跳到主要內容

臺灣博碩士論文加值系統

(44.220.181.180) 您好!臺灣時間:2024/09/14 12:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張耿毓
研究生(外文):Keng-yu Chang
論文名稱:一個具有單相位時脈電容平均化之八位元每秒五億次取樣快閃式類比數位轉換器
論文名稱(外文):An 8-bit 500MS/s Flash ADC Using Capacitor Averaging with a Single-Phase Clock
指導教授:郭泰豪
指導教授(外文):Tai-haur Kuo
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:88
中文關鍵詞:快閃式類比數位轉換器單相位時脈
外文關鍵詞:single phase clockflash ADC
相關次數:
  • 被引用被引用:0
  • 點閱點閱:316
  • 評分評分:
  • 下載下載:95
  • 收藏至我的研究室書目清單書目收藏:0
電阻網路平均化技術可以有效的消減快閃式類比數位轉換器中比較器間的隨機偏移誤差值,但在電阻網路的邊界會產生非對稱的問題必須靠額外的電路解決,因此會造成更大的功率消耗以及信號範圍,自動歸零機制是另一有效抑制隨機偏移誤差的方法,但在連續信號轉換的應用上,要將一無空轉時間的自動歸零機制實現於一高速低潛伏的快閃式類比數位轉換器是相當困難的。在本論文,提出了一個具有單時脈相位的電容平均化技術來實現這個目標。電容平均化技術沒有邊界效應的限制,具有消減偏移誤差值的作用並因此縮小了第一級前置放大器的面積。又此技術是以自動歸零機制為主幹,故提出了一個開關式前置放大器來避免傳統自動歸零機制必須使用非重疊時脈相位的限制與消除高速自動歸零機制對輸入端的干擾。此外,相對於近年來所發表的自動歸零機制快閃式類比數位轉換器所需多相位時脈,所提出的技術具有單一相位控制的優點並避免了同步的問題。內插技術亦使用於此設計中,用來降低輸入負載前置放大器數目以及差值非線性誤差。
此類比數位轉換器之實現是採用0.18微米,1P6M互補型金氧半混合信號製程,面積為1.18微米平方。量測結果顯示此設計可以在500MHz的操作速度下,輸入信號頻率在100MHz以內時,約有大於30分貝的SNDR動態表現。整個晶片不包含輸出緩衝器共消耗了198mW的功率,其中類比電路供應1.8V的電壓而數位電路則是供應2.3V的電壓。
Averaging networks suppress the random offset efficiently between the comparators in flash ADCs, but it causes limitations at the averaging network boundaries. Although the effect can be resolved by additional terminal circuits, it costs larger power consumption and input headroom. Auto-zeroing technique is another effective way to reduce the error, but it is difficult to implement auto-zeroing without idle time in a high speed low latency flash for continuous data conversion. In this thesis, capacitor averaging with single-phase clock technique is proposed to achieve the target. Capacitor averaging technique without boundary limitation can alleviate random offset, and thus, reduce the area of first preamplifier stage. Since the technique is based on auto-zeroing technique, a switching preamplifier is provided to avoid non-overlap control signals requirement by conventional auto-zeroing ADCs and eliminate the interference caused by the high speed auto-zeroing operation at input nodes. Besides, the proposed technique has the merit of a single clock phase control to avoid synchronous issues since mutli-clock phase are necessary for recent published flash ADCs with auto-zeroing technique. Interpolation technique is also used in this design to reduce input loading, preamplifier number and differential nonlinearity (DNL) error in the ADC.
The ADC is fabricated in 0.18�慆 1P6M CMOS technology and occupies an area of 1.18mm2. The measurement results show that this design can achieve an operating rate of 500MHz with SNDR>30dB when input frequency < 100MHz. The total Chip draws 198mW non-including output buffer and the property runs off 1.8V analog and 2.3V digital supplies.
Table of Contents
1 Introduction...1
1.1 Motivation...1
1.2 Organization...2

2 Error Analysis of Flash ADC ...4
2.1 Quantization Error...4
2.2 Noise...7
2.3 Offset Mismatch...9
2.4 Clock Skew Effect...13
2.5 Signal Dependent Comparator Delay Error...16
2.6 Kickback Noise...20
2.7 Metastability and Hysteresis...21
2.8 Bubble Error...23

3 Proposed Technique of the Flash ADC...25
3.1 Interpolation Technique...25
3.1.1 Interpolation Typ...27
3.1.2 Interpolation Analysis...29
3.2 Auto-zeroing Technique...31
3.2.1 Auto-zeroing Principle...31
3.2.2 Auto-zeroing Topology...32
3.2.3 Modified Auto-zeroing...34
3.3 Averaging Technique...37
3.3.1 Resister Averaging Network...38
3.3.2 Offset Reduction with Averaging Network...40
3.3.3 Mathematic Derivation of Averaging Network...42
3.4 Reinterpolation Technique...45
3.5 Proposed Capacitor Averaging with Single-Phase Clock...47

4 Circuit Design of the Flash ADC...52
4.1 The Architecture of Proposed ADC...52
4.2 Reference Ladder Consideration...54
4.2.1 Effect to the Accuracy of Resistor Ladder...54
4.2.2 Matching Behavior of the Resistor Ladder...55
4.3 Front-End Track and Hold Circuit...57
4.4 Comparator Circuit Design...59
4.4.1 Circuit Topology and Consideration...60
4.4.2 Switching Preamplifier...61
4.4.3 Preamplifier2 Circuit...62
4.4.4 Latch Circuit...63
4.5 Digital Encoder Design...65
4.5.1 Consideration of Digital Encoder...66
4.5.2 Implementation of Digital Encoder...67
4.6 Timing Generator Circuit....68

5 Layout and Results...72
5.1 Power Supply Partition...72
5.2 Floor Plan and Layout...73
5.3 Measurement Considerations...74
5.3.1 Measure Step...75
5.4 PCB Design Consideration...76
5.4.1 Transmission Line Effect...76
5.4.2 Crosstalk...76
5.4.3 Decoupling...76
5.4.4 PCB Fabrication...77
5.5 Experimental Result...77

6 Conclusion and Future Work...82

Reference ...84
[1] G. Gielen and E. Paulus, "An 8b 600 MS/s 200mWCMOS folding A/D converter using an amplifier preset technique," in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, vol. 47, Feb. 2004, pp. 254-255.
[2] K. Azadet et al., "Equalization and FEC techniques for optical tranceivers," in IEEE J. Solid-State Circuits, vol. 37, no. 3, pp. 317-327, Mar. 2002.
[3] R. Taft, C. Menkus, M. R. Tursi, O. Hidri, andV. Pons, "A 1.8V 1.6 GS/s8b self-calibrating folding ADC with 7.26 ENOB at Nyquist frequency," in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, vol. 47, Feb. 2004, pp. 252-253.
[4] K. Poulton et al., "A 20 GS/s 8b ADC with a 1 MB memory in 0.18um CMOS," in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, vol. 46, Feb. 2003, pp. 318-319.
[5] X. Jiang, Z. Wang, and M. F. Chang, "A 2 GS/s 6b ADC in 0.18um CMOS," in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, vol. 46, Feb. 2003, pp. 322-323.
[6] M. Choi and A. A. Abidi, "A 6-b 1.3-Gsample/s A/D converter in 0.35-um CMOS," in IEEE J. Solid-State Circuits, vol. 36, no. 12, pp. 1847-1858, Dec. 2001.
[7] B.-M. Min, P. Kim, F. W. Bowman III, D. M. Boisvert, and A. J. Aude, "A 69-mW 10-bit 80-MSample/s pipelined CMOS ADC, " in IEEE J. Solid-State Circuits, vol. 38, no. 12, pp. 2031-2039, Dec. 2003.
[8] B. Murmann and B. E. Boser, "A 12-bit 75-MS/s pipelined ADC using open-loop residue amplification," in IEEE J. Solid-State Circuits, vol. 38, no. 12, pp. 2040-2050, Dec. 2003.
[9] Y. Yoshii, K. Asano, M. Nakamura, and C. Yamada, "An 8 bit, 100 MS/s flash ADC," in IEEE J. Solid-State Circuits, vol. SSC-19, pp. 842-846, Dec. 1984.
[10] B. Nauta and A. G.W. Venes, "An 70-MS/s 110-mW 8-b CMOS folding and interpolating A/D converter," in IEEE J. Solid-State Circuits, vol. 30, pp. 1302-1308, Dec. 1995.
[11] C. S. G. Conroy, D. W. Cline, and P. R. Gray, "An 8-b 85-MS/s parallel pipeline A/D converter in 1-um CMOS," in IEEE J. Solid-State Circuits, vol. 28, pp. 447-454, Apr. 1993.
[12] B. Razavi and B. A. Wooley, "Design techniques for high-speed, high resolution comparators," in IEEE J. Solid-State Circuits, vol. 27, no. 12, pp. 1916-1926, DEC 1992.
[13] K. Kattmann and J. Barrow, "A technique for reducing differential nonlinearity errors in flash A/D converters," in Proc. IEEE Int. Solid State Circuits Conf., pp. 170-171, 1991.
[14] H. Kimura, A. Matuszawa, T. Nakamura, and S. Sawada, "A 10-b 300-MHz interpolated-parallel A/D converter," in IEEE J. Solid-State Circuits, vol. 28, pp. 438-446, April 1993.
[15] Chun-Wei Hsu and Tai-Haur Kuo, "6-bit 500MHz Flash A/D Converter with New Design Techniques," IEE Proceedings-Circuits, Devices and Systems, Vol. 150, No. 5, pp. 460-464, Oct. 2003. (SCI, EI)
[16] Chun-Pin Ho, "A 8-Bit 250MHz Flash A/D Converter With New Design Techniques" Master thesis, NCKU, 2005
[17] Uyttenhove K, Steyaert MSJ, "Speed-power-accuracy tradeoff in high-speed CMOS ADCs," in IEEE Transactions on Circuits And Systems II-Analog And Digital Signal Processing, vol. 49, no. 4, pp. 280-287, April 2002.
[18] William T. Colleran, "A 10-bit, 100MS/s A/D Converter using Folding, Interpolation, and Analog Encoding," Ph.D. dissertation, UCLA, Dec. 1993
[19] Claude-Alain Gobet and Alexander Knob, "Noise Analysis of Switched Capacitor Networks," in IEEE Transaction on Circuits and Systems, vol. 30, no. 1, pp. 37-43, Jan. 1983
[20] Chun-Wei Hsu, "A 6-Bit Flash A/D Converter With New Dwsign Techniques," Master thesis, NCKU, 2002
[21] Michael Byung Choi, "A 6-bit 1.3GSample/s A/D Converter in 0.35um CMOS," Ph.D. dissertation, UCLA, 2002
[22] M. J. M. Pelgrom, A. Duinmaijer, and A. Welbers, "Matching preperties of MOS transistor," in IEEE J. Solid-State Circuits, vol. 24, no. 5, pp. 1433-1439, Oct. 1989
[23] Ardie G. W. Venes and Rudy J. van de Plassche, "An 80-MHz, 80-mW, 8-b CMOS Folding A/D Converter with Distributed Track-and-Hold Preprocessing," in IEEE J. Solid-State Circuits, vol. 31, no. 12, pp. 1846-1853, Dem. 1996
[24] Selim Saad Awad, "Analysis of Accumulated Timing-Jitter in the time Domain," in IEEE J. Solid-State Circuits, vol. 47, no. 1, pp. 69-73, Feb. 1998
[25] CMOS Integerated Analog-to-Digital and Digital-toAnalog Converters
[26] Hiroshi Kimura, Akira Matsuzawa, Takashi Nakamura and Shigeki Sawada, "A 10-b 300-MHz Interpolated-Parallel A/D Converter, " in IEEE J. Solid-State Circuits, vol. 28, no. 4, pp. 1846-1853, April. 1993
[27] Michael P. Flynn and David J. Allstot, "CMOS Folding A/D Converters with Current-Mode Interpolation," in IEEE J. Solid-State Circuits, vol. 31, no. 9, pp. 1248-1257, Sep. 1996
[28] J. Doernberg, P. R Gray and D. A. Hodges, "A 10-Bit 5-Msample/s CMOS Two-Step Flash ADC," in IEEE J. Solid-State Circuits, vol. SC-24, no. 9, pp. 241-249, April. 1998
[29] Xicheng Jiang and Mau-Chung Frank Chang, "A 1-GHz Signal Bandwidth 6-bit CMOS ADC With Power-Efficient Averaging," in IEEE J. Solid-State Circuits, vol.40, no. 2, brief, February 2005
[30] K. Bult and A. Buchwald, "An embedded 240-mW 10-b 50-MS/s CMOS ADC in 1-mm" in IEEE J. Solid-State Circuits, vol. 32, no. 12, pp. 1887-1895, Dec. 1997.
[31] P. Scholtens and M. Vertregt, "A 6-b 1.6-Gsamples/s flash ADC in 0.18-um CMOS using averaging termination," in IEEE J. Solid-State Circuits, vol. 37, no. 12, pp. 1599-1609, Dec. 2002.
[32] Y. T. Wang and B. Razavi, "An 8-Bit, 150-MS/s CMOS A/D Converter," in IEEE J. Solid-State Circuits, vol. 35, no. 6, pp. 308-317, Mar. 2000.
[33] R. J. van de Plassche, Integrated Analog-to-Digital and Digital-to-Analog Converters , Kluwer Academic Publisher, 1994
[34] B. Razavi, "Design of Dample-and-Hold Amplifiers for High-Speed Low-Voltage A/D Converters" in IEEE Custom Integrated Circuits Cond., pp. 5.1.1-5.1.4, 1997
[35] M. J. M Pelgrom, A. C. J. Diumaijer, and A. P. G. Welbers, "Matching properties of MOS transistors," in IEEE J. Solid-State Circuits, vol. 24, pp. 1433-1440, Oct. 1989.
[36] Koen Uyttenhove et al., "Design techniques and Implementation of an 8-bit 200-MS/s interpolating/averaging CMOS A/D Converter," in IEEE J. Solid-State Circuits, vol. 38, no. 3, pp. 483-494, Mar. 2003.
[37] G. M. Yin, F. Op't Eynde, and W. Sansen, "A High-Speed CMOS Comparator with 8-b Resolution," in IEEE J. Solid-State Circuits, vol. 27, no. 2, pp. 208-211, Feb. 1992.
[38] G. Gielen, H.Walscharts, andW. Sansen, "ISAAC: a symbolic simulator for analog integrated circuits," in IEEE J. Solid-State Circuits, vol. 24, pp. 1587-1597, Dec. 1989.
[39] G. Van der Plas, W. Daems, E. Lauwers, J. Vandenbussche, W. Verhaegen, G. Gielen, and W. Sansen, "Symbolic analysis of CMOS regenerative comparators," in Proc. Eur. Conf. Circuit Theory and Design, Aug. 1999, pp. 86-89.
[40] Tsutomu Wakimoto, Yukio Akazawa, and Shinsuke Konaka, "Si Bipolar 2-GHz 6-bit Flash A/D Conversion LSI," in IEEE J. Solid-State Circuits, vol. 23, no. 6, pp. 1345-1350, Dec. 1988.
[41] Declan Dalton et al., "A 200MSPS, 6-Bit Flash ADC in 0.6-um CMOS," in IEEE J. Solid-State Circuits, vol. 45, no. 11, pp. 1433-1444, Dec. 1998.
[42] Akira Matsuzawa rt al., "A 6b 1GHz Dual-Paraell A/D Converter," in IEEE Int. Solid-State Circuits Conf., pp. 174-175, Feb. 1991.
[43] Iuri Megr and Declan Dalton, "A 500M-sample/s, 6-Bit Nyquist-Rate ADC for Disk-Drive Read Channel Applications," in IEEE J. Solid-State Circuits, vol. 24, pp. 1587-1597, Dec. 1989.
[44] Sanroku Tsukamoto, William G. Schofield ans Toshiaki Endo, "A CMOS 6-b 400M-sample/s ADC with Error Correction," in IEEE J. Solid-State Circuits, vol. 33, no. 12, pp. 1939-1947, Dec. 1998.
[45] Joey Doernberg, Paul R. Gray and David A. Hodges, "A 10-bit 5-Msample/s CMOS Two-Step Flash ADC," in IEEE J. Solid-State Circuits, vol. 24, no. 1, pp. 241-249, Apr. 1989.
[46] William T. Colleran, "A 10-bit 100MS/s A/D Converter using Folding, Interpolation, and Analog Encoding," PhD. Thesis UCLA, Dec. 1993.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top