跳到主要內容

臺灣博碩士論文加值系統

(44.200.122.214) 您好!臺灣時間:2024/10/06 02:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許博仁
研究生(外文):Po-jen Hsu
論文名稱:有限厚度壓電體表面圓形電極之軸對稱電彈場分析
論文名稱(外文):Axisymmetric Electro-Elastic Analysis for a Finite Thickness of Piezoelectric Ceramic with a Surface Circular Electrode
指導教授:褚晴暉褚晴暉引用關係
指導教授(外文):Ching-hwei Chue
學位類別:碩士
校院名稱:國立成功大學
系所名稱:機械工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:48
中文關鍵詞:對偶積分方程式壓電陶瓷
外文關鍵詞:dual integral equationspiezoelectric ceramic
相關次數:
  • 被引用被引用:0
  • 點閱點閱:179
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
本文第一部份針對沿z軸極化之半平面壓電陶瓷,表面有極薄之實圓電極,探討其軸對稱之電彈場問題。根據線彈性壓電力學,利用漢可轉換可推導出對偶積分方程式,並求得閉合解。第二部份探討有限厚度之壓電陶瓷,表面有極薄之實圓電極, 探之軸對稱之電彈場問題。經複雜的數學推導,將求得之對偶積分方程式化簡為第二類弗雷德霍姆積分方程式。針對第二類雷德霍姆積分方程式,討論當中所遇到困難和未來可能工作。
The first part of the thesis derives analytically the axisymmetric electro-elastic field of a piezoelectric ceramic half plane with circular surface electrode. The piezoelectric material is polarized along the z-axis. The dual integral equations are derived by using Hnakel Transform and solved by transforming functions into the Fredholm integral equation of the second kind. The second part deals with the finite thickness disk. Due to mathematical difficulty encountered, specific results are obtained in the thesis. A further studies for solving the dual integral equations are needed.
摘要 I
英文摘要 II
目錄 III
表目錄 VI
圖目錄 VII
符號說明 IX
第一章 緒論 1
§1.1 前言 1
§1.2 文獻回顧 3
§1.3 研究目的與架構 7
第二章 無窮遠軸對稱表面電極之壓電體分析 8
§2.1 公式推導 8
§2.2 問題描述 14
§2.3 對偶積分方程式 16
§2.4 電彈場公式 19
§2.5 數值結果檢討與比較 20
第三章 有限厚度軸對稱表面電極之壓電體分析 31
§3.1 問題描述及推導 31
§3.2 後續工作說明及困難探討 37
參考文獻 39
附錄A 42
附錄B 45
附錄C 47
[1]Aleksandrov, V.M. and Chebakov, M.I., “On a method of solving dual integral equations”, Journal of Applied Mathematics and Mechanics, Vol. 37, No. 6, pp. 1087-1097, 1973.
[2]Aleksandrov, V.M., “On a method of reducing dual integral equations and dual series equations to infinite algebraic systems”, Journal of Applied Mathematics and Mechanics, Vol. 39, No. 2, pp. 324-332, 1975.
[3]Boresi, A.P. and Chong, K.P., Elasticity in Engineering Mechanics. Wiley, New York, 2000.
[4]Cooke, J.C., “Triple integral equations”, Quarterly Journal of Mechanics and Applied Mathematics, Vol. 16, pt. 2, pp. 193-203, 1963.
[5]Ikeda, T., Fundamentals of Piezoelectricity, Oxford University Press, New York, 2000.
[6]Jain, D.L. and Kanwal, R.P., “An integral equation method for solving mixed boundary value problems”, Journal on Applied Mathematics, Vol. 20, No. 4, pp. 642-658, 1971.
[7]Kokunov, V.A., Kudryavtsev, B.A. and Senik, N.A., “The plane problem of electroelasticity for a piezoelectric layer with a periodic system of electrodes at the surfaces”, PMM, Vol. 49, No. 3, pp. 374-379, 1985.
[8]Kokunov, V.A. and Parton, V.Z., “Axisymmetric problem of electroelasticity for a piezoelectric layer with annular electrodes”, Translated from problemy Prochnosti, No. 5, pp. 84-88 ,1988.
[9]Lebedev, N.N. and Skalskaia, I.P., “Dual integral equations related to the Kontorovich-Lebedev transform”, Journal of Applied Mathematics and Mechanics, Vol. 38, No. 6, pp. 1090-1097, 1974.
[10]Li, X.F. and Lee, K.Y., “Electric and elastic behaviors of a piezoelectric ceramic with a charged surface electrode”, Smart Materials and Structures, Vol. 13, pp. 424-432, 2004.
[11]Muskhelishvili, N.I., Some Basic Problems of the Mathematical Theory of Elasticity, Noordhoff, The Netherlands, 1963.
[12]Maleknejad, K., Aghazadeh, N. and Rabbani, M., “Numerical solution of second kind Fredholm integral equations system by using a Taylor-series expansion method”, Applied Mathematics and Computation, Vol. 175, pp. 1229-1234, 2006.
[13]Malits, P., “Indentation of an incompressible inhomogeneous layer by a rigid circular indenter”, Quarterly Journal of Mechanics and Applied Mathematics, Vol. 59, No. 3, pp. 343-358, 2006.
[14]Nobel, B., “The solution of Bessel function dual integral equations by a multiplying-factor method”, Proceedings of the Cambridge Philolgical Society, Vol. 59, pp. 351-362, 1963.
[15]Prudnikov, A. P., Brychkov, Yu. A. and Marichev, O. I., Integrals and Series. Volume 2: Special Functions, Gordon and Breach Science Publisher, New York, 1986.
[16]Sneddon, I.N., Mixed Boundary Value Problems in Potential Theory, North-Holland, Amsterdam, 1966.
[17]Sneddon, I.N., The use of Integral Transforms, McGraw-Hill, New York, 1972.
[18]Shindo, Y., Narita, F. and Sosa, H., “Electrodelastic analysis of piezoelectric ceramics with surface electrodes”, International Journal of Engineering Scienc., Vol. 36, pp. 1001-1009, 1998.
[19]Wang, B.L., “Circular surface electrode on a piezoelectric layer”, Journal of Applied Physics, Vol. 95, No. 8, pp. 4267-4274, 2004.
[20]Wang, W. M., “A new mechanical algorithm for solving the second kind of Fredholm integral equation”, Applied Mathematics and Computation, Vol. 172, pp. 946-962, 2006.
[21]Yang, F. Q.., “Solution of a dual integral equation for crack and indentation problems”, Theoretical and Applied Fracture Mechanics, Vol. 26, pp. 211-217, 1997.
[22]Yoshida, M., Narita, F. and Shindo, Y., “Electroelastic field concentration by circular electrodes in piezoelectric ceramics”, Smart Materials and Structures, Vol. 12, pp. 972-978, 2003.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top