|
[Ba] A.Bachelot, Problem de Cauchy global pour syst´ems de Dirac-Klein- Gordon, Ann. Inst. H. Poincar´e Phys. Th´eor. 48 (1988), 387-422. [Ba] A.Bachelot, Global existence of large amplitude solutions for Dirac- Klein-Gordon systems in Minkowski space, Lecture Notes in Math. 1402 (1989), 99-113(Springer Berlin). [Bo] N. Bournaveas, Local existence of energy class solutions for the Dirac- Klien-Gordon equations, Comm. PDE 24 (1999), 1167-1193. [CB] Y. Choquet-Bruhat, Solutions globales des ´equations de Maxwell- Dirac-Klien-Gordon (masses null), C. R. Acad. Sci. Paris S´er. I Math. 292 (1981), 153-158. [CG] J.Chadam and R.Glassey, On Certain Global Solutions of the Cauchy Problem for the (Classical) Coupled Klein-Gordon-Dirac equations in one and three Space Dimensions, Arch. Rational Mech. Anal. 54 (1974), 223-237. [EGS] M. Esteban and V. Georgiev and E. S´er´e, Stationary Solutions of the Maxwell-Dirac and the Klien-Gordon-Dirac Equations, Calc. Var. 4 (1996), 265-281. [F1] Yung-fu Fang, Local Existence for Semilinear Wave Equations and Applications to Yang-Mills Equations, Ph.D dissertation (1996) (University of Maryland). [F2] Yung-fu Fang, Existence and Uniqueness for Dirac-Klein-Gordon Equations in One Space Dimension (2002)(preprint) [F3] Yung-fu Fang, A Direct Proof of Global Existence for the Dirac-Klein- Gordon Equations in One Space Dimension (2004) Taiwanese Journal of Math. [FG] Yung-fu Fang and Manoussos Grillakis, Existence and Uniqueness for Boussinesq type Equations on a Circle, Comm. PDE 21 (1996), 1253- 1277. [FZ] W. Fushchich and R. Zhdanov, On the reduction and some new exact solutions of the non-linear Dirac and Dirac and Dirac-Klien-Gordon equations, J. Phys. A: Math. Gen. 21 (1988), L5-L9. [G] V. Georgiev, Small amplitude solutions of the Maxwell-Dirac equations, Indiana Univ. Math. J. 40 (1991), 845-883. [GS] R.Glassey and W. Strauss, Conservation laws for the classical Maxwell-Dirac and Klien-Gordon-Dirac equations, J. Math. Phys. 20 (1979),454-458. [KM] S. Klainerman and M.Machedon, Space-time estimates for null forms and the local existence theorem, Comm. Pure Appl. Math. XLVI (1993), 1221-1268. [MH] J.E.Marsden and M.J.Hoffman, Elementary Classical Analysis, W.H.Freeman and Company New York.(1993). [S] E.M. Stein, Singular Integrals and Differentiability Properties of Functions (1970), Princeton University Press. [S] E.M. Stein, Harmonic Analysis: Real-Variable Method, Orthogonality, and Oscillatory Integrals (1993), Princeton University Press. [SS] J. Shatah and M.Struwe, Geometric Wave Equations, Courant Lecture Notes in Mathematics (1998).
|