跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/13 03:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳苗汶
研究生(外文):Miao-wen Chen
論文名稱:方形容器內奈米流體之自然對流熱傳模式與數值模擬研究
論文名稱(外文):Modeling and Simulation of Natural Convection Heat Transfer of Nanofluid in a Square Enclosure
指導教授:何清政
指導教授(外文):Ching-Jenq Ho
學位類別:碩士
校院名稱:國立成功大學
系所名稱:機械工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:87
中文關鍵詞:奈米流體自然對流熱傳遞矩形封閉容器
外文關鍵詞:square enclosurenanofluidsnatural convection
相關次數:
  • 被引用被引用:4
  • 點閱點閱:279
  • 評分評分:
  • 下載下載:65
  • 收藏至我的研究室書目清單書目收藏:0
本文先建立一數學模式描述直立矩形封閉容器內奈米流體自然對流熱質傳遞現象。矩形封閉容器的物理模型為一左右直立壁面分別為高低溫等溫壁面,而上下壁面假設為絕熱壁。本文並針對方形封閉容器內含氧化鋁-水奈米流體為均勻或兩元混合介質條件下進行數值模擬分析;而數值模擬主要考慮參數及其範圍分別為:萊利數(Ra=1000
~1000000);普朗特數(Pr=6.06);及奈米微粒體積濃度( 0.01%、1.00%、4.00%)等。由假設奈米流體為均勻混合介質之數值模擬結果顯示,封閉容器內奈米流體的熱傳係數可能較純水為低,與其熱傳導係數或動力黏滯係數之模式有密切關係。此外,由視奈米流體為非均勻混合介質的模擬結果可發現路易士數值高達60300,致使在容器邊壁形成相當細薄之濃度邊界層,而容器核心內部之流體呈現為均勻混合介質狀態。最後,本文依林建中(2004)、劉文恭(2007)實驗條件進行數值模擬,並與其實驗數據進行驗證;發現在冷熱壁溫差為2K情形下,數值預測的平均紐賽數與實驗數據頗為吻合。
In the present study, heat and mass transport phenomena associated with natural convection in a vertical rectangular enclosure filled with nanofluids is firstly modeled. The enclosure is differentially heated by two isothermal vertical walls, while the remaining walls are assumed adiabatic. Numerical simulations have then been undertaken for the mixture of Al2O3-water as the nanofluid, which may be modeled as a homogeneous or binary mixture, in a square enclosure with the pertinent dimensionless parameters in the following ranges: the Rayleigh number,Ra=1000~1000000 ; the Prandtl number, Pr=6.06 ; the volumetric fraction of nanoparticles, C = 0.01%, 1.00%, 4.00%. Numerical results from the simulations under the assumption of homogenous mixture in the enclosure clearly reveal that the ratio of heat transfer coefficient for the nanofluid to that for the base fluid (water) across the enclosure can be significantly mitigated, depending mainly on the models adopted for the thermal conductivity as well as the dynamic viscosity of the nanofluid. Moreover, the simulations for treating the nanofluid as a binary mixture, for which the Lewis number for the nanofluid is typically at a value of , show that the nanofluid in enclosure appears essentially as a homogenous mixture except for the region adjacent to the enclosing walls where considerably thin solutal boundary layer is developed. Finally, efforts were taken to validate the present simulations with the experimental results obtained by Lin (2006) and Liu (2007), respectively. Fairly good agreement was found between the predicted and measured results for the averaged Nusselt number of the nanofluid in the enclosure differentially heated with a temperature difference of 2K.
中文摘要..................................................I
英文摘要.................................................II
誌謝.....................................................IV
目錄......................................................V
表目錄.................................................VIII
圖目錄...................................................XI
符號說明...............................................XIII
第一章   序論.........................................1
1-1 前言.............................................1
1-2 文獻回顧.........................................2
1-3 研究目的.........................................7
1-4 本文架構.........................................7
第二章  數值模式與數值方法..............................8
2-1 物理模型與基本假設...................................8
2-2 統御方程式...........................................9
2-3 初始與邊界條件......................................13
2-4 無因次化統御方程式及初始邊界條件....................14
2-5 數值方法與解題方式..................................21
2-5-1 網格系統........................................21
2-5-2 離散方法........................................22
2-5-3 解題流程........................................23
2-6 格點測試............................................26
第三章  結果與討論.....................................35
3-1 奈米流體輸送現象特徵速度之估算.......................35
3-2容器內奈米流體視為均勻混合介質之數值模擬結果..........39
3-2-1 文獻比較........................................39
3-2-2 熱物性質對熱傳效率之影響........................41
3-2-3 熱傳導係數經驗公式之比較........................43
3-2-4 萊利數之影響....................................44
3-3 容器內奈米流體視為非均勻混合介質之數值模擬結果......54
3-3-1 文獻比較........................................54
3-3-2 流場、溫度場及濃度場的分析......................56
3-3-3 黏度效應的影響..................................57
3-4 數值模擬結果與實驗數據之比較........................67
3-4-1 基底流體(純水)之比較結果........................69
3-4-2 奈米流體數值模擬與實驗數據之比較結果............70
第四章  結論與未來方向.................................78
参考文獻.................................................80
附錄A 容積性質的計算.....................................84
自述.....................................................87
Beghein, C., Haghighat, F., and Allard, F., “Numerical Study of Double-Diffusive Natural Convection in a Square Cavity,” Int. J. Heat Mass Transfer, Vol. 35, No. 4, pp.833-846, 1992.
Bennacer, R., and Gobin, D., “Cooperating Thermosolutal Convection in Enclosures-I. Scale Analysis and Mass Transfer,” Int. J. Heat Mass Transfer, Vol. 39, NO. 13, pp. 2671-2681, 1995.
Buongiorno, J., “Convective Transport in Nanofluids,” J. Heat Transfer, Vol. 128, pp. 240-250, 2006.
Charunyakorn, P., Sengupta, S., and Roy, S. K., “Forced Convection Heat Transfer in Microencapsulated Phase Change Material Slurries: Flow in Circular Ducts, ” Int. J. Heat Mass Transfer, Vol. 34, No. 3, pp3 819-833, 1991.
Choi, S. U. S., “Enhancing Thermal Conductivity of Fluids with Nanoparticles,” ASME, FED Vol. 231/MD-Vol. 66, pp. 99-105, 1995.
Ding, Y., and Wen, D., “Particle Migration in a Flow of Nanoparticle Suspensions,” Powder Technol., Vol. 149, pp.84-92, 2005.
Gobin, D., and Bennacer, R., “Cooperating Thermosolutal Convection in Enclosures-II. Heat Transfer and Flow Structure,” Int. J. Heat Mass Transfer, Vol. 39, No. 13, pp. 2683-2697, 1995.
Harhira, M., Roy, S. K., and Sengupta, S., “Natural Convection Heat Transfer from a Vertical Flat Plat with Phase Change Material Suspensions,” Enhanced Heat Transfer, Vol. 4, pp.17-34, 1996.
Ho, C. J., “A Continuum Model for Transport Phenomena in Convective Flow of Solid-Liquid Phase Change Material Suspensions,” Applied Mathematical Modelling, Vol. 29, pp. 805-817, 2005.
Hwang, K. S., Lee J. H., and Jang, S. P., “Buoyancy-driven Heat Transfer of Water-based Nanofluids in a Rectangular Cavity,” Int. J. Heat Mass Transfer, Vol. 50, pp4003-4010, 2007.
Khanafer, K., Vafai, K., and Lightstone, M., “Buoyancy-Driven Heat Transfer Enhancement in a Two-Dimensional Enclosure Utilizing Nanofluids,” Int. J. Heat Mass Transfer, Vol. 46, pp. 3639-3653, 2003.
Kim, J., Kang, Y. T., and Choi, C. K., “Soret and Dufour Effects on Convection Instabilities in Binary Nanofluids for Absorption Application,” Int. Journal of Refrigeration, Vol. 30, pp.323-328, 2007.
Krishnamurthy, S., Bhattacharya, P., and Phelan, P. E., “Enhanced Mass Transport in Nanofluids,” Nano Letters, Vol. 6, No. 3, pp419-423, 2006.
Liu, S., “Particle Dispersion for Suspension Flow, ” Chem. Eng. Sci., 54, pp.873-891, 1999.
Maxwell, J. C., Electricity and Magnetism, Part II, 3rd ed., Clarendon, Oxford, p. 440, 1904.
Maïga, S. E. B., Nguyen, C. T., Galanis, N., and Roy, G., “Heat Transfer Behaviours of Nanofluids in a Uniformly Heated Tube,” Superlattices Microstruct., Vol. 35, pp. 543-557, 2004.
Agwu Nnanna, A. G., “Experimental Model of Temperature-Driven Nanofluid,” J. Heat Transfer, Vol. 129, pp. 697-704, 2007.
Ostrach, S., “Natural Convection with Combined Driving Forces,” Physico Chem. Hydrodyn., Vol. 1, pp. 233-247, 1980.
Phillips, R. J., Armstrong, R. C., and Brown, R. A., “A Constitutive Equation for Concentrated Suspensions that Accounts for Shear-Induced Particle Migration,” Phys. Fluids A, Vol. 4, No.1, pp.30-40, 1992.
Prasher, R., Bhattacharya, P., and Phelan, P. E., “Brownian-Motion-Based Convection- Conductive Model for the Effective Thermal Conductivity of Nanofluids,” J. Heat Transfer, Vol. 128, pp. 588-595, 2006.
Putra, N., Roetzel, W., and Das, S. K., “Natural Convection of Nano-Fluids,” Heat and Mass Transfer, Vol. 39 , pp. 775-784, 2003.
Valverde, J. M., and Castellanos, A., “Fluidization of Nanoparticles: a Modified Richardson-Zaki Law,” AIChE Journal, Vol, 52, No. 2, pp.838-842, 2006.
Wang, X. Q., Mujumdar A. S., and Yap, C. “Free Convection Heat Transfer in Horizontal and Vertical Rectangular Cavities Filled with Nanofluids,” Int. Heat Transfer Conference, 2006.
Wen, D., and Ding, Y., “Formulation of Nanofluids for Convective Heat Transfer Applications,” Int. J. Heat and Fluid Flow, Vol. 26, pp. 855-864, 2005.
夏志豪, “矩形容器內含懸浮相變化微粒之自然對流熱傳之數值模擬,” 國立成功大學機械工程研究所碩士論文, 2000.
林建中, “矩形容器內奈米流體之自然對流熱傳現象之研究,” 國立成功大學機械工程研究所碩士論文, 2004.
張裕昇, “方形容器內奈米流體之自然對流熱傳現象之實驗研究,” 國立成功大學機械工程研究所碩士論文, 2006.
劉文恭, “方形容器內氧化鋁-水奈米流體之自然對流熱傳實驗研究,” 國立成功大學機械工程研究所碩士論文, 2007.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top