跳到主要內容

臺灣博碩士論文加值系統

(44.192.15.251) 您好!臺灣時間:2024/03/05 19:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:江宜展
研究生(外文):Yi-Chan Chiang
論文名稱:以熱力學模式應用於超級測站硝酸氣體推估
論文名稱(外文):Evaluation of nitric acid by thermodynamic model-a case study at supersites in southern Taiwan
指導教授:吳義林
指導教授(外文):Yee-Lin Wu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:環境工程學系碩博士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:135
中文關鍵詞:超級測站吸濕性潮解硫酸銨硝酸銨熱力學模式
外文關鍵詞:ammonium sulfatehygroscopicsupersitedeliquescenceammonium nitratethermodynamic model
相關次數:
  • 被引用被引用:3
  • 點閱點閱:310
  • 評分評分:
  • 下載下載:29
  • 收藏至我的研究室書目清單書目收藏:0
本論文的研究目的在於建構硝酸銨的熱力學化學平衡反應模式,並評估以簡化模式應用於南部超級測站硝酸氣體濃度推估之可行性。模式建構的理論是根據Stelson(1982)所提出的,目的在計算硝酸銨生成的平衡常數Kp,並以計算出之Kp值與實際採樣測得之NH3(g)推估出HNO3(g),考慮參數包括溫度T、相對濕度RH及硫酸銨液固相反應的干擾。為了討論熱力學模式應用於大氣環境中的可行性,將南部超級測站環狀氣固相分離器(ADS)及蜂巢式套管(HDS)之四次平行比對採樣結果代入模式中進行驗證,採樣時間為秋季(94年9月)、冬季(94年12月)、春季(95年3月)、夏季(95年7月),採樣地點於南部超級測站四個站,輔英、橋頭、前鎮、潮洲,ADS採集樣品數總共為167個;HDS採集樣品數總共為183個。
ADS採樣驗證模式結果顯示,在模式僅考慮溫度、相對溼度所計算出的硝酸銨平衡常數Kp的驗證結果中,模式可描述的點佔全部的39.52%,其中以冬季及春季兩個季節的應用結果最好。冬季可描述50.0%的點,春季可描述60.0%的點。HDS驗證結果顯示,在模式僅考慮溫度、相對溼度所計算出的硝酸銨平衡常數Kp的驗證結果中,模式可描述的點佔全部的36.06%,冬季及春季兩個季節的應用結果最好(此結果與ADS結果一致),冬季可描述47.2%的點,春天可描述57.4%的點。夏、秋兩季因高溫低濕(相較於冬、春兩季)的環境下導致理論Kp值較高而多數沒有硝酸銨生成,因此不適用以本模式去推估。冬、春兩季可能因簡化的模式無法完整的描述平衡反應而出現部份模式值與實測結果差異過大的情形。
在模式考慮硫酸鹽修正的驗證結果中顯示,模式所推估出之 Kp值與實測值之相關性,與未考慮硫酸鹽修正的結果差異不大,其值均在0.9上下;然而考慮硫酸鹽修正後的Kp值會呈現較大的偏移,推測其原因在於氣膠中可能同時存在(NH4)HSO4及(NH4)2SO4,故NH4+/SO42-的莫耳比值不會等於2,與模式考慮硫酸鹽修正的最初假設不符。
以簡化的模式應用於超級測站四個站的結果中顯示,四個測站較合理的結果均出現在冬季及春季,其HNO3(g)濃度絕大多數都在10ppb以下,且呈現日高夜低的趨勢,與文獻結果一致。
The purposes of this study were to establish a simplified thermodynamic model of NH4NO3 and evaluate whether the model was feasible to predict the real-time concentration of HNO3 in the southern supersites in Taiwan. The calculations were based on the studies by Stelson and Seinfeld (1982), used to compute the equilibrium constant of NH4NO3 (Kp). And HNO3 can be calculated by Kp and NH3 which was measured in the atmosphere. The parameters of this model include temperature (T), relative humidity (RH) and the impact of (NH4)2SO4 in the mixed sulfate/nitrate solution. Moreover, Annular Denuder Sampler (ADS) and Honeycomb Denuder system (HDS) were adopted to verify this model. The 4 times of sampling were in fall (September 2005), winter (December 2005), spring (March 2006) and summer (July 2006), respectively. The 4 sampling sites were Fooyin, Chiautou, Chenjen and Choujau all in the southern supersites. The sample numbers of ADS were 167 and which of HDS were 183.
The result used by ADS showed that 39.25% samples could be predicted by this model with 2 parameters, T and RH. The results in winter and spring had the better fits. 50% and 60% samples in winter and spring could be predicted by this model, respectively. The result used by HDS showed that 36.06% samples could be predicted by this model . The results in winter and spring had the better fits which were the same as ADS. 47.2% and 57.4% samples could be predicted in winter and spring, respectively. In addition, because higher T and lower RH in summer and fall compared with winter and spring resulted in fewer formation of NH4NO3, the model couldn’t be used to compute Kp (NH4NO3). In winter and spring, there might be some factors we didn’t consider, so some samples couldn’t be predicted by this model.
Furthermore, after (NH4)2SO4 was considered in the model with T and RH , the correlation coefficient between the predicted value and measured values used by ADS and HDS were almost the same as the result of model with just T and RH. The reason might be that (NH4)HSO4 and (NH4)2SO4 may exist in the atmospheric environment at the same time, so the mole ratio of NH4+ to SO42- won’t be equal to 2. As a result, the impact of (NH4)HSO4 couldn’t be ignored.
The better fits with the simplified model applied in the 4 southern supersites were in winter and spring. The value-scale of HNO3 was smaller than 10ppb, and it was higher in daytime and lower in nighttime. The finding was identical with previous studies.
摘要 II
ABSTRACT III
誌謝 V
目錄 VI
表目錄 IX
圖目錄 X
符號表 XIV
第一章 前言 1
1.1 研究緣起 1
1.2研究目的 3
1.3研究架構 3
第二章 文獻回顧 5
2.1大氣懸浮微粒特性 5
2.2大氣懸浮微粒組成 6
2.3氣膠含水量 12
2.3.1 氣膠含水量特性 12
2.3.2潮解點與溫度的關聯性 14
2.3.3潮解點與物種組成的關聯性 17
2.4 無機微粒氣膠熱力學 19
2.4.1氣膠無機物種 19
2.4.2平衡常數 19
2.4.3活性係數(Activity coefficient) 21
2.4.4 含水量 24
第三章 研究方法 26
3.1採樣規劃 26
3.1.1採樣地點 26
3.1.2採樣時段 26
3.2採樣原理及分析方法 30
3.2.1環狀氣固相分離器(ADS)採樣及分析方法 30
3.2.2 R&P3500 蜂巢式套管(Honeycomb Denuder System, HDS) 33
3.2.3懸浮微粒PM2.5採樣及分析方法 34
3.3超級測站連續監測儀器 37
3.3.1 R&P 8400N採樣原理 37
3.3.2 R&P 8400S採樣原理 38
3.4熱力學模式的建立 40
3.4.1僅含硝酸銨(NH4NO3)之水溶液系統的模式計算 40
3.4.2硫酸銨與硝酸銨共存之水溶液系統的模式計算 49
3.4.3 (NH4)2SO4-NH4NO3-H2O系統中潮解點的計算 54
第四章 結果與討論 56
4.1模式模擬結果 56
4.1.1僅含硝酸銨系統的模式模擬結果 56
4.1.2硫酸銨與硝酸銨共存之系統的模式模擬結果 66
4.1.3模式的適用性 71
4.2大氣採樣驗證模式結果(未考慮硫酸鹽) 77
4.2.1 採樣驗證結果 77
4.2.2 不同季節free nitrate的結果討論 87
4.2.3 不同潮解狀態的結果討論 89
4.2.4 日夜變化的結果討論 92
4.3考慮硫酸鹽的驗證模式結果 96
4.4以模式應用於超級測站的結果 99
第五章 結論與建議 127
5.1研究結論 127
5.2建議 131
參考文獻 132
Bai, H., Lu, C., Chang, K. F., Fang, G. C., “Sources of sampling error for field measurement of nitric acid gas by a denuder system”, Atmos. Environ., Vol. 37, p.p.941-947(2003).

Bassett, M. E., Seinfeld, J. H., “Atmospheric equilibrium model of sulfate and nitrate aerosol”, Atmos. Environ., Vol. 17, p.p.2237-2252(1983).

Chan, C. K., Flagan, R. C., and Seinfeld, J. H., “Water activities of NH4NO3/(NH4)2SO4 solutions”, Atmos. Environ., Vol. 26, p.p.1661-1673(1992).

Coutant, R. W., “Effect of Environmental Variables on Collection of Atmospheric Sulfate.”,Environmental Science and Technology, Vol. 11, p.p.873-878(1977).

David, H., Park, S. S., Ondov, J. M., Buckley, T., Kim, S. R., Jayanty R.K.M., “Highly time resolved fine particle nitrate measurements at the Baltimore Supersite”, Atmos. Environ., Vol. 38, p.p.5321-5332(2004).

Demetrios, D., Sotirios, G., “Gas phase nitric acid ,ammonia and related particulate matter at a Mediterranean coastal site ,Patras ,Greece”, Atmos. Environ., Vol. 33, pp.3417-3425 (1999)

Danalatos, D., Glavas, S., “Gas phase nitric acid, ammonia and related particulate matter at a Mediterranean coastal site, Patras, Greece”, Atmos. Environ., Vol. 33, p.p.3417-3425(1999).

Geller, M. D., Kim, S., Misra, C., Sioutas, C., Olson, B. A., Marple, V. A.,”A methodology for measuring size-dependent chemical composition of ultrafine particles”, Aerosol Sci. Technol, 36: 748-762(2002)

Hampden, K., Val, B., Judy C, C., Vicken, E., Mark C, G., Douglas, H., Steven, K., Michael, M., June, R., William, R., Michael, T., John, W., “The Treasure Valley secondary aerosol study I: measurements and equilibrium modeling of inorganic secondary aerosols and precursors for southwestern Idaho”, Atmos. Environ., Vol. 37, p.p.511-524(2003).

Hildemann, L. M., and Russell, A. G., Cass, G. R. “Ammonia and nitric acid concentration in equilibrium with atmospheric aerosols: experiment vs theory”, Atmos. Environ., Vol. 18, p.p.1737-1750(1984).

Jacobson, M. Z., Fundamentals of atmospheric modeling, Cambridge University Press, New York(1999b)

Kulmala, M., Korhonen, P., Napari, I. Karlsson, A., Berresheim, H., and O’Dowd, C. D., “Aerosol formation during PARFORCE: Ternary nucleation of H2SO4, NH3, and H2O”, J. Geophys. Res., Vol. 107, NO. D19, 8111(2002).

Kim, Y. P., John H. Seinfeld, P. Saxena, “Atmospheric Gas-Aerosols Equilibrium I. Thermodynamic Model”, Aerosol Sci. Technol., Vol. 19, p.p.157-181(1993).

Kim, Y. P., John H. Seinfeld, P. Saxena, “Atmospheric Gas-Aerosols Equilibrium II. Activity Coefficient Calculations Methods”, Aerosol Sci. Technol., Vol. 19, p.p.182-198(1993).

Kim, Y. P., John H. Seinfeld, P. Saxena, “Atmospheric Gas-Aerosols Equilibrium III. Thermodynamic of Crustal Elements Ca2+, K+, and Mg2+”, Aerosol Sci. Technol., Vol. 22, p.p.93-110(1993).

Makar, P. A., Bouchet, V. S., Nenes, A., “Inorganic chemistry calculations using HETV—a vectorized solver for the SO42--NO3--NH4+ system based on the ISORROPIA algorithms”, Atmos. Environ., Vol. 37, p.p.2279-2294(2003).

MATUSMOTO, K. and TANAKA, H., “Formation and dissociation of atmospheric particulate nitrate and chloride: an approach based on phase equilibrium”, Atmos. Environ., Vol. 30, p.p.639-648(1996).

Olszyna, K. J., Bairai, S. T., Tanner, R. L., “Effect of ambient NH3 levels on PM2.5 composition in the Great Smoky Mountains National Park”, Atmos. Environ., Vol. 39, p.p.4593-4606(2005).

Plessow, K., Spindler, G., Zimmermann, F., Matschullat, J., “Seasonal variations and interactions of N-containing gases and particles over a coniferous forest, Saxony, Germany”, Atmos. Environ., Vol. 39, pp.6995-7007 (2005)

Park, S. S., Ondov, J. M., David, H., Nair, N. P., “Seasonal and shorter-term variations in particulate atmospheric nitrate in Baltimore”, Atmos. Environ., Vol. 39, p.p.2011-2020(2005).

Parmar, R.S., Satsangi, G.S., Lakhani, A., Srivastava, S.S., Prakash, S., “Simultaneous measurements of ammonia and nitric acid in ambient air at Agra (27310_N and 78305_E) (India)” , Atmos. Environ., Vol. 35, pp.5979-5988(2001)

Pilinis, C., “Modeling atmospheric aerosols using thermodynamic arguments-a review”, Global nest, Vol. 1, p.p.5-13(1999).

Potukuchi, S., Wexler, A., “Identifying solid-aqueous-phase transition in atmospheric aerosols. I. neutral acidity solutions”, Atmos. Environ., Vol. 29, p.p.1663-1676(1995).

Potukuchi, S., Wexler, A., “Identifying solid-aqueous-phase transition in atmospheric aerosols. II. Acidic solutions”, Atmos. Environ., Vol. 29, p.p.3357-3364(1995).

Seinfeld, J. H., Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, A Wiley-Interscience Publication(1998)

Sioutas, C., Wang, S. T., Ferguson and Koutrakis, P., “Laboratory and field evaluation of an improved glass honeycomb denuder/filter pack sampler”, Atmos. Environ., Vol. 30, p.p.885-895(1996).

Stelson, A. W., and Seinfeld, J. H., “Relative humidity and temperature dependence of the ammonium nitrate dissociation constant”, Atmos. Environ., Vol. 16, p.p.983-993(1982a).

Stelson, A. W., and Seinfeld, J. H., “Relative humidity and pH dependence of the vapor pressure of ammonium nitrate-nitric acid solutions at 25°C”, Atmos. Environ., Vol. 16, p.p.993-1000(1982b).

Stelson, A. W., and Seinfeld, J. H., “Thermodynamic predictions of the water activity, NH4NO3 dissociation constant,density and refractive index for the NH4NO3-(NH4)2SO4 -H2O system at 25°C”, Atmos. Environ., Vol. 16, p.p.2507-2514(1982c).

Tsai, C. J., Perng S. B., Chiou, S. F., “Use of two different acidic aerosol samplers to measure acidic aerosols in Hsinchu, Taiwan”, Air and Waste manage., assoc. 50: 2120-2128(2000).

Tang, I. N., Munkelwitz, H. R., “Composition and temperature dependence of the deliquescence properties of hygroscopic aerosols”, Atmos. Environ., Vol. 27A, p.p.467-473(1993).

Wexler, A. S., Seinfeld, J. H., “Second-generation inorganic aerosol model”, Atmos. Environ., Vol. 25A, p.p.2731-2748(1991).

Whitby, K. T., Cantrell, B. K., ”Atmospheric aerosols characteristics and measurement. In: International Conference on Environmental Sensing and Assessment (ICESA), Institute of Electrical and Electronic Engineers (IEEE), “ ICESA, Las Vegas, NV, : 1~6 (1976)

Zhuoer, H.,Roy,M.H., Andrew, G.A., Jonathan, D.J., Rob, M.T., Jianxin,Y., “Field intercomparison of filter pack and impactor sampling for aerosol nitrate, ammonium, and sulphate at coastal and inland sites”, Atmos. Research, Vol.71, p.215-232. (2004)

Zhaung, Y., Seigneur, C., Seinfeld, J. H., Jacobson, M., Clegg, S. L., Binkowski, F. S., “A comparative review of inorganic aerosol thermodynamic equilibrium modules: similarities, differences, and their likely cause”, Atmos. Environ., Vol. 34, p.p.117-137(2000).

王秋森(1997) “台北地區懸浮微粒特性及污染源之評估”,行政院環保署空氣污染防治研究發展計畫。

吳易儒,民俗活動對空氣品質之影響,碩士論文,國立成功大學環境工程研究所,2004。

吳義林,”衍生性氣膠與其前驅物之相關性研究(期末報告)”,行政院環境保護署,2001。

徐玉眉,吳義林,”無機氣膠熱力學平衡模式之建立”行政院國家科學委員會專題研究計畫成果報告,2002。

徐玉眉,海鹽氣膠氯損失之研究,碩士論文,國立台灣大學環境工程研究所,2001。

袁中新、洪崇軒、王宏恩、劉山豪(1999) “台灣地區懸浮微粒物化特徵及生成機制探討” ,1999 年氣膠研討會論文集,第253-261頁。

陳弘逸,大氣中酸鹼性氣膠特性探討,碩士論文,國立屏東科技大學,2002。

陳穩至,大氣中懸浮微粒之特性與來源,碩士論文,國立成功大學環境工程研究所,2000。

陳冠志,(1998),南高屏地區PM10懸浮微粒污染來源之探討,國立成功大學碩士論文

張立鵬、廖哲甫、蔡俊鴻,無機酸氣於大氣轉換生成鹽類比例研究—高屏案例研究,第十二屆氣膠科技研討會,2005。

張士昱,易潮解無機氣膠含水特性之研究,博士論文,國立中央大學環境工程研究所,2001。

黃建達、林宗毅、戴華山、林銳敏(1999) “高雄市大氣懸浮微粒PM2.5及PM2.5-10 之化學組成特徵研究” ,第十六屆空氣污染控制技術研討會論文集,第7-12 頁。

楊宏隆(1998) “大氣懸浮微粒PM2.5 及PM10 之特性及來源分析”,碩士論文,國立中興大學環境工程學系,台中。

蔡德明、吳義林,相對溼度對質量濃度之影響效應研究,第十七屆空氣污染控制技術研討會論文集,126-131,2000。

蔡德明、吳義林,『高屏地區大寮測站PM10與PM2.5之組成份特徵研究』,1998年氣膠研討會論文集,pp339-346,1998。

蔡德明、吳義林、陳冠志,『南高屏地區懸浮微粒分佈特徵與來源之研究』,1998年氣膠研討會論文集,pp311-317,1998。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊