跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/12 04:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:萬泰麟
研究生(外文):Tai-Lin Wan
論文名稱:非接觸式感應充電技術應用於小家電裝置之研究
論文名稱(外文):Study of the Contactless Inductive Charging Technique for Small Household Electrical Appliances
指導教授:李嘉猷
指導教授(外文):Jia-You Lee
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:122
中文關鍵詞:非接觸感應充電家電電能傳輸感應饋電
外文關鍵詞:contactlesselectrical appliancesinductive charging technique
相關次數:
  • 被引用被引用:37
  • 點閱點閱:886
  • 評分評分:
  • 下載下載:237
  • 收藏至我的研究室書目清單書目收藏:3
本論文旨在研究非接觸式感應電能傳輸技術,並將其應用於小家電裝置之感應充電系統。文中首先探討非接觸式感應電能傳輸技術之基本原理及其應用範疇,進而論述影響系統操作之相關因素。就感應充電系統之耦合結構設計,係經由比較分析抉擇適當鐵芯結構,且針對所需補償電路進行分析及設計,再導入反射阻抗概念探討充電時負載電流變化對感應耦合之影響。非接觸式感應充電電路則採用雙閉迴路結構,俾維持感應耦合效率兼作過電流保護,並以2.5mm之氣隙規格進行系統電路參數設計。而後將所設計之感應充電系統予以電路實現,再用600mAh鋰電池作為充電負載,測試其於充電過程中隨充電電流變化時之耦合效率表現。經由實測驗證,本文所提非接觸式感應充電系統確具可行性,其於充電過程中之最高耦合效率可達82.1%。
This thesis investigates the contactless power transmission system with a small gap for small household electrical appliances’ inductive charging system. At first the applications and fundamental principles of contactless power transmission systems are studied, then the thesis followed by the discussion of the factors associated with the operating of system. The design of coupling structure is established by analyzing the comparison of different adequate cores. Then, the thesis focuses on the principle and design method of the compensation circuit to explain the practical design. The concept of reflected impedance is also introduced to understand the influence of the secondary load in the whole system. As for the circuit structure, it uses double closed-loop control to keep the coupling efficiency and provide overcurrent protection. Finally, this system is implemented in real circuit to be used to charge a 600mAh li-ion battery. The best coupling efficiency is 82.1% in charging processes with 2.5mm gap.
中文摘要 I
英文摘要 II
誌謝 III
目錄 IV
圖目錄 IX
表目錄 XVI
第一章 緒論 1
1-1 研究背景與目的 1
1-2 研究方法 5
1-3 論文大綱 6
第二章 感應耦合之原理分析 7
2-1 前言 7
2-2 感應線圈之動作原理 7
2-3 磁性材料 9
2-4 感應結構特性分析 10
2-5 感應結構之非理想效應與損耗 12
2-5-1集敷效應 12
2-5-2近接效應 15
2-5-3鐵芯之損耗 17
2-6 等效模型分析 18
2-7 變壓器耦合系數之量測 20
2-8 反射阻抗 21
2-9 次級側之耦合功率 23
第三章 系統之設計原理 24
3-1 前言 24
3-2 鐵芯結構選擇之考慮因素 24
3-3 鐵芯結構與磁路分析 27
3-4 非接觸式感應電能傳輸系統之耦合形式 30
3-5 RLC諧振之特性分析 31
3-5-1諧振原理 31
3-5-2 RLC串聯諧振 31
3-5-3 RLC並聯諧振 35
3-6 補償電路 37
3-6-1補償電路原理 37
3-6-2初級側之補償設計原理 39
3-6-3次級側之補償設計原理 40
3-7 加入補償電容之反射阻抗分析 41
3-7-1補償電容對反射阻抗之影響 41
3-7-2次級側採串聯電容補償之反射阻抗 44
3-7-3次級側採並聯電容補償之反射阻抗 48
3-8 補償電容之測試 52
3-9 負載變化對初級側諧振頻率之影響 55
3-10 控制電路之相關原理 57
3-10-1鎖相迴路之原理與使用 57
3-10-2磁滯比較器 59
3-11 充電電路 61
3-11-1二次電池之種類簡介 61
3-11-2充電策略 63
第四章 硬體電路之規劃與設計 67
4-1 前言 67
4-2 系統架構 67
4-3 驅動電路 69
4-3-1 D類半橋諧振電路 69
4-3-2半橋驅動IC 73
4-4 操作頻率之選擇 74
4-5 感應結構之選擇 75
4-6 繞組結構之設計 79
4-7 補償電路之設計 81
4-7-1補償電路之架構設計 81
4-7-2補償電容之設計 82
4-8 閉迴路設計 85
4-8-1諧振點追蹤電路 85
4-8-2待機狀態之設計 89
4-9 次級側之電路設計 97
4-9-1穩壓電路 97
4-9-2充電電路 98
4-10 整體電路之設計流程 99
第五章 模擬與實驗結果 102
5-1 前言 102
5-2 硬體電路之製作 102
5-3 系統測試 104
5-3-1諧振點追蹤控制實測 104
5-3-2耦合效率實測 104
5-3-3充電過程之系統實測 106
5-3-4氣隙改變之耦合效率實測 107
5-4 軟體模擬 108
5-5 系統之波形量測 110
第六章 結論與未來研究發展 114
6-1 結論 114
6-2 未來研究方向 115
參考文獻 116
自傳 122
[1]K. W. Klontz, D. M. Divan, D. W. Novotny, and R. D. Lorenz, “Contactless power delivery system for mining applications,” IEEE Trans. Ind. Appl., vol. 31, no. 1, pp. 27-35, 1995.
[2]B. J. Heeres, D. W. Novotny, D. M. Divan, and R. D. Lorenz, “Contactless underwater power delivery,” in Proc. IEEE PESC, 1994, pp. 418-423.
[3]J. M. Barnard, J. A. Ferreira, and J. D. van Wyk, “Sliding transformers for linear contactless power delivery,” IEEE Trans. Ind. Electron., vol. 44, no. 6, pp. 774-779, 1997.
[4]D. A. G. Pedder, A. D. Brown, and J. A. Skinner, “A contactless electrical energy transmission system,” IEEE Trans. Ind. Electron. vol. 46, no. 1, pp. 23-30, 1999.
[5]M. Takahashi, K. Watanabe, F. Sato, and H. Matsuki, “Signal transmission system for high frequency magnetic telemetry for an artificial heart,” IEEE Trans. Magn., vol. 37, no. 4, pp. 2921-2924, 2001.
[6]H. Matsuki, M. Shiiki, K. Murakami, and T. Yamamoto, “Investigation of coil geometry for transcutaneous energy transmission for artificial heart,” IEEE Trans. Magn., vol. 28, no. 5, pp. 2406-2408, 1992.



[7]F. Sato, T. Nomoto, G. Kano, H. Matsuki, and T. Sato, “A new contactless power-signal transmission device for implanted functional electrical stimulation (FES),” IEEE Trans. Magn., vol. 40, no. 4, pp. 2964-2966, 2004.
[8]K. Finkenzeller, RFID HANDBOOK. 2nd ed., Wiley, 2003.
[9]Y. Jang and M. M. Jovanovic, “A contactless electrical energy transmission system for portable-telephone battery chargers,” IEEE Trans. Ind. Electron., vol. 50, no. 3, pp. 520-527, 2003.
[10]B. Choi, J. Nho, H. Cha, T. Ahn, and S. Choi, “Design and implementation of low-profile contactless battery charger using planar printed circuit board windings as energy transfer device,” IEEE Trans. Ind. Electron., vol. 51, no. 1, pp. 140-147, 2004.
[11]Y. Jang and M. M. Jovanovic, “A new soft-switched contactless battery charger with robust local controllers,” in Proc. IEEE INTELEC, 2003, pp. 473-479.
[12]G. A. J. Elliott, J. T. Boys, and A. W. Green, “Magnetically coupled systems for power transfer to electric vehicles,” in Proc. IEEE PEDS, 1995, vol. 2, pp. 797-801.
[13]H. Sakamoto, K. Harada, S. Washimiya, K. Takehara, Y. Matsuo, and F. Nakao, “Large air gap coupler for inductive charger,” IEEE Trans. Magn., vol. 35, no. 5, pp. 3526-3528, 1999.
[14]H. Sakamoto, K. Harada, S. Washimiya, K. Takehara, Y. Matsuo, and F. Nakao, “Large air gap coupler for inductive charger,” in Proc. IEEE INTERMAG, 1999, p. 10.


[15]F. Sato, J. Murakami, H. Matsuki, S. Kikuchi, K. Harakawa, and T. Satoh, “Stable energy transmission to moving loads utilizing new CLPS,” IEEE Trans. Magn., vol. 32, no. 5, pp. 5034-5036, 1996.
[16]K. Hatanaka, F. Sato, H. Matsuki, S. Kikuchi, J. Murakami, M. Kawase, and T. Satoh, “Power transmission of a desk with a cord-free power supply,” IEEE Trans. Magn., vol. 38, no. 5, pp. 3329-3331, 2002.
[17]K. Hatanaka, F. Sato, H. Matsuki, S. Kikuchi, J. Murakami, M. Kawase, and T. Satoh, “Characteristics of the desk with cord-free power supply,” in Proc. IEEE INTERMAG, 2002, p. 6.
[18]D. K. Cheng, Field and Wave Electromagnetics. 2nd ed., Addison-Wesley, 1989.
[19]N. Xi and C. R. Sullivan, “An improved calculation of proximity-effect loss in high-frequency windings of round conductors, ” in Proc. IEEE PESC, 2003, vol. 2, pp. 853-860.
[20]J. A. Ferreira, “Improved analytical modeling of conductive losses in magnetic components,” IEEE Trans. Power Electron., vol. 9, no. 1, pp. 127-131, 1994.
[21]N. Xi and C. R. Sullivan, “Simplified high-accuracy calculation of eddy-current loss in round-wire windings,” in Proc. IEEE PESC, 2004, vol. 2, pp. 873-879.
[22]S. Eroglu, G. Friedman, and R. L. Magin, “Estimate of losses and signal-to-noise ratio in planar inductive micro-coil detectors used for NMR,” IEEE Trans. Magn., vol. 37, no. 4, pp. 2787-2789, 2001.


[23]A. W. Lotfi, P. M. Gradzki, and F. C. Lee, “Proximity effects in coils for high frequency power applications,” IEEE Trans. Magn., vol. 28, no. 5, pp. 2169-2171, 1992.
[24]A. W. Lotfi and F. C. Lee, “Proximity losses in short coils of circular cylindrical windings,” in Proc. IEEE PESC, 1992, vol. 2 pp. 1253- 1260.
[25]A. Schellmanns, P. Fouassier, J. P. Keradec, and J. L. Schanen, “Equivalent circuits for transformers based on one-dimensional propagation: accounting for multilayer structure of windings and ferrite losses,” IEEE Trans. Magn., vol. 36, no. 5, pp. 3778-3784, 2000.
[26]C. S. Wang, G. A. Covic, and O. H. Stielau, “Power transfer capability and bifurcation phenomena of loosely coupled inductive power transfer systems,” IEEE Trans. Ind. Electron., vol. 51, no. 1, pp. 148-157, 2004.
[27]Y. Wu, L. Yan, and S. Xu, “A new contactless power delivery system,” in Proc. ICEMS, 2003, vol. 1, pp. 253-256.
[28]J. Hirai, T. W. Kim, and A. Kawamura, “Study on crosstalk in inductive transmission of power and information,” IEEE Trans. Ind. Electron., vol. 46, no. 6, pp. 1174-1182, 1999.
[29]李依穎,非接觸式感應饋電技術應用於可動機具之研究,國立成功大學電機工程系碩士論文,2006。
[30]羅國原,非接觸式感應充電技術應用於可攜式電子產品之研究,國立成功大學電機工程系碩士論文,2006。


[31]S. Y. R. Hui and W. W. C. Ho, “A new generation of universal contactless Battery Charging platform for portable Consumer Electronic equipment,” IEEE Trans. Power Electron., vol. 20, no. 3, pp. 620-627, 2005.
[32]J. M. Barnard, J. A. Ferreira, and J. D. Van Wyk, “Linear contactless power transmission systems for harsh environments,” in Proc. IEEE AFRICON, 1996, vol. 2, pp. 711-714.
[33]J. Hirai, T. W. Kim, and A. Kawamura, “Wireless transmission of power and information and information for cableless linear motor drive,” IEEE Trans. Power Electron., vol. 15, no. 1, pp. 21-27, 2000.
[34]C. S. Wang, O. H. Stielau, and G. A. Covic, “Load models and their application in the design of loosely coupled inductive power transfer systems,” in Proc. PowerCon., 2000, vol. 2, pp. 1039-1044.
[35]H. Abe, H. Sakamoto, and K. Harada, “A noncontact charger using a resonant converter with parallel capacitor of the secondary coil,” IEEE Trans. Ind. Appl., vol. 36, pp. 444-451, 2000.
[36]J. Murakami, F. Sato, T. Watanabe, H. Matsuki, S. Kikuchi, K. Harakawa, and T. Staoh, “Consideration on cordless power station-contactless power transmission system,” IEEE Trans. Magn., vol. 32, no. 5, pp. 5037-5039, 1996.
[37]O. H. Stielau and G. A. Covic, “Design of loosely coupled inductive power transfer systems,” in Proc. PowerCon., 2000, vol. 1, pp. 85-90.
[38]K. W. E. Cheng and Y. Lu, “Development of a contactless power converter,” in Proc. IEEE ICIT, 2002, vol. 2, pp. 786-791.

[39]F. Nakao, Y. Matsuo, M. Kitaoka, and H. Sakamoto, “Ferrite core couplers for inductive chargers,” in Proc. PCC, 2002, vol. 2, pp. 850-854.
[40]H. Miura, S. Arai, F. Sato, H. Matsuki, and T. Sato, “A synchronous rectification using a digital PLL technique for contactless power supplies,” IEEE Trans. Magn., vol. 41, no. 10, pp. 3997-3999, 2005.
[41]R. L. Lin and Y. T. Chen, “Electronic ballast for fluorescent lamps with phase-locked loop control scheme,” IEEE Trans. Power Electron., vol. 21, no. 1, pp. 254-262, 2006.
[42]R. L. Lin and M. C. Yeh, “Inductor phase feedback for phase-locked loop control of electronic ballasts (PSRT),” in Proc. IEEE IAS, 2005, pp. 2763-2769.
[43]F. F. A. Van der Pijl, J. A. Ferreira, P. Bauer, and H. Polinder, “Design of an inductive contactless power system for multiple users,” in Proc. IEEE IAS, 2006, vol. 4, pp. 1876-1883.
[44]TPS5430 Data Sheet, Texas Instruments Inc., 2006.
[45]bq24002 Data Sheet, Texas Instruments Inc., 2004.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top