跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/11 09:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:羅銘翔
研究生(外文):Ming-hsiang Lo
論文名稱:永磁同步馬達調速驅動系統於跑步機之研製
論文名稱(外文):Development of an Adjustable Speed Drive System with PMSM for Treadmill
指導教授:鄭銘揚鄭銘揚引用關係
指導教授(外文):Ming-yang Cheng
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:88
中文關鍵詞:跑步機永磁同步馬達空間向量脈寬調變
外文關鍵詞:SVPWMTreadmillPMSM
相關次數:
  • 被引用被引用:12
  • 點閱點閱:889
  • 評分評分:
  • 下載下載:157
  • 收藏至我的研究室書目清單書目收藏:0
常見的跑步機為馬達調速驅動系統之一種應用,一般多以配置直流馬達為跑台的主要動力來源,但由於碳刷及換向片之間的機械性接觸,會造成換向時有火花產生,且高速運轉時有換向噪音及須定期保養等問題。此外,直流馬達低功率密度也會造成應用場合的限制。反觀永磁同步馬達具有高效率、高功率密度等良好特性,而且沒有碳刷及換向片,所以擁有可高速運轉且免維修等優點。為了有效改善傳統調速驅動系統因採用直流馬達所產生之問題,於本論文中,將改用永磁同步馬達做為跑台的主要動力來源。

本論文之主要目的為實現永磁同步馬達弦波電流驅動系統,並以一16位元數位訊號控制器dsPIC30F4011為核心實現全數位化之調速控制器。本論文所研發之調速控制器特點之一是使用低解析度霍爾感測元件之輸出訊號並搭配插值法,以獲得弦波電流驅動所需之連續轉子位置資訊。因空間向量脈波寬度調變(SVPWM)技術,具有較低的諧波失真、較高的電壓可利用率並適合以數位方式實現,因此在本論文功率開關的控制訊號採用SVPWM技術。相較一般常用的弦波脈波寬度調變(SPWM)技術,提升了變頻器的效率。透過動力計的實測,顯示本論文所研製的調速驅動系統具有良好的性能。
The conventional treadmill uses an adjustable speed motor drive system actuated by a DC motor. However, due to the fact that the DC motor is equipped with carbon brushes and commutator segments, the DC motor has inherent drawbacks such as sparks during commutation, loud noise and maintenance problems. In addition, the low power density of the DC motor causes many restrictions for application. In contrast, the permanent magnet synchronous motor (PMSM) is highly efficient. Since the PMSM does not have brushes and commutators, it can operate quietly at high speeds and is maintenance free. In order to prevent from the drawback of the conventional treadmill system, the PMSM is employed to replace the DC motor as the adjustable speed drive system for the treadmill in this thesis.
The aim of this thesis is to implement a sinusoidal current drive system for the PMSM. The kernel of the whole system is implemented by a 16-bit Digital Signal Controller (dsPIC30F4011). One of the major features of the fully digital speed tuning system developed in this thesis is to use the information obtained from the low resolution Hall effect sensor and numerical differentiation to estimate rotor positions needed in implementing sinusoidal current drives. In addition, compared with the SPWM, the SVPWM has attractive features such as smaller harmonic distortions, higher voltage utilization rate, and is suitable for digital implementation. The control signal of power switches is generated using SVPWM. In addition, the SVPWM yield higher inverter efficiency. The results of dynamometer testing show that the proposed approach presents satisfactory performance.
目 錄
中文摘要..........................................................................................................I
英文摘要.........................................................................................................II
誌謝.................................................................................................................IV
目錄..................................................................................................................V
表目錄.........................................................................................................VIII
圖目錄............................................................................................................IX

第一章 緒論...................................................................................................1
1.1 研究背景與動機....................................................................................1
1.2 研究目的與方法....................................................................................3
1.3 章節概述..................................................................................................7

第二章 永磁同步馬達................................................................................8
2.1 永磁同步馬達簡介...............................................................................8
2.1.1 電動機簡介.........................................................................................8
2.1.2 電動機分類.........................................................................................9
2.2 永磁同步馬達數學模型的建立與推導.......................................12
2.2.1 參考座標軸之定義.........................................................................12
2.2.2 內藏式永磁同步馬達之數學模型.............................................14
2.3 永磁同步馬達之控制方法................................................................20

第三章 永磁同步馬達驅動原理............................................................23
3.1 永磁同步馬達驅動..............................................................................23
3.1.1 方波電流驅動...................................................................................24
3.1.2 弦波電流驅動...................................................................................28
3.1.3 方波與弦波電流驅動之比較.......................................................30
3.2 變頻器基本原理...................................................................................31
3.2.1 弦波脈波寬度調變原理................................................................32
3.2.2 空間向量脈波寬度調變原理.......................................................37
3.2.3 弦波與空間向量脈波寬度調變原理之比較...........................43

第四章 永磁同步馬達調速驅動系統實現..........................................45
4.1 dsPIC30F4011數位訊號控制器之簡介...........................................45
4.2 基於霍爾感測訊號之弦波電流驅動..............................................47
4.2.1 轉速估測策略....................................................................................47
4.2.2 轉子位置插值法................................................................................49
4.3 以dsPIC為基礎之SVPWM實現........................................................51
4.4 速度迴路控制器...................................................................................56

第五章 實驗架構與實驗結果.................................................................58
5.1 實驗硬體架構........................................................................................59
5.1.1 動力量測平台與永磁同步馬達..................................................59
5.1.2 電源模組..............................................................................................60
5.1.3 驅動控制單元...................................................................................60
5.2 軟體程式架構........................................................................................61
5.3 跑步機平台............................................................................................67
5.4 實驗結果.................................................................................................69

第六章 結論與未來研究方向.................................................................81
6.1 結論...........................................................................................................81
6.2 未來研究建議........................................................................................82
參考文獻........................................................................................................83
自述..................................................................................................................88
[1]喬山健康科技, http://www.johnsonfitness.com/tw/
[2]吳明哲, 胡家勝, “健身運動平台簡介與市場趨勢,” 馬達科技研究中心第三十三期馬達電子報, 2003.
[3]廖福奕譯, 小型馬達技術, 全華科技圖書股份有限公司, 2006.
[4]黃弘賓, 單晶片微電腦為基礎的無轉軸偵測元件跑步機驅動系統之研製, 碩士論文,國立台灣科技大學電機工程學系, 2004.
[5]王順忠, 陳秋麟譯, 電機機械基本原理, 東華書局股份有限公司, 2004.
[6]T. Miller, “Brushless permanent-magnet motor drives,” Power Engineering Journal, vol. 2, no. 1, pp. 55-60, 1988.
[7]H. A. Toliyat, L. Hao, D. S. Shet, and T. A. Nondahl, “Position-sensorless control of surface-mount permanent-magnet AC (PMAC) motors at low speeds,” IEEE Transactions on Industrial Electronics, vol. 49, no. 1, pp. 157-164, 2002.
[8]S. Shinnaka, “New D-State-Observer based vector control for sensorless drive of permanent-magnet synchronous motors,” IEEE Transactions on Industry Applications, vol. 41, no. 3, pp. 825-833, 2005.
[9]A. Consoli, G. Scarcella, G. Tutino, and A. Testa, “Zero frequency rotor position detection for synchronous PM motors,” in Proceedings of IEEE 31st Annual Power Electronics Specialists Conference (PESC), Galway, Ireland, 2000, vol. 2, pp. 879-884.
[10]S. Morimoto, M. Sanada, and Y. Takeda, “Sinusoidal current drive system of permanent magnet synchronous motor with low resolution position sensor,” in Proceedings of IEEE IAS Annual Meeting, San Diego, CA, 1996, pp. 9-13.
[11]J. Bu, L. Xu, T. Sebastian, and B. Liu, “Near-zero speed performance enhancement of PM synchronous machines assisted by low cost Hall effect sensors,” in Proceedings of IEEE Applied Power Electronics Conference (APEC), Anaheim, CA, 1998, pp. 68-74.
[12]S. Morimoto, M. Sanada, and Y. Takeda, “High performance currentsensorless drive for PMSM and SynRM with only low resolution position sensor,” IEEE Transactions on Industry Applications, vol. 39, no. 3, pp. 792-801, 2003.
[13]F. G. Capponi, G. D. Donato, and L. D. Ferraro, “Brushless AC drive using an axial flux synchronous motor with low resolution position sensors,” in Proceedings of IEEE 35th Annual Power Electronics Specialists Conference (PESC), Aachen, Germany, 2004, vol. 3, pp. 2287-2292.
[14]J. X. Shen, Z. Q. Wong, and D. Howe, “PM brushless drives with low-cost and low-resolution position sensors,” in Proceedings of Power Electronics and Motion Control Conference (IPEMC), Xi’an, China, 2004, vol. 2, pp. 1033-1038.
[15]F. G. Capponi, G. D. Donato, L. D. Ferraro, O. Honorati, M. C. Harke, and R. D. Lorenz, “AC brushless drive with low-resolution Hall-effect sensors for surface-mounted PM machines,” IEEE Transactions on Industry Applications, vol. 42, no. 2, pp. 526-535, 2006.
[16]Z. Yu, A. Mohammed, and I. Panahi, “A review of three PWM techniques,” in Proceedings of IEEE American Control Conference – IEEE ACC, 1997, vol. 1, pp. 257-261.
[17]V. D. Broeck, H. C. Skudelny, and G. V. Stanke, “Analysis and Realization of a Pulsewidth Modulator Based on Voltage Space Vectors,” IEEE Transactions on Industry Application, vol. 24, no. 1, pp. 142-149, 1988.
[18]J. W. Jung, “Project #1 Sin-∆ PWM inverter,” Department of Electrical and Computer Engineering, The Ohio State University, 2005.
[19]J. W. Jung, “Project #2 space vectors PWM inverter,” Department of Electrical and Computer Engineering, The Ohio State University, 2005.
[20]Microchip, dsPIC30F4011/4012 Data Sheet, Microchip Technology Inc., 2005.
[21]Microchip, dsPIC30F Family Reference Manual, Microchip Technology Inc., 2003.
[22]王金標, 電動機控制:馬達驅動器理論及實作, 全威圖書有限公司, 2001.
[23]B. K. Bose, “Power electronics and motion control-technology status and recent trends,” IEEE Transactions on Industry Applications, vol. 29, no. 5, pp. 902-909, 1993.
[24]戴維志, 空調壓縮機調速驅動系統之設計與實現, 碩士論文, 國立成功大學電機工程學系, 2006.
[25]C. Mademlis, I. Kioskeridis, and N. Margaris, “Optimal efficiency control strategy for interior permanent-magnet synchronous motor drives,” IEEE Transactions on Energy Conversion, vol. 19, no. 4, pp. 715-723, 2004.
[26]R. H. Park, “Two-reaction theory of synchronous machines: part II,” AIEE Transactions, vol. 52, no. 2, pp. 352-355, 1933.
[27]D. Y. Ohm, “Dynamic model of PM synchronous motors,” Drivetech, Inc., Blacksburg, Virginia, 2000. www.drivetechinc.com
[28]P. C. Krause, Analysis of Electric Machinery, McGraw-Hill, 1986.
[29]黃明熙, 周明昌, 謝明福, 蕭國昌, “永磁同步馬達於複合動力車輛之應用,” 二零六期機械工業雜誌, 2004.
[30]K. H. Bayer, H. Waldmann, and M. Weibelzahl, “Field-oriented closed-loop control of a synchronous machine with new transvector control system,” Siemens Review, vol. 39, pp. 220-223, 1972.
[31]L. Zhong, M. F. Rahman, W. Y. Hu, and K. W. Lim, “Analysis of direct torque control in permanent magnet synchronous motor drives,” IEEE Transactions on Industrial Electronics, vol. 12, no. 3, pp. 528-536, 1997.
[32]黃偉庭, CPLD為基礎之永磁同步馬達直接轉矩控制IC之研製, 碩士論文, 國立交通大學電機與控制工程系, 2003.
[33]G. Ellis, Control System Design Guide: using your computer to develop and diagnose feedback controllers, Second Edition, Academic Press, USA, 1991.
[34]王順忠譯, 電力電子學, 東華書局股份有限公司, 1998.
[35]R. Parekh, “VF control of 3-phase induction motor using space vector modulation,” Microchip Technology Inc., 2005.
[36]曾百由, dsPIC數位訊號控制器原理與應用-MPLAB C30開發實務, 宏友圖書開發股份有限公司, 2005.
[37]T. D. Batzel, and K. Y. Lee, “Commutation torque ripple minimization for permanent magnet synchronous machines with Hall effect position feedback,” IEEE Transactions on Energy Conversion, vol. 13, no. 3, pp. 257-262, 1998.
[38]R. H. Brown, S. C. Schneider, and M. G. Mulligan, “Analysis of algorithms for velocity estimation from discrete position versus time data,” IEEE Transactions on Industrial Electronics, vol. 39, no. 1, pp. 11-19, 1992.
[39]張碩, 自動控制系統, 鼎茂圖書出版股份有限公司, 2001.
[40]Microchip, MPLAB C30 C Compiler User’s Guide, Microchip Technology Inc., 2004.
[41]Cyntec, “LDIP-IPM application note,” Cyntec Co., Ltd., 2004.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top