參考文獻
[01]郭清癸, 黃俊傑, 牟中原, “金屬奈米粒子的製造”, 物理雙月刊, 廿三卷六期, 2001.[02]Manfred, T. R., Wolfgang, H., “Size-selective synthesis of nanosturctured transition metal clusters”, Journal of the American Chemical Society, Vol. 116, pp. 7401-7402, 1994.
[03]Junjie, Z., Aruna, S. T., Yuri, K. and Gedanken, A., “A novel method for the preparation of lead selenide-pulse sonoelectrochemical synthesis of lead selenide”, Chemistry of Material, Vol. 12, pp. 143, 2000.
[04]Von Gutfeld, R.J., Tynan, E.E., Melcher, R.L. and Blum, S.E., “Laser enhanced electroplating and maskless pattern generation”, Applied Physics Letters, Vol. 35, pp. 651, 1979.
[05]許新村, “雷射清除法之表面波機制研究”, 國立成功大學機械工程學系碩士論文, 1993.[06]Manfred, T. R., Wolfgang, H. and Stefan A. Q., ” Electrochemical preparation of nanostructured bimetallic clusters”, Chemistry of Material , Vol. 7, pp. 2227-2228, 1995.
[07]Motoi, K., Makoto, S., “Electrochemical reaction of Zn in water and growth of ZnO particles”, Journal of the Electrochemical Society, Vol. 144, No. 3, pp. 809-815, 1997.
[08]Allen, B., Chang, C., ”Effects of electroplating variables on composition and morphology of nickel-cobalt deposits blated through means of cyclic voltammetry”, Electrochimica Acta, Vol. 47, pp. 3447-3456, 2002.
[09]Tim, S. O., Plamen, A. and Dmitri, A. B., “Electrodeposition of gold particles on aluminum substrates containing copper”, Journal of Physical Chemistry B, Vol. 109, No. 3, pp. 1243-1250, 2005.
[10]Murray, B. J., Li, Q., Newberg, J. T., Menke, E. J., Hemminger, J. C. and Penner, R. M.,” Shape and size-selective electrochemical synthesis of dispersed silver(I) oxide colloids”, Nano Letters, Vol. 5, No. 11, pp. 2319-2324, 2005.
[11]蕭義鴻,“以電化學方法製備鐵奈米粒子之研究” ,國立中山大學電機工程學系研究所碩士論文, 1995.[12]邱品翔, ”以電化學方法製作金屬奈米粒子及其應用之研究”, 南台科技大學電機工程研究所碩士論文, 1994.[13]白育綸, 胡啟章,“循環伏安法和脈衝法製備奈米結構之鐵族合金”中國材料學科學會2003年年會會議.
[14]白育綸, 胡啟章,“循環伏安法電沈積純鈷和鐵鈷鎳金屬奈米球” ,中國化學工程學會2003年年會會議.
[15]Liu, Y. C., Yu, C. C.,” New pathway for the controllable synthesis of gold nanoparticles on platinum substrates and their derivatives of polypyrrole/gold nanocomposites”, Journal of Electroanalytical Chemistry, Vol. 585, No. 2, pp. 206-213, 2005.
[16]Liu, Y. C., Lin, L. H. and Chiu, W. H., “Size-controlled synthesis of gold nanoparticles from bulk gold substrates by sonoelectrochemical methods”, Journal of Physical Chemistry B, Vol. 108, No. 50, pp. 19237-19240, 2004.
[17]Liu, S., Huang, W., Chen, S., Avivi, S. and Gedanken, A.,” Synthesis of X-ray amorphous silver nanoparticles by the pulse sonoelectrochemical method “, Journal of Non-Crystalline Solids, Vol. 283, No. 1-3, pp. 231-236, 2001.
[18]Socol, Y., Abramson, O., Gedanken, A. Meshorer, Y., Berenstein, L. and Zaban, A., “ Suspensive electrode formation in pulsed sonoelectrochemical synthesis of silver nanoparticles”, Langmuir, Vol. 18, No. 12, pp. 4736-4740, 2002.
[19]Liu, Y. C., Lin, L. H., “ New pathway for the synthesis of ultrafine silver nanoparticles from bulk silver substrates in aqueous solutions by sonoelectrochemical methods”, Electrochemistry Communications, Vol. 6, No. 11, pp. 1163-1168, 2004.
[20]Chen, J., Yao S.,” Synthesis and characterization of silver nanoparticles by sonoelectrodeposition” , Rare Metals, Vol. 24, No. 4, pp. 376-380, 2005.
[21]Haas, I., Shanmugam, S. and Gedanken, A. “Pulsed sonoelectrochemical synthesis of size-controlled copper nanoparticles stabilized by poly(N-vinylpyrrolidone)”, Journal of Physical Chemistry B, Vol. 110, No. 34, pp. 16947-16952, 2006.
[22]Lei, H., Tang, Y. J., Wei, J. J., Li, J., Li, X. B. and Shi, H. L., “Synthesis of tungsten nanoparticles by sonoelectrochemistry“, Ultrasonics Sonochemistry, Vol. 14, No. 1, pp. 81-83, 2007.
[23]Qiu, X. F., Xu, J. Z., Zhu, J. M., Zhu, J. J, Xu, S. and Chen, H. Y., “Controllable synthesis of palladium nanoparticles via a simple sonoelectrochemical method”, Journal of Materials Research, Vol. 18, No. 6 , pp. 1399-1404, 2003.
[24]Puippe, J. C., Acosta, R. E., Von Gutfeld, R. J.,” Investigation of laser-enhanced electroplating mechanisms.”, Journal of the Electrochemical Society, Vol. 128, No. 12, pp. 2539, 1981.
[25]Von Gutfeld, R. J., Acosta, R. E., Romankiw, L. T., “Laser-enhanced plating and etching:mechanisms and applications”, IBM Journal of Research and Development, Vol. 26, pp. 136., 1982.
[26]Von Gutfeld, R. J., Romankiw, L. T., Gelchinski, M. H. and Vigliotti, D. R., ”Laser enhanced jet plating: a method of high-speed maskless patterning” Applied Physics Letters, Vol. 43, pp. 876, 1983.
[27]Von Gutfeld, R. J, “Laser-enhanced patterning using photothermal effects : maskless plating and etching” Journal of the Optical Society of America B, Vol. 4, pp. 272, 1987.
[28]Datta, M. , Romankiw, L. T., Vigliotti, D. R., Von Gutfeld, R. J., ” Jet and laser-jet electrochemical micromachining of nickel and steel.” , Journal of the Electrochemical Society, Vol 136, No.8, pp. 2251, 1989.
[29]Bindra, P., Arbach, G. V. and Stimming, U., ”On the mechanism of laser enhanced plating of copper”, Journal of the Electrochemical Society, Vol. 134, No. 11, pp.2893, 1987.
[30]Gu, Z. H., Fahidy, T. Z., ”Laser-induced spot deposition of copper on ITO substrates via pulsed-potential electrolysis”, Journal of the Electrochemical Society, Vol. 150, No. 1, pp. C24-C27, 2003.
[31]Wee, L. M., Li, L., “Multiple-layer laser direct writing metal deposition in electrolyte solution”, Applied Surface Science, Vol. 247, pp.285, 2005.
[32]Pajak, P. T., De Silva, A. K. M., McGeough, J. A. and Harrison, D. K., ”Modeling the aspects of precision and efficiency in laser-assisted jet electrochemical machining (LAJECM)”, Journal of Materials Processing Technology, Vol. 149, No. 1-3, pp. 512-518, 2004.
[33]Pajak, P. T., De Silva, A. K. M., Harrison, D. K. and McGeough, J. A., “Precision and efficiency of laser assisted jet electrochemical machining”, Precision Engineering, Vol. 30, No. 3, pp. 288-298, 2006.
[34]吳浩青, 李永舫, ”電化學動力學”, 科技圖書股份有限公司, 2001.
[35]Geoffery, P., “Electrochemical engineering principles”, Prentice Hall, 1991.
[36]Paul, D., ”Double layer and electrode kinetics”, Interscience publisher, 1966.
[37]田福助, ”電化學:理論與應用”, 高立圖書公司, 1987.
[38]Bortels, L., Deconinck, J. and Van Den Bossche, B.” Multi-dimensional upwinding method as a new simulation tool for the analysis of multi-ion electrolytes controlled by diffusion, convection and migration. Part 1. Steady state analysis of a parallel plane flow channel”, Journal of Electroanalytical Chemistry, Vol 404 ,pp. 15-26, 1996.
[39]Van Den Bossche, B., Bortels, L., Deconinck, J., Vandeputte, S. and Hubin, A., ”Numerical steady state analysis of current density distributions in axisymmetrical systems for multi-ion electrolytes : application to the rotating disc electrode”, Journal of Electroanalytical Chemistry ,441 pp. 129-143, 1996.
[40]Bortels, L., Van Den Bossche, B. and Deconinck, J., “Analytical solution for the steady-state diffusion and migration. Application to the identification of Butler-Volmer electrode reaction parameters”, Journal of Electroanalytical Chemistry, Vol. 422, pp. 161-167, 1997.
[41]Arvi, K., ”Underwater and water-assisted laser processing: Part 1 - General features, steam cleaning and shock processing”, Optics and Lasers in Engineering, Vol. 41, No. 2, pp. 307-327, 2004
[42]Rubahn, H. G.,” Laser applications in surface science and technology”, Wiley, 1996.
[43]丁勝懋, “雷射工程導論” ,中央圖書出版社, 1993.
[44]Queheillalt, D. T., Lu Y.and Wadley,. N. G. ,” Laser ultrasonic studies of solid–liquid interfaces” , The Journal of the Acoustical Society of America ,Vol. 101, Iss. 2, pp. 843-853, 1997.
[45]Storkely, U., Vodopyanovz, K. L. and Grillx, W., “GHz ultrasound wave packets in water generated by an Er laser”, Journal of Physics D: Applied Physics, Vol. 31, No. 18, , pp. 2258-2263, 1998.
[46]Dewhurst, R. J., Hutchins, D. A., Palmer, S. B. and Scruby, C. B., “Quantitative measurements of laser-generated acoustic waveforms”, Journal of Applied Physics, Vol. 53, Iss. 6, pp. 4064-4071, 1982.
[47]Laevers, P., Hubin, A., Terryn, H. and Vereecken, J.,”A wall-jet electrode reactor and its application to the study of electrode reaction mechanisms Part I : design and construction” Journal of applied electrochemistry, Vol. 25, pp. 1017-1022, 1995.
[48]Ishii, M., Hibiki, T., “Thermo-fluid dynamics of two-phase flow”, Springer Science Business Media, 2006.
[49]Soo, S. L., “Comparisons of formulations of multiphase flow”, Powder Technology, Vol. 66, pp. 1-7, 1991.
[50]FLUENT 6.2 User Guide, Fluent Inc, 2003.
[51]Cor, J. J. and Miller, T. F., “Modeling multiphase flows subjected to centrifugal acceleration with a mixture-averaged drift-flux algorithm”, Numerical Heat Transfer, Part B: Fundamentals, Vol. 47, No. 4, p 303-319, 2005.
[52]Albert Y. T., ”A numerical study on the hydrodynamics and heat transfer of a circular liquid jet impinging onto a substrate” Numerical Heat Transfer; Part A: Applications, Vol. 44, No. 1, pp. 1-19, 2003.
[53]Fujimoto, H., Hatta, N. and Viskanta, R. “Numerical simulation of convective heat transfer to a radial free surface jet impinging on a hot solid”, Heat and Mass Transfer, Vol. 35, No. 4, pp. 266-272, 1999.