array were defined in crossed-strip style with indium tin oxide (ITO) anode patterned by lithography techniques followed by wet chemical etching and cathode strips deposited using metal mask. Due to the
PET substrate is thin and flexible, it could decrease the pressure needed for high yield
pattern transfer as compared to that required with rigid substrate. The optimal imprinting pressure and temperature are 3 kg/cm2 and 140°C, respectively. On the other hand, compared with conventional imprint lithography or photolithography, the CRIP technique has the advantages of better uniformity, less force, consuming less time, lower cost, and higher aspect ratio. The performances of these devices were comparable to that of devices patterned by conventional photolithography.
List of Figures XV
List of Tables XIX
Chapter 1 Introduction 1
Chapter 2 Theory and Literature Review 5
2.1 Basic concepts of OLEDs 5
2.1.1 Structures of OLEDs 5
2.1.2. Principles of OLED Operation 6
2.2 The luminescent principle of OLEDs 8
2.2.1. Photoluminescence and Electroluminescence 8
2.2.2 Energy transfer 9
2.3 Nanoimprint lithography (NIL) principles and process 11
2.4 Step and flash imprint lithography (SFIL) principle and process 13
Chapter 3 Fabrication and measurement setups in organic films, OLEDs
and patterned OLEDs 24
3.1 Device fabrication of organic light-emitting diodes 24
3.1.1. Substrate cleaning procedures 24
3.1.2 Organic powders preparation 25
3.1.3 OLEDs configuration 25
3.1.4 OLEDs fabrication 26
3.2 Measurement of patterned OLED properties 27
3.2.1 Measurement of pattern structural quality 27
3.2.2 Measurement of organic film characteristics 27
3.2.3 Measurement of OLEDs characteristics 28
Chapter 4 Improved Performance of Organic Light-Emitting Diodes
Using a Metal-Phthalocyanine Hole-Injection Layer 36
4.1 Crystalline and chemical structure analyses 36
4.1.1 XRD and SEM Analysis 36
4.1.2 FTIR Analysis 37
4.2 Electrochemical properties analysis 38
4.3 Optical properties analysis 38
4.4 Electrical properties analysis 40
4.4.1 DC properties analysis 40
4.4.2 AC properties analysis 43
4.5 OLED properties analysis 45
4.5.1 Layer optimization 46
4.5.2 EL analysis 48
4.5.3 Influence of the MPc layers on OLEDs 49
Chapter 5 White and Red Organic Light-Emitting Diodes Using a Novel
Phosphorescent Iridium Complex as a Red Dopant 73
5.1 Optical properties analysis 73
5.2 OLED properties analysis 75
5.2.1 EL properties and energy levels analysis 75
5.2.2 Current density-luminance-voltage characteristics analysis 77
Chapter 6 Fabrications of large-scared organic light emitting devices on
flexible substrates using imprinting lithography techniques 85
6.1 Mold fabrications 85
6.1.1 4-inch silicon mold 86
6.1.2 Hybrid mold 86
6.2 Lithography and pattern transfer process 87
6.2.1 Low-pressure imprinting lithography and pattern transfer process 87
6.2.2 CRIP and pattern transfer process 88
6.3 Mold fabrication analysis 89
6.3.1 4-inch-silicon mold analysis 89
6.3.2 Hybrid mold analysis 90
6.4 Pattern transfer process analysis 91
6.4.1 Low-pressure imprinting lithography process analysis 91
6.4.2 CRIP process analysis 93
6.5 OLED properties analysis 96
6.5.1 Low-imprinting-lithography patterned OLED properties analysis 96
6.5.2 CRIP patterned OLED properties analysis 98
Chapter 7 Conclusion and Recommendations for Future Work 122
7.1 Conclusion 122
7.2 Suggestions for future work 123
References 126
[1] S. R. Forrest, Chem. Rev. (Washington, D.C.), 97, 1793 (1997).
[2] F. Li, H. Tang, J. Shinar, O. Resto, and S. Z. Weisz, Appl. Phys. Lett.,  70, 2741 (1997).
[3] C. C. Wu, C. I. Wu, J. C. Sturm, and A. Kahn, Appl. Phys. Lett., 70,1348 (1997).
[4] I. M. Chan, W. C. Cheng, and F. C. Hong, Appl. Phys. Lett., 80, 13 (2002).
[5] S. F. J. Appleyard and M. R. Willis, Opt. Mater. (Amsterdam, Neth.), 9, 120 (1998).
[6] H. Y. Yu, X. D. Feng, D. Grozea, Z. H. Lu, R. N. S. Sodhi, A.-M. Hor, and H. Aziz, Appl. Phys. Lett., 78, 2595 (2001).
[7] S. T. Lee, Z. Q. Gao, and L. S. Hung, Appl. Phys. Lett., 75, 1404 (1999).
[8] A. R. Schlatmann, D. Wilms Floet, A. Hilberer, F. Garten, P. J. M. Smulders, T. M.Klapwijk, and G. Hadziioannou, Appl. Phys. Lett., 69, 1764 (1996).
[9] H. Vestweber and W. Rieß, Synth. Met., 91, 181 (1997).
[10] J. Szuber and L. Grzadziel, Thin Solid Films, 391, 282 (2001).
[11] W.-L. Yu, Y. Cao, J. Pei, W. Huang, and A. J. Heeger, Appl. Phys. Lett., 75, 3270 (1999).
[12] S. M. Tadayyon, H. M. Grandin, K. Griffiths, P. R. Norton, H. Aziz, and Z. D.Popovic, Org. Electron., 5, 157 (2004).
[13] J. C. Scott, J. H. Kaufman, P. J. Brock, R. DiPertro, J. Salem, and J. A. Gotia, J. Appl. Phys., 79, 2745 (1996).
[14] H. Aziz, Z. D. Popovic, N.-X. Hu, A.-M. Hor, and G. Xu, Science, 283, 1900
(1999).
[15] T. L. Anderson, G. C. Komplin, and W. J. Pietro, J. Phys. Chem., 97, 6577 (1993).
[16] M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson,and S. R. Forrest, Nature (London), 395, 151 (1998).
[17] G. Cheng, F. Li, Y. Duan, J. Feng, S. Liu, S. Qiu, D. Lin, Y. Ma, and S. T. Lee,Appl. Phys. Lett., 82, 4224 (2003).
[18] F. Li, G. Cheng, Y. Zhao, J. Feng, S. Liu, M. Zhang, Y. Ma, and J. Shen, Appl.Phys. Lett., 83, 4716 (2003).
[19] T. Tsuzuki, N. Shirasawa, T. Suzuki, and S. Tokito, Adv. Mater. (Weinheim, Ger.),15, 1455 (2003).
[20] M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson, and S. R. Forrest,Appl. Phys. Lett., 75, 4 (1999).
[21] C. Adachi, M. A. Baldo, S. R. Forrest, S. Lamansky, M. E. Thompson, and R. C. Kwong, Appl. Phys. Lett., 78, 1622 (2001).
[22] C. Adachi, R. Kwong, and S. R. Forrest, Org. Electron., 2, 37 (2001).
[23] S. Lamansky, P. I. Djurovich, F. Abdel-Razzaq, S. Garon, D. L. Murphy, and M. E. Thompson, J. Appl. Phys., 92, 1570 (2002).
[24] S. Tokito, T. Iijima, Y. Suzuri, H. Kita, T. Tsuzuki, and F. Sato, Appl. Phys. Lett.,83, 569 (2003).
[25] J. P. Duan, P. P. Sun, and C. H. Cheng, Adv. Mater. (Weinheim, Ger.), 15, 224 (2003).
[26] C. H. Yang, K. H. Fang, W. L. Su, S. P. Wang, S. K. Su, and I. W. Sun, J.
Organomet. Chem., 691, 2767 (2006).
[27] A. Sugimoto, H. Ochi, S. Fujimura, A. Yoshida, T. Miyadera, and M. Tsuchida,IEEE J. Sel. Top. Quantum Electron. 10, 107 (2004).
[28] A. N. Krasnov, Appl. Phys. Lett. 80, 3853 (2002).
[29] D. G. Lidzey, M. A. Pate, M. S. Weaver, T. A. Fisher, and D. D. C. Bradley, Synth.Met. 82, 141 (1996).
[30] S. Noach, E. Z. Faraggi, G. Cohen, Y. Avny, R. Neumann, D. Davidov, and A.
Lewis, Appl. Phys. Lett. 69, 3650 (1996).
[31] C. Kim and R. Forrest, Adv. Mater. _Weinheim, Ger., 15, 541 (2003).
[32] Y. Koide, Q. Wang, J. Cui, D. D. Benson, and T. J. Marks, J. Am. Chem. Soc. 122,11266 (2000).
[33] T. R. Hebner, C. C. Wu, D. Marcy, M. H. Lu, and J. C. Sturm, Appl. Phys. Lett. 72,519 (1998).
[34] P. F. Tian, P. E. Burrows, and S. R. Forrest, Appl. Phys. Lett. 71, 3197 (1997).
[35] R. F. Service, Science 279, 1135 (1998).
[36] N. Suganuma, C. Adachi, T. Koyama, and Y. Taniguchi, Appl. Phys. Lett. 74,
1206 (1999).
[37] S. Y. Chou, P. R. Krauss, W. Zhang, L. J. Guo, and L. Zhuang, J. Vac. Sci.
Technol. B 15, 2897 (1997).
[38] W. C. Liao and S. L. C. Hsu, J. Vac. Sci. Technol. B 22, 2764 (2004).
[39] C.W. Tang and S.A. VanSlyke, Appl. Phys. Lett. 51, 913. (1987)
[40] C. Adachi, T. Tsutsui and S. Saito, Optoelectron. Devices Technol. 6, 25. (1991)
[41] M.A. Baldo, S. Lamansky, P.E. Burrows, M.E. Thompson, S.R.Forrest, Appl. Phys. Lett. 75, 4 (1994)
[42] L.J. Rothberg and Andrew J. Lovinger, J. Mater. Res. 11, 3174 (1996).
[43] S. A. Chen and T.C. Kuo, thesis of Tsing Hua university. (1999)
[44] M. A. Baldo, D. F. O. Brien, M. E. Thompson, and S. R. Forrest, Phys. Rev. B, 60 14422 (1999).
[45] M. A. Baldo, D. F. O. Brien, Y. You, A. Shoustikvo, S. Sibley, M. E. Thompson, and S. R. Forrest, Nature, 395 151 (1998).
[46] M. A. Baldo, M. E. Thompson, and S. R. Forrest, Nature, 430 750 (2000).
[47] S. Y. Chou, P. R. Krauss, and P. J. Renstrom, Appl. Phys. Lett. 67, 3114 (1995) and Science, 272, 85 (1996).
[48] J. Haisma, M. Verheijen, K.van der Heuvel, and J. van der Berg, J. Vac. Sci. Technol. B, 14, 4124 (1996).
[49] A. Kumar, G.M. Whitesides, Appl Phys Lett., 63, 2002 (1993).
[50] H. Tan, A. Gilbertson, S.Y. Chou, J Vac Sci Technol. B, 16, 3926 (1999).
[51] P. Rucjjpeft, M. colburn, B. Choi, Nounu, S. Johnson, C. G. Wilson, et al, J. Vac. Sci. Technol. B, 17, 2965 (1999).
[52] N. B. Mckeown, Phthalocyanine Materials Synthesis, Structure and Function,
32–47, Cambridge University Press, New York (1998).
[53] L. Grzadziel, J. Żak, and J. Szuber, Thin Solid Films, 436, 70 (2003).
[54] W. J. Kroenke, M. E. Kenny, Inorg. Chem., 3, 696 (1964).
[55] A. N. Sidorov, Opt. Spectrosc. 40, 280 (1976).
[56] A. J. Dann, H. Hoshi, Y. Maruyama, J. Appl. Phys. 67, 1371 (1990).
[57] B. Hutchinson, B. Spencer, R. Thompson, P. Neilt, Spectrochim. Acta A 43 671 (1987).
[58] T. Kobayashi, F. Kurokawa, N. Uyeda, E. Suito, Spectrochim. Acta A 26 1305
(1970).
[59] Nile B. Mckeown, Phthalocyanine materials synthesis, structure and function, Cambridge, 1998
[60] A.C. Grimsdale, F. Cacialli, J. Gruner, X.C. Li, J. Pommerehne, H. Vestweber, W. Guss, R.F. Mahrt, H. Ba¨ssler, M. Porsch, J. Daub, Adv. Mater. 7, 551 (1995).
[61] A. J. Ikushima, T. Kanno, S. Yoshida, and A. Maeda, Thin Solid Films, 273, 35 (1996).
[62] E. A. Ough, J. M. Stillman, and K. A. M. Creber, Can. J. Chem., 71, 1898 (1993).
[63] A. Davidson, J. Chem. Phys., 77, 168 (1982).
[64] J. Bardeen, F. Salt, L. Hall, Photoconductivity Conference, Wiley, New York, p.146 (1965).
[65] J. Bardeen, F. Salt, and L. Hall, Photoconductivity Conference, p. 146 (1956).
[66] A. Wolberg and J. Manassen, J. Am. Chem. Soc., 92, 2982 (1970).
[67] D. Schlettwein and N. R. Armstrong, J. Phys. Chem., 98, 11771 (1994).
[68] D. R. Kearns and M. Calvin, J. Chem. Phys., 34, 2026 (1961).
[69] I. G. Hill, D. Milliron, J. Schwartz, and A. Kahn, Proc. SPIE, 3797, 276 (1999).
[70] M. A. Lampert, Rep. Prog. Phys., 27, 329 (1964).
[71] R. D. Gould, M. S. Rahman, J. Phys. D, 14 79 (1981).
[72] K. Wihksne, A. E. Newkirk, J. Chem. Phys., 34 2184 (1961).
[73] S. E. Harrison, K. H. Ludewig, J. Chem. Phys., 45 343 (1966).
[74] T.D. Anthopoulos, T.S. Shafai, Phys. Stat. Sol. (a), 181 569 (2000), 186 89 (2001).
[75] P.J. Reucroft, F.D. Mulins, J. Chem. Phys., 58 (1973) 2918.
[76] A. K. Jonscher, Dielectric Relaxation in Solids (Chelaea Dielectrics, London), 85 (1983)
[77] A. J. Campbell, D. D. C. Bradley, and D. G. Lidzey, J. Appl. Phys., 82, 6326 (1997).
[78] A. Hunt, J. Phys.: Condens. Matter, 3, 7831 (1991).
[79] H. Vestweber and W. Rieß, Synth. Met., 91, 181 (1997).
[80] H. Aziz, Z. D. Popovic, N.-X. Hu, A.-M. Hor, and G. Xu, Science, 283, 1900
(1999).
[81] S. M. Tadayyon, H. M. Grandin, K. Griffiths, L. L. Coatsworth, P. R. Norton, H. Aziz, and Z. D. Popovic, Org. Electron., 5, 199 (2004).
130
[82] F. Nuesch, M. Carrara, M. Schaer, D. B. Romero, and L. Zuppiroli, Chin. Phys.Lasers, 347, 311 (2001).
[83] S. M. Tadayyon, H. M. Grandin, K. Griffiths, P. R. Norton, H. Aziz, and Z. D.Popovic, Org. Electron., 5, 157 (2004)
[84] B. Boudjema, G. Guillaud, M. Gamoudi, M. Maitrot, J. Andre, M. Martin, and J. Simon, J. Appl. Phys., 56, 2323 (1984).
[85] P. C. Kao, S. Y. Chu, Z. X. You, S. J. Liu, and C. A. Chuang, Thin Solid Films, 498 , 249 (2006).
[86] V. Buloviæ, V.B. Khalfin, G. Gu, P.E. Burrows, D.Z. Garbuzov, S.R. Forrest, Phys. Rev. B ,58 , 3730 (1998).
[87] H. Riel, W. Brutting, T. Beierlein, E. Haskal, P. Muller, and W. Rieß, Synth. Met.,111, 303 (2000).
[88] B. Masenelli, D. Berner, M. N. Bussac, F. Nüesch, and Zuppiroli, Appl. Phys. Lett., 79, 4438 (2001).
[89] Z. Bao, A. J. Lovinger, and A. Dodabalapur, Appl. Phys. Lett., 69, 3066 (1996).
[90] Z. Deng, S. T. Lee, D. P. Webb, Y. C. Chan, and W. A. Gambling, Synth. Met., 107, 107 (1999).
[91] C. H. Kim and J. Shinar, Appl. Phys. Lett., 80, 2201 (2002)
[92] B. W. D’Andrade, M. E. Thompson, and S. T. Forrest, Adv. Mater. (Weinheim, Ger.), 14, 147 (2002).
[93] J. Kido, H. Shionoya, and K. Nagai, Appl. Phys. Lett., 67, 2281 (1995).
[94] Y. Kawamura, S. Yanagida, and S. R. Forrest, J. Appl. Phys., 92, 87 (2002).
[95] A. Dodabalapur, L. J. Rothberg, and T. M. Miller, Appl. Phys. Lett., 65, 2308 (1994).
[96] D. Qin and Y. Tao, Appl. Phys. Lett., 86, 113507 (2005).
[97] F. Li, G. Cheng, Y. Zhao, J. Feng, S. Liu, M. Zhang, Y. Ma, and J. Shen, Appl.Phys. Lett., 83, 4716 (2003).
[98] K. A. King, P. J. Spellane, and R. J. Wattes, J. Am. Chem. Soc., 107, 1431 (1985).
[99] M. G. Colombo, T. C. Brunold, T. Riedener, H. U. Gudel, M. Fortsch, and H.-B. Burgi, Inorg. Chem., 33, 545 (1994).
[100] V. Bulovic, R. Deshpande, M. E. Thompson, and S. R. Forrest, Chem. Phys.
Lett.,308, 317 (1999).
[101] T. Förster, Discuss. Faraday Soc., 27, 7 (1959).
[102] S. Lamansky, P. Djurovich, D. Murphy, F. Adbel-Razzaq, H.-E. Lee, C. Adachi,P.E. Burrows, S. R. Forrest, and M. E. Thompson, J. Am. Chem. Soc., 123, 4304 (2001).
[103] A. Tsuboyama, H. Iwawaki, M. Furugori, T. Mukaide, J. Kamatani, S. Igawa, T. Moriyama, S. Miura, T. Takiguchi, S. Okada, M. Hoshino, and K. Ueno, J. Am. Chem. Soc., 125, 12971 (2003).
[104] F. M. Hwang, H. Y. Chen, P. S. Chen, C. S. Liu, Y. Chi, C. F. Shu, F. I. Wu, P. T.Chou, S. M. Peng, and G. H. Lee, Inorg. Chem., 44, 1344 (2005).
[105] J. T. Lim, C. H. Jeong, J. H. Lee, J. H. Lim, and G. Y. Yeom, Jpn. J. Appl. Phys.,Part 1, 45, 1826 (2006).
[106] J. H. Niu, W. L. Li, H. Z. Wei, M. T. Li, W. M. Su, Q. Xin, Z. Q. Zhang, and Z. Z. Hu, J. Phys. D, 38, 1136 (2005).
[107] E. G. Thianche, C. Sentein, A. Lorin, C. Denis, P. Raimond, and J. M. Nunzi, J. Appl. Phys., 83, 4236 (1998).
[108] H. Murata, C. D. Merritt, and Z. H. Kafafi, IEEE J. Sel. Top. Quantum Electron., 4, 119 (1998).
[109] N. Matsusue, S. lkame, Y. Suzuki, and H. Naito, J. Appl. Phys., 97, 123512 (2005).
[110] C. Qiu, Z. Xie, H. Chen, B. Z. Tang, M. Wong, and H. S. Kwok, IEEE J. Sel. Top. Quantum Electron., 10, 101 (2004).
[111] F. Nuesch, D. Berner, E. Tutis, M. Schaer, C. Ma, X. Wang, B. Zhang, and L. Zuppiroli, Adv. Funct. Mater., 15, 323 (2005).
[112] C. Adachi, M. A. Baldo, S. R. Forrest, S. Lamansky, M. E. Thompson, and R. C. Kwong, Appl. Phys. Lett., 78, 1622 (2001).
[113] S. Y. Chou, P. R. Krauss, and P. J. Renstrom, J. Vac. Sci. Technol. B,
Microelectron. Process. Phenom., 14, 4129 (1996).
[114] W. C. Liao and S. L. C. Hsu, J. Vac. Sci. Technol., B 22, 2764 (2004).
[115] D. Khang, H. Kang, T. Kim, and H. H. Lee, Nano Lett., 4, 633 (2004).
[116] R.W. Jaszewski, H. Schift, B. Schnyder, A. Schneuwly, and P. Groning, Appl. Surf. Sci., 143, 301 (1999).
[117] M. Beck, M. Graczyk, I. Maximov, E. L. Sarwe, T. G. I. Ling, M. Keil, and L. Montelius, Microelectron. Eng., 61-62, 441 (2002).
[118] H. Tan, A. Gilbertson, and S. Y. Chou, J. Vac. Sci. Technol. B 16, 3926 (1998).
[119] X. Cheng and L. J. Guo, Microelectron. Eng. 71, 277 (2004).
[120] J.-J. Ho and C.-Y. Chen, J. Electrochem. Soc. 152, G57 (2005).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 王福東。2001。<假色情之名,行藝術之實—評鄭淑麗作品「IKU」>。《藝術觀點》11:4-5。
2. 李秀娟。1999。<航向帝國邊境:女性旅行與吳爾芙「出航」中的慾望版圖>。《中外文學》27.12:50-78。
3. 林幸謙。2001。<蕭紅小說的妊娠母體和病體銘刻—女性敘述與怪誕現實主義書寫>。《清華學報》31.3:301-37。
4. 林松燕。2002。<身體與流體經濟---依蕊格萊的女性形構學>。《中外文學》31.2:9-38。
5. 邱誌勇、許夢芸。2003。<回歸本真性—網路空間藝術再現的影像政治>。《當代》190:14-29。
6. 洪凌。1998。<科幻極短篇的趣味>。《幼獅文藝》4:30-33。
7. 酒井直樹。2002。<主體與/或「主體」(shutai)及文化差異之銘刻>。廖咸浩譯。。《中外文學》30.12:150-95。
8. 陳美華。1998。<解讀『比丘尼』在西方人眼中的隱含>。《中華佛學學報》11:311- 27。
9. 陳長房。1997。<建構東方與追尋主體:論當代英美旅行文學>。《中外文學》26.4:29-69。
10. 陳春燕。1999。<生活在ㄊㄚ方:從一位亞裔美籍作家看(後殖民情境的)書寫倫理>。《中外文學》27.10:44-65。
11. 單德興。2001。<冒現的文學/研究:台灣的亞美文學研究—兼論美國原住民文學研究>。《中外文學》29.11:111-28。
12. 黃寶萍。1997。<有關香蕉的詩尚未寫出來—看侯淑姿「窺」個展>。《藝術家》265(1997.06):301。
13. 馮品佳。1997。<書寫北美/建立家園:穆可杰的家的政治>。《中外文學》25.12:110-32。
14. 曾鈺涓。2005。<女性身體與藝術創作:從「美的象徵」到「主體意義」的呈現>。《婦研縱橫》74:31-42。
15. 游惠貞。1994。<獨立,在小眾與大眾之間—談崔明慧、鄭淑麗和她們的作品>。《聯合文學》11.1:194-197。